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Abstract: In this paper, we propose and prove some new results on teathe@roposed conformable fractional derivatives and
fractional integral, [Khalil, R., et al., A new definition @factional derivative, J. Comput. Appl. Math. 264, (2014)he simple nature
of this definition allows for many extensions of some clasistheorems in calculus for which the applications are ipelisable in
the fractional differential models that the existing ddfonis do not permit. The extended mean value theorem and dlcetRck
type principle are proven for the class of functions whioh@fdifferentiable in the context of conformable fractionakidatives and
fractional integral. We also apply the D’Alambert approachhe conformable fractional differential equation of fhem: Ty Tay +
pTay+ gy = 0, wherep andq area —differentiable functions as application.

Keywords: a—differentiable functions, conformable fractional diffatial equation, conformable fractional derivatives amtdgrals,
Racetrack type principle.

1 Introduction and Preliminaries

The concept of derivative is traditionally associated te@gers where the order of derivative is considered to bgénte

n
In 1695 L'Hospital, in his letter to Leibnitz, asked, “whabebs it mean byg—); whenn = 0.5?”. In the bid to answer

L'Hospital’s question, many researchers tried to put a defimon a fractional derivative. Various types of fractan
derivatives were introduced - Riemann-Liouville, Capidadamard, Erdélyi-Kober, Griinwald-Letnikov, Marchaardi
Riesz are just a few to nam&, P, 3,4,5,6]. Most of the fractional derivative are defined through fiaal integrals §].
Due to the same reason, those fractional derivatives irdwre non-local behaviors, which lead them to many intergst
applications including memory effects and future dependdd]. In recent time, there are many applications of the
fractional derivatives cutting across many fields such asdan control theory of dynamical systems, nanotechnglogy
viscoelasticity, anomalous transport and anomaloussdfy financial modeling, random walk s€%9,10,11,12,13 14,
15,16,17]. These recent discoveries of the applications of fraeticalculus have drawn the attention of many researchers
in other to gain more insight into the field. Existence andjuehess of solutions, asymptotic behaviour, analyticdl an
numerical solutions of some of the fractional differenéigliations both linear and nonlinear s&8,19,20,21,22).

We present the two most popular definitions in the sensetiegitare mostly used for mathematical modeling in many
applications.

Definition 1.[5] The Riemann-Liouville’s (RL) fractional integral operatof order a € [n—1,n), of a function fe
LY(a,b) is given as

1Tw(x) — ﬁ /a “W(T)(x= 1) 1dg L)
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with I as the Gamma function anfw/(x) = w(x).
The Riemann-Liouville’s (RL) fractional derivative op&yais then given as

DIW(x) = ﬁg—; /a " W(T) (x— 7)™ Tdr. )

Definition 2.[5] The Caputo fractional derivative operator of orderc [n— 1,n), of a function fe L(a,b) is given as
Do) = — - / "W (1) (x— )" 1dr 3)
r (n — a) a ’

Now, all definitions includingZ) and @) above satisfy the property that the fractional derivats/énear. This is the
only property inherited from the first derivative by all oktdefinitions. However, there are some inconsistencies oyma
existing definitions that limit the extent of applicatiomsgo many fields. Properties such as the derivative of constan
should be zero,the product rule, quotient rule, chain Rt#le’s theorem, mean value theorem and composition rude an
so on are lacking in almost all fractional derivatives.

These inconsistencies and many more have posed a lot ofpnshh real life applications and have limited how far
these fractional calculus could be explored. To overcomaesof these and other difficulties, Khalil et al. iBJ came
up with an interesting idea that extends the familiar lingfidition of the derivatives of a function called conformabl
fractional derivative. The simple nature of this definitedlows for many extensions of some classical theorems cutued
for which the applications are indispensable in the fraclaifferential models that the existing definitions do petmit.

In this paper, the extended mean value theorem and the Rek&ype principle are proven for the class of functions
which area-differentiable in the context of conformable fractionaridatives and fractional integral. In Section 2 we
review some concepts of conformable fractional derivateguation and fractional integral of the formyTay+ pTay +
gy = 0, wherep andq area —differentiable functions as application.

2 Conformable Fractional Derivative

Definition 3.[23] Given a function f [0,0) — R. Then theconformable fractional derivative of f oforder a is defined

by 1-a
_I_O{(f)(t):yLnOf(H—et8 )—f(t)’ @)

forallt >0, a € (0,1). If f is a—differentiable in som&0,a), a > 0, and Iirg+ Ta (T)(t) exists, then defing, Tf)(0) =
t—
lim (@ (t).

t—0t

In the sequel, we shall also adopt the notation use@#h [That is, we will, sometimes writd (%) (t) for T, (f)(t), to
denote the conformable fractional derivatived aff ordera. In addition, if the conformable fractional derivative bbf
ordera exists, then we simply say thétis o —differentiable. It is easy to see that, from the definitidriwio functions
area —differentiable, so is their sum and difference. See a sirdiddinition in [24].

As a consequence of the above definition, the authorddy §howed that ther—derivative in @), obeys the product
rule, quotient rule, linearity property, and zero derivatfor constant functions. Also they proved results simitathe
Rolle’s Theorem and the Mean Value Theorem in classicalibadc Specifically, they proved the following theorems:

Theorem 1(Rolle’s Theorem for Conformable Fractional Differentiable Functions).Let a> 0 and f: [a,b] — R be a given
function that satisfies

—f is continuous ona, b,
—f is a—differentiable for somer € (0,1),
—f(a) = f(b).

Then, there exist € (a,b), such that f)(c) = 0.

Theorem 2(Mean Value Theorem for Conformable Fractional Differentiable Functions).Let a> 0 and f: [a,b] — R be a
given function that satisfies

—f is continuous ona, b,
—f is o —differentiable for somer € (0,1).
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Then, there exist € (a,b), such that

(@) = 1D

They also gave the following definition for tlee—fractional integral of a functiori starting froma > 0.

t
Definition 4. 12(f)(t) = 13(t91f) = / md)g where the integral is the usual Riemann improper integralj a €
a

Xl—a
(0,1).
With the above definition, it was shown that

Theorem 3. Ty13(f)(t) = f(t), fort > a, where f is any continuous function in the domaingf |

3 Main Results

We begin by proving the Extended Mean Value Theorem for Qunddle Fractional Differentiable Functions.

Theorem 4(Extended Mean Value Theorem for Conformable Fractional Diferentiable Functions). Let a > 0 and
f,g: [a,b] — R be functions that satisfy

—f,g is continuous ofa, b,
—f,g is a—differentiable for somer € (0,1).

Then, there exist € (a,b), such that

RemarkObserve that Theoreis a special case of this Theorehfior g(x) = =

Proof. Consider the function

f(b)—f(a)
g(b) —g(a)
SinceF is continuous orfa,b], a—differentiable on(a,b), andF(a) = 0 = F(b), then by Theoreni, there exist a

c € (a,b) such thatr(?)(c) = 0 for somea € (0,1). Using the linearity ofT, and the fact that ther—derivative of a
constant is zero, our result follows.

F(x) =f(x)—f(a)+ ( )(Q(X) —9(a).

Theorem 5. Leta> Oand f: [a,b] — R be a given function that satisfies

—f is continuous ora, b],
—f is a—differentiable for somer € (0,1).

If (@) (x) = 0forall x € (a,b), then f is a constant ofa, b].

Proof. Suppose (?)(x) = 0 for allx € (a,b). Letxy, X be in[a, b] with x; < X,. So, the closed intervéky, x,] is contained
in [a,b], and the open intervak;, x,) is contained in(a, b).
Hence,f is continuous orixi,xp] and a —differentiable on(xi,x2). So, by Theoren?, there exist betweerx; andx,

with
1) = 1040) _ )¢ = g,
<K
a a

Therefore,f(xz) — f(x1) =0 andf(xz) = f(x1).
Sincex; andxp are arbitrary numbers ifa, b] with x; < X2, thenf is a constant ofg, bJ.

Corollary 1. Leta>0and FG: [a,b] — R be functions such that for adt € (0,1), F(?)(x) = G(@)(x) for all x € (a,b).
Then there exist a constant C such thakF= G(x) +C.

Proof. Simply apply the above theoremt(x) = F (x) — G(X).
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Theorem 6. Leta> Oand f: [a,b] — R be a given function that satisfies

—f is continuous ona, b,
—f is a—differentiable for somer € (0,1).

Then we have the following:
1.If £(@)(x) > Ofor all x € (a,b), then f is increasing ofa, b).
2.1f £@)(x) < 0for all x € (a,b), then f is decreasing ofa, b].

Proof. Following similar line of argument as given in the proof oféldiem5, there exist betweerx; andx, with
f(x2) — f(x1)

a a
L _%
a a

= (@ (c).

1.If £(@)(c) > 0, thenf(xz) > f(x1) for x3 < Xo.

Therefore,f is increasing orfia, b] sincex; andx; are arbitrary numbers ¢&, b.
2.1f £@(c) < 0, thenf(xp) < f(x1) for X, < Xa.

Therefore,f is decreasing ofa, b] sincex; andxy are arbitrary numbers d¢&, b].

Theorem 7(Racetrack Type Principle). Let f,g: [a,b] — R be given functions satisfying
—f and g are continuous ofa, b],
—f and g area —differentiable for somer € (0, 1).
—f(@(x) < g'@(x) forall x € (a,b).
Then we have the following:
1.If f(a) = g(a), then f(x) < g(x) for all x € [a,b].
2.If f(b) = g(b), then f(x) > g(x) for all x € [a,b].
Proof. Consideh(x) = g(x) — f(x). Thenh is continuous offa, b] anda —differentiable for somer € (0,1).
Also, using the linearity o, and the fact that (@) (x) < g(@)(x) for all x € (a,b), a € (0,1), we obtain

h@(x) >0, forall xe (ab). (5)

So, by Theoreng, h is increasing (or nondecreasing).
Hence, for anya < x < b, we haveh(a) < h(x).
Sinceh(a) = g(a) — f(a) = 0 by the assumption, the result follows.
Similarly, for the part 2 of Theorem, since for anya < x < b, we haveh(x) < h(b) andh(b) = f(b) — g(b) =0, the
result follows.

Theorem 8. LetO < a< b and f: [a,b] — R be continuous function. Then fare (0,1),

12(H)®)] <121

Proof. The result follows directly since

’_ Xlo{ ‘

S/‘xlj(“ d

_/|x10'
a(lf).

Corollary 2. Let f: [a,b] — R be continuous function such that

M = sup|f|.
[a.b]
Then forany € [a,b], a € (0,1),
a te  a”
3OO <M (= -=
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Proof. From Theoren8, we have that for any< [a,b], a € (0,1),

We now give an example to illustrate Theorém

Example 1.Let f : [0.5,3] — R be defined byf (x) = x* — 3x+ 2. Find wheref is increasing and decreasing.
Solution: We first computef (%) (x) for anya € (0,1). By definition, we have
(@) (x) =3 9(x% - 1).
So, (@ (x) =0ifand only ifx=—1,0 or 1
All numbers less than 0 will not be considered since they ddi@a the domain under consideration.
To this end, we will consider all positive numbers less thiaa @n particularx € [0.5,1)) and all numbers greater or equal
to one (in particularx € [1, 3)).
—Forx € [0.5,1), x— 1< 0 andx+1 > 0. This implies that for allr € (0,1), f(@)(x) < 0 for all x € [0.5,1). So, f is
decreasing ofD.5,1).

—Forx € [1,3], x—1> 0 andx+ 1 > 0. This implies that for alla € (0,1), f(%)(x) > 0 for all x € [1,3]. So, f is
increasing on1, 3.

4 Application: D’Alambert Approach

In this section, we seek to find two solutions of the followgmnformable fractional differential equation of the form

TaTay+ P(X) Ty +q(X)y = 0, (6)

wherep andq area —differentiable functions of.

Approach: We start by assuming thaé)(has a solution, say;. We wish to find the second solutign such that

Y2 = Vw1,
wherev is ana —differentiable function ok.
For this,
Tay2 = Ta(vy1)
=VTay1+VY1TaV
and

TaTaY2 = Ta(VIay1+Y1TaV)
=VTgTay1+ TaY1TaV+Y1Ta TaV+ Tay1 TaV.

But y, a solution of §) if and only if

0="TaTay2+ PTay2+Qy2
=VTgTaY1+ TaY1TaV+Y1Ta TaV+ TaY1 TaV+ pVTay1 + pYiTaV+ Qvys. (7)
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Sincey; is assumed to be a solution @&)(we have that
TaTayr+ PTayr+0dyr =0.
With this, the equationd) boils down to

2Tay1TaV+Y1Ta TaV+ py1Tav = 0. (8)

Now, if we letw = T,v, then 8) becomes
2
Taw+ <p+ y—Tay1>W= 0. 9)
1

The problem becomes:
Find w that satisfies9).
To do this, we simply multiply both sides of Equatid) by

ol o) i
1

and use the product rule property ®f to obtain (here we only employ the propertiesTgf andl,, as discussed in
previous section andp]) :

T (\w%e'a F’) -0 (10)
This implies that
celaP
=—, (11)
Vi

where c is an arbitrary constant. Therefore,

v:|a<ce;2|“p>. (12)
1

Hence, our second solutioyy, for Equation 6) is given by
Y2=)’1|a<$2|ap>~ (13)
Y1
We state the above approach as follows:
Theorem 9. Given a conformable fractional differential equation oétform
TaTay+ p(X)Tay+a(x)y =0, (14)
where p and q arex —differentiable functions of.xSuppose yis a solution of(14), then another solutionzyis given by

e—|ap
v =yila| =~ | (15)

1

Example 2.Consider the differential equation
To/3To/3y — V/XTp/3y = 0.

Clearly,y; = 1 is a solution of such equation. Hgpéx) = —/x. Using formula (3) and the definition of,,3 we obtain
another solution of the form

Y2 = |2/3(e|2/3 ‘3&) = lp/3(€").
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Example 3.Consider the differential equation

X
T1/2Ty 2y + \/7_1_1/2)’ —-y=0.

It is easy to see thay = x is a solution of the given equation. Hepéx) = g(

I1/> we obtain another solution of the form

e 11/2(v¥/2) e %/2
Y2 =Xly/2 —Z =Xly2 2 |

The extended mean value theorem and the Racetrack typégpeiace proposed and proven in this paper for the class of
functions which arex-differentiable in the context of conformable fractionalidatives and fractional integral introduced
recently in R3]. We apply the D’Alambert approach to the conformable i@wl differential equation of the form:
TaTay+ pTay+ qy= 0, wherep andq area —differentiable functions as application. The D’Alambgupeoach is made
possible here to solve this class of fractional differdrguations simply because of the nature of this new defmitio
derivatives. This, of course, is necessary since manyifeahbdels give such differential equations.

. Using formula (3) and the definition of

5 Conclusion
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