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Abstract: In this paper, we propose and prove some new results on the recently proposed conformable fractional derivatives and
fractional integral, [Khalil, R., et al., A new definition offractional derivative, J. Comput. Appl. Math. 264, (2014)]. The simple nature
of this definition allows for many extensions of some classical theorems in calculus for which the applications are indispensable in
the fractional differential models that the existing definitions do not permit. The extended mean value theorem and the Racetrack
type principle are proven for the class of functions which are α-differentiable in the context of conformable fractional derivatives and
fractional integral. We also apply the D’Alambert approachto the conformable fractional differential equation of theform: Tα Tα y+
pTα y+qy= 0, wherep andq areα−differentiable functions as application.

Keywords: α−differentiable functions, conformable fractional differential equation, conformable fractional derivatives and integrals,
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1 Introduction and Preliminaries

The concept of derivative is traditionally associated to integers where the order of derivative is considered to be integer.

In 1695 L’Hospital, in his letter to Leibnitz, asked, “what does it mean by
dn f
dxn whenn = 0.5?”. In the bid to answer

L’Hospital’s question, many researchers tried to put a definition on a fractional derivative. Various types of fractional
derivatives were introduced - Riemann-Liouville, Caputo,Hadamard, Erdélyi-Kober, Grünwald-Letnikov, Marchaudand
Riesz are just a few to name [1,2,3,4,5,6]. Most of the fractional derivative are defined through fractional integrals [6].
Due to the same reason, those fractional derivatives inherit some non-local behaviors, which lead them to many interesting
applications including memory effects and future dependence [7]. In recent time, there are many applications of the
fractional derivatives cutting across many fields such as found in control theory of dynamical systems, nanotechnology,
viscoelasticity, anomalous transport and anomalous diffusion, financial modeling, random walk see [8,9,10,11,12,13,14,
15,16,17]. These recent discoveries of the applications of fractional calculus have drawn the attention of many researchers
in other to gain more insight into the field. Existence and uniqueness of solutions, asymptotic behaviour, analytical and
numerical solutions of some of the fractional differentialequations both linear and nonlinear see [18,19,20,21,22].

We present the two most popular definitions in the sense that they are mostly used for mathematical modeling in many
applications.

Definition 1.[5] The Riemann-Liouville’s (RL) fractional integral operator of order α ∈ [n− 1,n), of a function f∈
L1(a,b) is given as

Iαw(x) =
1

Γ (n−α)

∫ x

a
w(τ)(x− τ)n−α−1dτ (1)
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with Γ as the Gamma function and I0w(x) = w(x).
The Riemann-Liouville’s (RL) fractional derivative operator is then given as

Dαw(x) =
1

Γ (n−α)

dn

dtn

∫ x

a
w(τ)(x− τ)n−α−1dτ. (2)

Definition 2.[5] The Caputo fractional derivative operator of orderα ∈ [n−1,n), of a function f∈ L1(a,b) is given as

cDαw(x) =
1

Γ (n−α)

∫ x

a
wn(τ)(x− τ)n−α−1dτ. (3)

Now, all definitions including (2) and (3) above satisfy the property that the fractional derivativeis linear. This is the
only property inherited from the first derivative by all of the definitions. However, there are some inconsistencies of many
existing definitions that limit the extent of applications in so many fields. Properties such as the derivative of constant
should be zero,the product rule, quotient rule, chain rule,Rolle’s theorem, mean value theorem and composition rule and
so on are lacking in almost all fractional derivatives.

These inconsistencies and many more have posed a lot of problems in real life applications and have limited how far
these fractional calculus could be explored. To overcome some of these and other difficulties, Khalil et al. in [23] came
up with an interesting idea that extends the familiar limit definition of the derivatives of a function called conformable
fractional derivative. The simple nature of this definitionallows for many extensions of some classical theorems in calculus
for which the applications are indispensable in the fractional differential models that the existing definitions do notpermit.

In this paper, the extended mean value theorem and the Racetrack type principle are proven for the class of functions
which areα-differentiable in the context of conformable fractional derivatives and fractional integral. In Section 2 we
review some concepts of conformable fractional derivatives equation and fractional integral of the form:TαTαy+ pTαy+
qy= 0, wherep andq areα−differentiable functions as application.

2 Conformable Fractional Derivative

Definition 3.[23] Given a function f: [0,∞)→R. Then theconformable fractional derivative of f oforder α is defined
by

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

, (4)

for all t > 0, α ∈ (0,1). If f is α−differentiable in some(0,a), a> 0, and lim
t→0+

Tα( f )(t) exists, then define Tα( f )(0) =

lim
t→0+

f (α)(t).

In the sequel, we shall also adopt the notation used in [23]. That is, we will, sometimes writef (α)(t) for Tα( f )(t), to
denote the conformable fractional derivatives off of orderα. In addition, if the conformable fractional derivative off of
orderα exists, then we simply say thatf is α−differentiable. It is easy to see that, from the definition, if two functions
areα−differentiable, so is their sum and difference. See a similar definition in [24].

As a consequence of the above definition, the authors in [23], showed that theα−derivative in (4), obeys the product
rule, quotient rule, linearity property, and zero derivative for constant functions. Also they proved results similarto the
Rolle’s Theorem and the Mean Value Theorem in classical calculus. Specifically, they proved the following theorems:

Theorem 1(Rolle’s Theorem for Conformable Fractional Differentiable Functions).Let a> 0 and f : [a,b]→ R be a given
function that satisfies

– f is continuous on[a,b],
– f is α−differentiable for someα ∈ (0,1),
– f (a) = f (b).

Then, there exist c∈ (a,b), such that f(α)(c) = 0.

Theorem 2(Mean Value Theorem for Conformable Fractional Differentiable Functions).Let a> 0 and f : [a,b]→ R be a
given function that satisfies

– f is continuous on[a,b],
– f is α−differentiable for someα ∈ (0,1).
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Then, there exist c∈ (a,b), such that

f (α)(c) =
f (b)− f (a)

bα
α − aα

α
.

They also gave the following definition for theα−fractional integral of a functionf starting froma≥ 0.

Definition 4. Ia
α( f )(t) = Ia

1(t
α−1 f ) =

∫ t

a

f (x)
x1−α dx, where the integral is the usual Riemann improper integral, and α ∈

(0,1).

With the above definition, it was shown that

Theorem 3. Tα Ia
α( f )(t) = f (t), for t ≥ a, where f is any continuous function in the domain of Iα .

3 Main Results

We begin by proving the Extended Mean Value Theorem for Conformable Fractional Differentiable Functions.

Theorem 4(Extended Mean Value Theorem for Conformable Fractional Differentiable Functions). Let a > 0 and
f ,g : [a,b]→ R be functions that satisfy

– f ,g is continuous on[a,b],
– f ,g is α−differentiable for someα ∈ (0,1).

Then, there exist c∈ (a,b), such that
f (α)(c)

g(α)(c)
=

f (b)− f (a)
g(b)−g(a)

.

Remark.Observe that Theorem2 is a special case of this Theorem4 for g(x) =
xα

α
.

Proof. Consider the function

F(x) = f (x)− f (a)+

(

f (b)− f (a)
g(b)−g(a)

)

(g(x)−g(a)).

SinceF is continuous on[a,b], α−differentiable on(a,b), and F(a) = 0 = F(b), then by Theorem1, there exist a
c ∈ (a,b) such thatF (α)(c) = 0 for someα ∈ (0,1). Using the linearity ofTα and the fact that theα−derivative of a
constant is zero, our result follows.

Theorem 5. Let a> 0 and f : [a,b]→ R be a given function that satisfies

– f is continuous on[a,b],
– f is α−differentiable for someα ∈ (0,1).

If f (α)(x) = 0 for all x ∈ (a,b), then f is a constant on[a,b].

Proof. Supposef (α)(x) = 0 for all x∈ (a,b). Let x1,x2 be in[a,b] with x1 < x2. So, the closed interval[x1,x2] is contained
in [a,b], and the open interval(x1,x2) is contained in(a,b).
Hence, f is continuous on[x1,x2] andα−differentiable on(x1,x2). So, by Theorem2, there existc betweenx1 andx2
with

f (x2)− f (x1)
xα
2
α − xα

1
α

= f (α)(c) = 0.

Therefore,f (x2)− f (x1) = 0 and f (x2) = f (x1).
Sincex1 andx2 are arbitrary numbers in[a,b] with x1 < x2, then f is a constant on[a,b].

Corollary 1. Let a> 0 and F,G : [a,b]→R be functions such that for allα ∈ (0,1), F (α)(x) = G(α)(x) for all x ∈ (a,b).
Then there exist a constant C such that F(x) = G(x)+C.

Proof. Simply apply the above theorem toH(x) = F(x)−G(x).
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Theorem 6. Let a> 0 and f : [a,b]→ R be a given function that satisfies

– f is continuous on[a,b],
– f is α−differentiable for someα ∈ (0,1).

Then we have the following:

1.If f (α)(x)> 0 for all x ∈ (a,b), then f is increasing on[a,b].
2.If f (α)(x)< 0 for all x ∈ (a,b), then f is decreasing on[a,b].

Proof. Following similar line of argument as given in the proof of Theorem5, there existc betweenx1 andx2 with

f (x2)− f (x1)
xα
2
α − xα

1
α

= f (α)(c).

1.If f (α)(c)> 0, then f (x2)> f (x1) for x1 < x2.
Therefore,f is increasing on[a,b] sincex1 andx2 are arbitrary numbers of[a,b].

2.If f (α)(c)< 0, then f (x2)< f (x1) for x1 < x2.
Therefore,f is decreasing on[a,b] sincex1 andx2 are arbitrary numbers of[a,b].

Theorem 7(Racetrack Type Principle). Let f,g : [a,b]→ R be given functions satisfying

– f and g are continuous on[a,b],
– f and g areα−differentiable for someα ∈ (0,1).
– f (α)(x)≤ g(α)(x) for all x ∈ (a,b).

Then we have the following:

1.If f(a) = g(a), then f(x)≤ g(x) for all x ∈ [a,b].
2.If f(b) = g(b), then f(x)≥ g(x) for all x ∈ [a,b].

Proof. Considerh(x) = g(x)− f (x). Thenh is continuous on[a,b] andα−differentiable for someα ∈ (0,1).
Also, using the linearity ofTα and the fact thatf (α)(x)≤ g(α)(x) for all x∈ (a,b), α ∈ (0,1), we obtain

h(α)(x)≥ 0, for all x∈ (a,b). (5)

So, by Theorem6, h is increasing (or nondecreasing).
Hence, for anya≤ x≤ b, we haveh(a)≤ h(x).
Sinceh(a) = g(a)− f (a) = 0 by the assumption, the result follows.

Similarly, for the part 2 of Theorem7, since for anya≤ x≤ b, we haveh(x)≤ h(b) andh(b) = f (b)−g(b) = 0, the
result follows.

Theorem 8. Let 0< a< b and f : [a,b]→ R be continuous function. Then forα ∈ (0,1),
∣

∣

∣
Ia
α( f )(t)

∣

∣

∣
≤ Ia

α(| f |)(t).

Proof. The result follows directly since

∣

∣

∣
Ia
α( f )(t)

∣

∣

∣
=

∣

∣

∣

∣

∣

∫ t

a

f (x)
x1−α dx

∣

∣

∣

∣

∣

≤
∫ t

a

∣

∣

∣

f (x)
x1−α

∣

∣

∣
dx

=

∫ t

a

| f (x)|
x1−α dx

= Ia
α(| f |)(t).

Corollary 2. Let f : [a,b]→R be continuous function such that

M = sup
[a,b]

| f |.

Then for any t∈ [a,b], α ∈ (0,1),
∣

∣

∣
Ia
α( f )(t)

∣

∣

∣
≤ M

(

tα

α
− aα

α

)

.
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Proof. From Theorem8, we have that for anyt ∈ [a,b], α ∈ (0,1),
∣

∣

∣
Ia
α( f )(t)

∣

∣

∣
≤ Ia

α(| f |)(t)

=

∫ t

a

| f (x)|
x1−α dx

≤ M
∫ t

a
xα−1dx

= M

(

tα

α
− aα

α

)

.

We now give an example to illustrate Theorem6.

Example 1.Let f : [0.5,3]→ R be defined byf (x) = x3−3x+2. Find wheref is increasing and decreasing.

Solution: We first computef (α)(x) for anyα ∈ (0,1). By definition, we have

f (α)(x) = 3x1−α(x2−1).

So, f (α)(x) = 0 if and only if x=−1,0 or 1.
All numbers less than 0 will not be considered since they do not lie in the domain under consideration.
To this end, we will consider all positive numbers less than one (in particular,x∈ [0.5,1)) and all numbers greater or equal
to one (in particular,x∈ [1,3]).

–For x∈ [0.5,1), x−1< 0 andx+1> 0. This implies that for allα ∈ (0,1), f (α)(x) < 0 for all x∈ [0.5,1). So, f is
decreasing on[0.5,1).

–For x ∈ [1,3], x− 1 ≥ 0 andx+ 1 > 0. This implies that for allα ∈ (0,1), f (α)(x) > 0 for all x ∈ [1,3]. So, f is
increasing on[1,3].

4 Application: D’Alambert Approach

In this section, we seek to find two solutions of the followingconformable fractional differential equation of the form

TαTαy+ p(x)Tαy+q(x)y= 0, (6)

wherep andq areα−differentiable functions ofx.

Approach: We start by assuming that (6) has a solution, say,y1. We wish to find the second solutiony2 such that

y2 = vy1,

wherev is anα−differentiable function ofx.
For this,

Tαy2 = Tα(vy1)

= vTαy1+ y1Tαv

and

TαTαy2 = Tα(vTαy1+ y1Tαv)

= vTαTαy1+Tαy1Tαv+ y1TαTαv+Tαy1Tαv.

But y2 a solution of (6) if and only if

0= TαTαy2+ pTαy2+qy2

= vTαTαy1+Tαy1Tαv+ y1TαTαv+Tαy1Tαv+ pvTαy1+ py1Tαv+qvy1. (7)
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Sincey1 is assumed to be a solution of (6), we have that

TαTαy1+ pTαy1+qy1 = 0.

With this, the equation (7) boils down to

2Tαy1Tαv+ y1TαTαv+ py1Tαv= 0. (8)

Now, if we letw= Tαv, then (8) becomes

Tαw+

(

p+
2
y1

Tαy1

)

w= 0. (9)

The problem becomes:
Findw that satisfies (9).
To do this, we simply multiply both sides of Equation (9) by

exp

[

Iα

(

p+
2Tαy1

y1

)]

= y2
1eIα p

and use the product rule property ofTα to obtain (here we only employ the properties ofTα and Iα , as discussed in
previous section and [23]) :

Tα

(

wy2
1eIα p

)

= 0. (10)

This implies that

w=
ce−Iα p

y2
1

, (11)

where c is an arbitrary constant. Therefore,

v= Iα

(

ce−Iα p

y2
1

)

. (12)

Hence, our second solution,y2, for Equation (6) is given by

y2 = y1Iα

(

ce−Iα p

y2
1

)

. (13)

We state the above approach as follows:

Theorem 9. Given a conformable fractional differential equation of the form

TαTαy+ p(x)Tαy+q(x)y= 0, (14)

where p and q areα−differentiable functions of x. Suppose y1 is a solution of(14), then another solution, y2, is given by

y2 = y1Iα

(

e−Iα p

y2
1

)

. (15)

Example 2.Consider the differential equation

T2/3T2/3y− 3
√

xT2/3y= 0.

Clearly,y1 = 1 is a solution of such equation. Herep(x) =− 3
√

x. Using formula (13) and the definition ofI2/3 we obtain
another solution of the form

y2 = I2/3

(

eI2/3
3√x
)

= I2/3(e
x).
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Example 3.Consider the differential equation

T1/2T1/2y+

√
x

2
T1/2y− y= 0.

It is easy to see thaty1 = x is a solution of the given equation. Herep(x) =

√
x

2
. Using formula (13) and the definition of

I1/2 we obtain another solution of the form

y2 = xI1/2

(

e−I1/2(
√

x/2)

x2

)

= xI1/2

(

e−x/2

x2

)

.

5 Conclusion

The extended mean value theorem and the Racetrack type principle are proposed and proven in this paper for the class of
functions which areα-differentiable in the context of conformable fractional derivatives and fractional integral introduced
recently in [23]. We apply the D’Alambert approach to the conformable fractional differential equation of the form:
TαTαy+ pTαy+qy= 0, wherep andq areα−differentiable functions as application. The D’Alambert approach is made
possible here to solve this class of fractional differential equations simply because of the nature of this new definition of
derivatives. This, of course, is necessary since many real life models give such differential equations.
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