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In mathematics and statistics there exist many divergences. One of them, which has

a special appeal since it originates from Shannon’s entropy (a well known index of

diversity) and its concavity property, isJensen’s differenceas it was called by Burbea

and Rao [9]. Continuing our research on the properties and the use of divergence and

information measures in the actuarial field, in the present paper, we investigate the

properties of the Jensen difference in the case of non-probability vectors. This appears

in actuarial graduation. Jensen’s difference without probability vectors is an appropriate

divergence if the vectors have equal element totals. We also investigate the use of

Jensen’s difference in the problem of determining a client’s disability distribution [6].

Keywords: Jensen difference, Jensen-Shannon divergence, non-probability vectors,

divergence measures, limiting properties, graduation, lagrangian duality, disability dis-

tribution.

1 Introduction

The bibliography provides a lot of measures of information that have been proposed

and studied in the literature (see for example [21], [29]). These are mainly categorized in

two groups, namelyentropy type measuresandmeasures of divergence.

A useful notion in Information Theory isShannon’s entropygiven by

H(X) = −
∑

x

p(x) ln p(x) or H(X) = −
∫

f(x) ln f(x) dx

depending on whether the random variableX is discrete or continuous, with probability

distributionp(x) or f(x), respectively. In the latter case,H(X) is also calleddifferential

entropy. This measure quantifies the expected uncertainty related with the result of an

experiment, which means that it provides information for the predictability of the outcome
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of a random variableX. The larger the entropy the less concentrated the distribution ofX

and thus an observation ofX provides a little information.

A bivariate functionD(f, g) of two functions or vectorsf , g is a measure of divergence

if D(f, g) ≥ 0 with equality if and only iff = g (c.f. [1]). It expresses the ”distance”

between the two functions or vectors. The main representative of this group of measures

of information is the Kullback-Leibler or relative entropy. Other well known members

of the group are the Cressie-Read power divergence [29] and the more general Csiszar

divergence orφ - divergence [11], which for finite probability vectorsp? = (p?
1, . . . , p

?
n)T

andq? = (q?
1 , . . . , q?

n)T is defined by

IC(p?,q?) =
n∑

i=1

q?
i φ

(
p?

i

q?
i

)
.

Function φ is convex in [0,∞) such that0φ(0/0) = 0, limu→0φ(u) = φ(0) and

0φ(u/0) = uφ∞, whereφ∞ = limu→∞[φ(u)/u], u > 0, φ(1) = 0 andφ(u) strictly

convex atu = 1. Special choices ofφ lead to known measures of divergnence including

the Cressie-Read power divergence. In probability and statistics these divergencies are al-

most exclusively used with probability distributions. As we shall see below there are cases

where non-probability distributions are involved. A good reference book on measures of

divergence is that of Pardo [27]. Notation with? will indicate a probability vector, while

without? a non-probability vector.

A measure of divergence with a special appeal since it originates from Shannon’s en-

tropy and its concavity property isJensen’s differenceas it was called by Burbea and

Rao [9]. It is also known asinformation radius[34]. The Jensen difference between prob-

ability vectors is given by

J(p?,q?) ≡ H
(

1
2 (p? + q?)

)− 1
2 [H(p?) + H(q?)] ,

whereH(p?) = −∑
i p?

i ln p?
i is the Shannon entropy between the finite probability vec-

torsp? andq?.

The aim of the present paper is on one hand to study the basic properties of statistical

information theory for Jensen’s difference with and without probability vectors and on

the other to explore their use in actuarial science. It is a sequel of a recent paper by the

authors [32] where similar problems have been studied with the Kullback-Leibler (KL)

and the Cressie-Read (CR) power divergences. Special attention is paid to the Lagrangian

duality for the Jensen difference in connection with the graduation problem.

In Section 2 of the paper we present two actuarial problems involving divergences.

The first one is the determination of a client’s disability distribution and the second is the

graduation of mortality rates. Both of them have been presented and solved in the seminal

paper of Brockett [6] via the Kullback-Leibler divergence. In this paper the emphasis is

on the Jensen difference which we study in detail in Section 3. A special feature of our
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approach is the use of non-probability vectors which appear in the graduation problem

but may appear in other situations as well. In Section 4 we give a numerical example

concerning the two problems while in Section 5 we give concluding results.

2 Actuarial problems

Information theory is related to actuarial science through the use of information mea-

sures for the treatment and solution of actuarial problems. In general terms we can cat-

egorize the use of information theory as follows: through entropy, through the Kullback-

Leibler divergence or relative entropy and through other measures.

A well known method of estimating probability models is the maximum entropy prin-

ciple (MEP). In this method, starting with some moments, which provide the only avail-

able information for the model, the model which maximizes the entropy is selected. This

method is widely used in several fields such as economics, accounting, biology, medicine,

ecology etc. [15]. Use of MEP in actuarial science can be found, among others, in ref-

erences [3], [8], [12], [15], [20] and [24] dealing with topics such as loss distributions,

credit risk, insurance problems, non-life insurance pricing, risk management, portfolio op-

timization, etc. The Kullback-Leibler directed divergence was first introduced in actuar-

ial problems as an information theoretic method for actuarial graduation in [7] and [39].

Brockett [6] gives a very good description of the use of information theory in actuarial sci-

ence. Other uses of the Kullback-Leibler directed divergence in the actuarial field can be

found in [25] and [38].

Two actuarial problems that can be solved via information theoretic methods are the

determination of a client’s disability distribution and the graduation of mortality rates [6].

The latter appears to be more interesting since it involves non-probability vectors.

2.1 Determination of a client’s disability distribution

Most insurance companies adopt a reference or standard distribution for losses. How-

ever this distribution might not be immediately applicable to a particular client’s situation.

So it is more common to make adjustments in order to reflect the known characteristics of

the client. Particularly, for the determination of the distribution of the duration of a disabil-

ity for a client with expected durationµ different from that of the standard table, which is

the less distinguishable from the distribution of the table, we can minimize any divergence

measure

D(p?,q?) subject to
n∑

i=1

p?
i = 1 and

n∑

i=1

xip
?
i = µ,

wherep? = (p?
i , . . . , p

?
n)T andq? = (q?

i , . . . , q?
n)T . Theq?

i is the known probability of the

disability having a duration ofxi days, obtained from a reference table,
∑n

i=1 p?
i = 1, p?

i is
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the unknown probability of a durationxi days to be developed for the particular client and

x1, . . . , xn aren discrete times of interest given in the standard table. The first constraint

assures that thep?
i ’s form a probability distribution.

Brockett [6] describes the minimization of the Kullback - Leibler divergence subject to

the two above mentioned constraints. We note that Brockett solves the above minimization

problem via its unconstrained dual convex programming problem.

2.2 Graduation through divergences

A common matter for an actuary is the description of the actual but unknown mortality

pattern of a population. In order to achieve this the actuary calculates from raw data crude

mortality rates, death probabilities or forces of mortality. Since these entities form an

irregular series, the actuary revises the initial estimates with the aim of producing smoother

estimates, with a procedure calledgraduation. There are several methods of graduation

classified into parametric curve fitting and non-parametric smoothing methods. A very

good reference book for graduation is that of London [23].

Brockett and Zhang [7] were the first to propose the use of information theoretic ideas

in graduation. Zhang and Brockett [39] tried to construct a smooth series ofn annual death

probabilities{vx}, x = 1, 2, . . . , n which is as close as possible to the observed series{ux}
and in addition they assumed that the true but unknown underlying mortality pattern is (i)

smooth, (ii) increasing with agex, i.e. monotone, (iii) more steeply increasing in higher

ages, i.e. convex. They also assumed that (iv) the total number of deaths in the graduated

data equals the total number of deaths in the observed data, and (v) the total age of death in

the graduated data equals the total age of death in the observed data. By total age of death

we mean the sum of the product of the number of deaths at every age by the corresponding

age. The last two constraints imply that the average age of death is required to be the same

for the observed and graduated mortality data. For the mathematical description of the

constraints the interested reader is refered to [32].

In order to obtain the graduated values, Brockett in [6] minimized the Kullback-Leibler

divergence between the crude death probabilitiesu = (u1, . . . , un)T and the new death

probabilitiesv = (v1, . . . , vn)T ,

IKL(v,u) =
∑

x

vx ln
vx

ux
,

subject to the constraints (i) - (v).

It is easily seen that the annual mortality rates (death probabilities)u andv are not prob-

ability vectors since
∑n

x=1 ux and
∑n

x=1 vx may be larger or smaller than one. To solve

this problem, Sachlas and Papaioannou in [32] investigated the properties of the Kullback-

Leibler and Cressie-Read divergence measures in the case of non-probability vectors, con-

cluding that under some circumstances these can be used as proper divergence measures
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and proposed the use of an extra constraint in the minimization problem, i.e.,

(vi)
n∑

x=1
vx =

n∑
x=1

ux.

Constraint (vi) has the meaning that the overall probability of observing a death in then

year span is the same for both the observed and the graduated values.

A unifying way to obtain the graduated valuesvx was proposed and investigated by the

authors in [32]. This is to minimize the Cressie-Read divergence betweenv andu

ICR(v,u) =
1

λ(λ + 1)

∑
x

vx

[(
vx

ux

)λ

− 1

]
, λ ∈ R− {0,−1},

for given λ subject to constraints (i) - (v) and/or (vi). In this paper, as stated above, we

investigate the role of the Jensen difference.

3 The Jensen difference

The Jensen differenceJ(p?,q?) is a special case of the Jensen-Shannon divergence

(JSD) defined in [22] as

JS(p?,q?) = H(ap? + (1− a)q?)− aH(p?)− (1− a)H(q?)

for a = 1/2 [26]. Since then there is a confusion in the use of names Jensen-Shannon

divergence and Jensen difference in the bibliography. In the present paper when will use

the name Jensen difference we will refer to the measureJ(p?,q?). If we consider the

functionφ(x) = ax ln x− [ax + (1− a)] ln(ax + 1− a), JSD can be seen as a particular

case of theφ-divergence ( [26], [36]).

The Jensen difference is a natural measure of divergence between the probability vec-

torsp? andq? as it satisfies the two basic properties of a divergence measure. It is non-

negative and vanishes if and only ifp? = q?. An interesting property ofJ(p?,q?) is that

considered as a function of(p?,q?), it is convex [9].

3.1 The Jensen difference with probability vectors

The properties of Jensen’s difference as a measure of divergence have not been fully

investigated. The following lemma gives the connection between the Jensen difference and

the well known Kullback - Leibler directed divergence.

Lemma 3.1. The Jensen difference with probability vectorsp?, q? is connected with the

Kullback - Leibler directed divergence through the equation

J(p?,q?) =
1
2

[
IKL(p?, (p? + q?)/2) + IKL(q?, (p? + q?)/2)

]
.
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The above equation can be used in order to examine the information theoretic properties

of Jensen’s difference. In terms of the symmetric Jefrey’sJ-divergenceJef(p?,q?) =
IKL(p?,q?) + IKL(q?,p?), Crooks in [10] gave an upper bound for Jensen’s difference,

J(p?,q?) ≤ ln
2

1 + exp
{− 1

2Jef(p?,q?)
} .

The classicalJ(p?,q?) exhibits several interesting properties [17]. Among them we

mention that it is symmetric and always well defined, it takes values between 0 and 1, and

its square root
√

J(p?,q?) verifies the triangle inequality whileJ(p?,q?) does not [13].

For an exhaustive enumeration of the JSD properties we refer to [14].

Generalizations of the Jensen difference have been given in [35]. A relationship be-

tween the well known Fisher information measure and two different scalar parametric gen-

eralizations of Jensen’s difference divergence was established in [28]. Relationships with

the Cramer-Rao inequality were also established in the same paper.

MeasureJ has been used for measuring the distance between random graphs, for test-

ing the goodness-of-fit of point estimations, in the analysis of DNA sequences and in the

segmentation of textured images. In addition, by making use of its ability to be general-

ized to an arbitrary number of probability distributions,J has been used to quantify the

complex heterogeneity of DNA sequences as well as to detect borders between coding and

noncoding DNA [14].

We now turn to study the sampling properties of estimated Jensen differences. For the

sake of Lemmas 3.2 to 3.5, which follow below, we change the notation:k will denote

the dimension of the two discrete finite probability distributionsp? andq? andn or m

the size of multinomial samples. Ifq? is known and an estimatêp? of p? is available

from a multinomial samplex1, . . . , xk,
∑k

i=1 xi = n obtained from populationp? then

J(p?,q?) is estimated byJ(p̂?,q?) with p̂?
i = xi/n, i = 1, . . . , k. If q? is unknown but it

is estimated on the basis of a multinomial sample(y1, . . . , yk), independent of(x1, . . . , xk)
and

∑k
i=1 yi = m, q̂?

i = yi/m, i = 1, . . . , k thenJ(p?,q?) is estimated byJ(p̂?, q̂?).
The means and variances ofJ(p̂?,q?) andJ(p̂?, q̂?) are given in the following lemmas.

Lemma 3.2. The mean ofJ(p̂?,q?) is given by

E[J(p̂?,q?)] ≈ J(p?,q?) +
1
4n

k∑

i=1

q?
i (1− p?

i )
p?

i + q?
i

= J(p?,q?) +
1
4n

(
k − 1−

k∑

i=1

p?
i (1− p?

i )
p?

i + q?
i

)

while its variance is given by

V ar[J(p̂?,q?)] ≈ 1
4n

{
k∑

i=1

p?
i

[
ln

(
2p?

i

p?
i + q?

i

)]2

− [
IKL(p?, (p? + q?)/2)

]2
}

.
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Lemma 3.3. The mean ofJ(p̂?, q̂?) is given by

E[J(p̂?, q̂?)] ≈ J(p?,q?) +
1
4n

k∑

i=1

q?
i (1− p?

i )
p?

i + q?
i

+
1

4m

k∑

i=1

p?
i (1− p?

i )
p?

i + q?
i

while its variance is given by

V ar[J(p̂?, q̂?)] ≈ 1
4n

{
k∑

i=1

p?
i

[
ln

(
2p?

i

p?
i + q?

i

)]2

− [
IKL(p?, (p? + q?)/2)

]2
}

− 1
4m

{
k∑

i=1

q?
i

[
ln

(
2p?

i

p?
i + q?

i

)]2

+
[
IKL(q?, (p? + q?)/2)

]2
}

.

Proof. The results for both lemmas follow after some algebra and using known results on

the multinomial distribution, the mean and the variance of the estimatedφ-divergence [41]

and the fact that the Jensen difference is a particular case of theφ-divergence.

The following lemmas give the asymptotic distributions ofJ(p̂?,q?) andJ(p̂?, q̂?).

Lemma 3.4. If (x1, . . . , xk) is multinomialM(n, q?
1 , . . . , q?

k), then the quantity

8nJ(p̂?,q?) = 4

[
n

k∑

i=1

q?
i ln q?

i +
k∑

i=1

xi ln xi

−n ln n−
k∑

i=1

(xi + nq?
i ) ln

(
xi + nq?

i

2n

)]
L→ χ2

k−1.

Proof. The lemma is an application of [41, Theorem 3.2] and thus we omit the proof.

Lemma 3.5. Let (x1, . . . , xk), (y1, . . . , yk) two independent random samples from multi-

nomialsM(n, p?
1, . . . , p

?
k) andM(m, q?

1 , . . . , q?
k), respectively. Then ifp = q the quantity

8mn

n + m
J(p̂?, q̂?) =

8
n + m

{
m

k∑

i=1

xi ln xi −mn ln n + n

k∑

i=1

yi ln yi −mn ln m

−
k∑

i=1

(mxi + nyi) ln
(

mxi + nyi

mn

)}
L→ χ2

k−1.

Proof. The lemma is an application of [18, Corollary 2] and thus the proof is ommited.

Lemmas 3.2 and 3.3 indicate thatJ(p̂?,q?) andJ(p̂?, q̂?) are asymptoticaly unbiased

estimates of their corresponding counterparts and give their asymptotic variances. Lemmas

3.4 and 3.5 provide the means to construct tests of goodness of fit and tests of equality of

divergences, etc based on one or more samples from multinomial populations. For details

see [41] and [18].
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3.2 The Jensen difference without probability vectors

In this subsection we will explore the properties of the Jensen difference when we have

non-probability vectors. This supplements our previous research on the properties of di-

vergence measures without probability vectors [32]. In the sequel withp = (p1, . . . , pn)T

we will denote the non-probability vector with real nonnegative components, while with

p? = (p?
1, . . . , p

?
n)T , p?

i = pi/
∑

i pi, i = 1, . . . , n the corresponding probability vector.

Similarly for q andq?.

Definition 3.1. We define by

J(p,q) ≡ H
(

1
2 (p + q)

)− 1
2 [H(p) + H(q)] , (3.1)

the Jensen difference between the non-probability vectorsp = (p1, . . . , pn)T andq =
(q1, . . . , qn)T , where

∑
i pi 6= 1,

∑
i qi 6= 1 andH(p) = −∑

i pi ln pi is the ”Shannon

entropy” ofp.

Lemma 3.6. For the Jensen’s difference without probability vectorsp,q the following

equation holds

J(p,q) = −
n∑

i=1

1
2

(
p?

i

n∑

i=1

pi + q?
i

n∑

i=1

qi

)
ln

[
1
2

(
p?

i

n∑

i=1

pi + q?
i

n∑

i=1

qi

)]

−1
2

{
n∑

i=1

pi

[
H(p?)− ln

n∑

i=1

pi

]
+

n∑

i=1

qi

[
H(q?)− ln

n∑

i=1

qi

]}
.

Proof. For the Shannon’s entropy without probability vectors we have that

H(p) = −
n∑

i=1

pi ln pi = −
n∑

i=1

(
p?

i

n∑

i=1

pi

)
ln

(
p?

i

n∑

i=1

pi

)

= −
n∑

i=1

pi

[
n∑

i=1

p?
i ln p?

i + ln
n∑

i=1

pi

]
=

n∑

i=1

pi

[
H(p?)− ln

n∑

i=1

pi

]
,

whereH(p?) = −∑n
i=1 p?

i ln p?
i is Shannon’s entropy related to the probability vectorp?.

Similarly we have that

H(q) =
n∑

i=1

qi

[
H(q?)− ln

n∑

i=1

qi

]

and

H( 1
2 (p + q)) = −

n∑

i=1

1
2

(
p?

i

n∑

i=1

pi + q?
i

n∑

i=1

qi

)
ln

[
1
2

(
p?

i

n∑

i=1

pi + q?
i

n∑

i=1

qi

)]
.

Thus replacing the above expressions to Equation 3.1 the desirable result is obtained.
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We observe that entropyH(1
2 (p + q)) cannot be written in terms ofH(1

2 (p? + q?)).
This makes it difficult to find an easy and general expression connecting Jensen’s difference

without probability vectors with Jensen’s difference with probability vectors and then study

its properties.

In the sequel we will assume that
∑n

i=1 pi =
∑n

i=1 qi. This is the minimal requirement

for a measure of divergence without probability vectors to be considered as a typical mea-

sure of divergence [32]. The relation connecting Jensen’s difference without probability

vectors and Jensen’s difference with probability vectors is given in the following lemma.

Lemma 3.7. If
∑

i pi =
∑

i qi, then for the Jensen difference involving non-probability

vectorsp,q, it holds that

J(p,q) =

(∑

i

pi

)
J(p?,q?),

whereJ(p?,q?) is the Jensen difference between the two probability vectorsp?,q?.

Proof. The desired result is easily obtained, substituting into Equation 3.1,H(p), H(q)
andH( 1

2 (p + q)) given in the proof of Lemma 3.6.

Now we have to see if this measure has information theoretic and divergence properties.

Proposition 3.1. Let
∑

i pi =
∑

i qi > 0. ThenJ(p,q) ≥ 0 with equality if and only if

p = q, wherep andq are non-probability vectors. MoreoverJ(p,q) ≤ ∑
i pi.

Proof. The proof is obvious sinceJ(p?,q?) ≥ 0 if and only if p? = q? andJ(p?,q?) ≤
1.

Note also that in view of the properties ofJ(p?,q?),
√

J(p,q) is a metric for non-

probability vectors.

Definition 3.2. (Bivariate Shannon entropy) Letp(x, y) be a bivariate non-probability

function associated with two discrete variablesX, Y in R2 for which it holds∑
x

∑
y p(x, y) 6= 1. We define the Shannon entropy involving a non-probability func-

tion p as

HX,Y (p) = −
∑

x

∑
y

p(x, y) ln p(x, y).

Definition 3.3. (Conditional Shannon entropy) For the discrete variablesX, Y and the

bivariate non-probability functionp(x, y), as given above letf(x) =
∑

y p(x, y), h(y|x) =
p(x,y)
f(x) , g(y) =

∑
x p(x, y), andr(x|y) = p(x,y)

g(y) . We set

HY |X=x(h) =
∑

y

h(y|x) ln h(y|x),HX|Y =y(r) =
∑

x

r(x|y) ln r(x|y)
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and define

HY |X(h) = EX

[
HY |X=x(h)

]
=

∑
x

f(x)
∑

y

h(y|x) ln h(y|x),

HX|Y (r) = EY

[
HX|Y =y(r)

]
=

∑
y

g(y)
∑

x

r(x|y) ln r(x|y).

Definition 3.4. (Bivariate Jensen difference) Letpi(x, y), i = 1, 2, be two bivariate

non-probability functions associated with two discrete variablesX, Y in R2 for which

it holds
∑

x

∑
y pi(x, y) 6= 1. We define the Jensen difference between two bivariate non-

probability functionsp1, p2 as

JX,Y (p1, p2) = H
(

1
2 (p1 + p2)

)− 1
2 [H(p1) + H(p2)]

= −
∑

x

∑
y

1
2 (p1(x, y) + p2(x, y)) ln( 1

2 (p1(x, y) + p2(x, y)))

− 1
2

[
−

∑
x

∑
y

p1(x, y) ln p1(x, y)−
∑

x

∑
y

p2(x, y) ln p2(x, y)

]
.

Definition 3.5. (Conditional Jensen difference) For the discrete variablesX, Y and

the bivariate non-probability functionspi(x, y), i = 1, 2, as given above letfi(x) =∑
y pi(x, y), hi(y|x) = pi(x,y)

fi(x) , gi(y) =
∑

x pi(x, y), andri(x|y) = pi(x,y)
gi(y) , i = 1, 2.

We set

JY |X=x(h1, h2) = H
(

1
2 (h1 + h2)

)− 1
2 [H(h1) + H(h2)]

= −
∑

x

∑
y

1
2 (h1(y|x) + h2(y|x)) ln( 1

2 (h1(y|x) + h2(y|x)))

− 1
2

[
−

∑
x

∑
y

h1(y|x) ln h1(y|x)−
∑

x

∑
y

h2(y|x) ln h2(y|x)

]
,

and define

JY |X(h1, h2) = EX

[
JY |X=x(h1, h2)

]

= −
∑

x

f1(x)
∑

y

1
2 (h1(y|x) + h2(y|x)) ln( 1

2 (h1(y|x) + h2(y|x)))

− 1
2

[
−

∑
x

f1(x)
∑

y

h1(y|x) ln h1(y|x)−
∑

x

f1(x)
∑

y

h2(y|x) ln h2(y|x)

]
.

The conditional Jensen’s differenceJX|Y (r1, r2) is defined analogously.

Proposition 3.2. (Strong Additivity) Letp1, p2 be two bivariate non-probability functions

associated with two discrete variablesX, Y in R2 as in Definition 3.5. Then

JX,Y (p1, p2) = JX(f1, f2) + JY |X(h1, h2) = JY (g1, g2) + JX|Y (r1, r2),

where the functionsfi, hi, gi, ri, i = 1, 2 are as in Definition 3.5.
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Proof. It is known [33] that

HX?,Y ?(p?
i ) = HX?(f?

i ) + HY ?|X?(h?
i ) = HY ?(g?

i ) + HX?|Y ?(r?
i ), i = 1, 2.

Thus, we have that

JX?,Y ?(p?
1, p

?
2) = HX?,Y ?( 1

2 (p?
1 + p?

2))− 1
2 [HX?,Y ?(p?

1) + HX?,Y ?(p?
2)]

= HX?( 1
2 (f?

1 + f?
2 )) + HY ?|X?(1

2 (h?
1 + h?

2))

− 1
2

[
HX?(f?

1 ) + HY ?|X?(h?
1) + HX?(f?

2 ) + HY ?|X?(h?
2)

]

= JX?(f?
1 , f?

2 ) + JY ?|X?(h?
1, h

?
2),

which means that the strong additivity property holds for the Jensen difference. Similarly

it holds that

JX?,Y ?(p?
1, p

?
2) = JY ?(g?

1 , g?
2) + JX?|Y ?(r?

1 , r?
2).

For the variablesX,Y we have that

JX,Y (p1, p2) =

(∑
x

∑
y

p1(x, y)

)
Jx?,y?(p?

1, p
?
2)

=

(∑
x

∑
y

p1(x, y)

)
[
JX?(f?

1 , f?
2 ) + JY ?|X?(h?

1, h
?
2)

]

= JX(f1, f2) + JY |X(h1, h2),

since
∑

x

∑
y p1(x, y) =

∑
x f1(x) =

∑
y g1(y). In a similar way, we prove that

JX,Y (p1, p2) = JY (g1, g2) + JX|Y (r1, r2).

For weak additivity we have the following proposition.

Proposition 3.3. (Weak additivity) Ifhi(y|x) = gi(y) and thuspi(x, y) = fi(x)gi(y),
i = 1, 2, we have that the random variablesX?, Y ?, which are the “standardized” values

of X, Y , are independent, then

JX,Y (p1, p2) = JX(f1, f2) + JY (g1, g2).

Proof. It is known [33] that

HX?,Y ?(p?
i ) = HX?(f?

i ) + HY ?(g?
i ), i = 1, 2.
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Thus, we have that

JX?,Y ?(p?
1, p

?
2) = HX?,Y ?( 1

2 (p?
1 + p?

2))− 1
2 [HX?,Y ?(p?

1) + HX?,Y ?(p?
2)]

= HX?(1
2 (f?

1 + f?
2 )) + HY ?( 1

2 (g?
1 + g?

2))

− 1
2 [HX?(f?

1 ) + HY ?(g?
1) + HX?(f?

2 ) + HY ?(g?
2)]

= JX?(f?
1 , f?

2 ) + JY ?(g?
1 , g?

2),

which means that the weak additivity property holds for the Jensen difference.

Then for the variablesX, Y we have that

JX,Y (p1, p2) =

(∑
x

∑
y

p1(x, y)

)
JX?,Y ?(p?

1, p
?
2)

=

(∑
x

∑
y

p1(x, y)

)
[JX?(f?

1 , f?
2 ) + IY ?(g?

1 , g?
2)] .

Since it holds that
∑

x

∑
y pi(x, y) =

∑
x fi(x) =

∑
y gi(y), i = 1, 2 we finally have that

JX,Y (p1, p2) = JX(f1, f2) + JY (g1, g2).

Proposition 3.4. (Maximal information and sufficiency) LetY = T (X) be a measurable

transformation ofX andpi = pi(x), gi = gi(y), i = 1, 2. Then

JX(p1, p2) ≥ JY (g1, g2),

with equality if and only ifY ? is sufficient with respect to the pair of distributionsp?
1 and

p?
2, Y ? andX? being the normalized versions ofY andX, respectively.

Proof. Let gi(y) be the measure associated withY . Thengi(y) =
∑

x:T (x)=y

pi(x). The

following inequalities are equivalent

JX(p1, p2) ≥ JY (g1, g2) ⇔(∑
x

p1(x)

)
JX?(p?

1, p
?
2) ≥

(∑
y

g1(y)

)
JY ?(g?

1 , g?
2).

Since
∑

x pi(x) =
∑

y gi(y), i = 1, 2, the last inequality is equivalent to

JX?(p?
1, p

?
2) ≥ JY ?(g?

1 , g?
2),

which always holds. Equality holds if and only if the statisticY ? = T (X?) is sufficient.
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One basic property of measures of information and divergence is the limiting property.

This property asserts that a series{Xn} of random variables converges to a random variable

X in distribution whenn → ∞ if and only if IXn
→ IX , whereI denotes the informa-

tion measure. Under some conditions the limiting property holds for the Kullback-Leibler

divergence (see [16] and [40]).

The limiting property holds for the Csiszar’s measure of divergence (φ-divergence)

[40]. So the limiting property holds for the Jensen difference with probability vectors as

it is a member of theφ-divergence family for properφ(x). In the next proposition we

investigate whether the limiting property holds in case we do not have probability vectors.

Proposition 3.5. (The limiting property) Let{pn} be a bounded from above sequence of

non-probability vectors. Thenpn → p if and only ifJ(pn, p) → 0.

Proof. Let pn → p. Using Lemma 3.7 we have

lim
n→∞

J(pn,p) =

(
lim

n→∞

∑

i

pn(i)

)
lim

n→∞
J(p?

n,p?) = 0,

becauselim
n→∞

J(p?
n,p?) = 0.

On the other hand, letJ(pn, p) → 0. Then

lim
n→∞

∑

i

p(i)φ
(

pn(i)
p(i)

)
= 0,

whereφ(x) = 1
2

[
x ln x− (x + 1) ln

(
x+1
2

)]
, x > 0 is a continuous function withφ(1) =

0.

Suppose thatpn → p does not hold. So there is a subsequencen1 < n2 < . . . < ns < . . .

of integers and a vectorq such that

lim
s→∞

pns
= q andp 6= q. (3.2)

Becauseφ is continuous we have that

lim
s→∞

∑

i

p(i)φ
(

pns(i)
p(i)

)
=

∑

i

p(i)φ
(

q(i)
p(i)

)
.

However
{∑

i p(i)φ
(

pns (i)
p(i)

)}
is a subsequence of

{∑
i p(i)φ

(
pn(i)
p(i)

)}
, which con-

verges toφ(1) = 0. Thus

∑

i

p(i)φ
(

q(i)
p(i)

)
= φ(1) = 0,

which is possible only ifp(i) = q(i), which contradicts Equation 3.2. Thus we have that

pn → p, so the limiting property holds for the Jensen difference.
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Summarizing the above results, we have that the Jensen differenceJ(p,q) for non-

probability vectors, under some conditions is nonnegative, additive, invariant under suffi-

cient transformations, it shares the property of maximal information and the limiting one.

Thus, we can regardJ(p,q) as a measure of divergence, provided that
∑

i pi =
∑

i qi.

The study of the properties of Jensen’s difference without probability vectors, along

with the results of our previous research on KL and CR measures [32], lead us to say that

the equality
∑

i pi =
∑

i qi constitutes the minimal requirement for a bivariate function

D(p,q) to be a measure of divergence along with the statement thatD(p,q) ≥ 0 with

equality if and only ifp = q.

Since the Jensen difference can be considered as a divergence measure we can use it

in order to graduate actuarial entities, in the way we describe in Section 2.2. This involves

convex minimization with constraints and can be done using standard routines. However,

it is of interest to examine its Lagrangian dual.

3.3 Lagrangian duality for the Jensen difference

The quadratically constrained Jensen difference problem is defined as findingx =
(x1, . . . , xn)T ∈ Rn which solves the primal problem

(P ) min−
n∑

j=1

1
2 (xj + dj) ln

(
1
2 (xj + dj)

)
+ 1

2

[
n∑

j=1

xj ln xj +
n∑

j=1

dj ln dj

]

subject to

gi(x) = 1
2x

T Dix + bT
i x + ci ≤ 0, i = 1, 2, . . . ,m, m = 2(n + 1), x ≥ 0,

whered = (d1, . . . , dn)T is a given vector with strictly positive components,Di is a given

positive semi-definite matrix for eachi, bi ∈ Rn andci are given constants not both equal

to zero. Constraints (i) - (v) of the actuarial graduation problem of Subsection 2.2 can be

written in the previous form ofgi(x) ≤ 0. For details see [32].

In the sequel, we will try to derive a dual representation of the primal problem(P ) by

means of Lagrangian duality by using a simple decomposition argument to convert problem

(P ) into an equivalent convex program with linear and quadratic constraints. BecauseDi

is a semipositive definiten× n matrix, we can express it asDi = AT
i Ai, whereAi is an

ni × n matrix andni is the rank ofDi, i = 1, 2, . . . , m. In this case the constraints can

be written asgi(x) = 1
2x

T AT
i Aix + bT

i x + ci. Defining the new variablesui = Aix,

ui ∈ Rni , i = 1, 2, . . . , m, the problem(P ) is equivalent to the following convex program

with linear equality and quadratic inequality constraints:

(P ?) min
x,ui

−
n∑

j=1

1
2 (xj + dj) ln

(
1
2 (xj + dj)

)
+ 1

2

[
n∑

j=1

xj ln xj +
n∑

j=1

dj ln dj

]

subject to
1
2u

T
i ui + bT

i x + ci ≤ 0, Aix = ui, ui ∈ Rni , i = 1, 2, . . . ,m, x ≥ 0.
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Let u = (u1, . . . , um)T ∈ Rni × . . . × Rnm andy = (y1, . . . ,ym)T ∈ Rni × . . . ×
Rnm . We now have

Theorem 3.1. The Lagrangian dual problem of(P ) is given by

(D) sup
λ∈Rm

+ ,yi∈Rni



−

n∑

j=1

dj

2e2sj − 1

[
e2sj ln

(
dje

2sj

2e2sj − 1

)
− 1

2
ln

(
dj

2e2sj − 1

)
− sj

]

−1
2

m∑

i=1

‖yi‖2
λi

+ λT c + dT z

}
,

wherezT = (ln d1, . . . , ln dn).

Proof. The Lagrangian function for problem(P ) is

L(x,u;λ,y) = −
n∑

j=1

1
2 (xj + dj) ln

(
1
2 (xj + dj)

)
+

1
2




n∑

j=1

xj ln xj +
n∑

j=1

dj ln dj




+
m∑

i=1

λi

(
1
2
uT

i ui + bT
i x + ci

)
+

m∑

i=1

yT
i (Aix− ui)

= −
n∑

j=1

1
2 (xj + dj) ln

(
1
2 (xj + dj)

)
+

1
2




n∑

j=1

xj ln xj +
n∑

j=1

dj ln dj




+
m∑

i=1

(λibT
i + yT

i Ai)x + λT c +
m∑

i=1

(
1
2
λiuT

i ui − yT
i ui

)
,

whereyi ∈ Rni , i = 1, 2, . . . , m are vector Lagrange multipliers while the Lagrangian

dual objective function of problem(P ) is given by

h(λ,y) = inf
x≥0,ui∈Rni

L(x,u;λ,y).

The dual problem associated with(P ) is defined as

(D) sup
λ∈Rm

+ ,yi∈Rni

h(λ,y).

With λ we denote the vector of Lagrange multipliers of the primal problem associated with

constraints12u
T
i ui + bT

i x + ci ≤ 0 while with y the vector of vector Lagrange multipliers

associated with constraintsAix = ui, ui ∈ Rni , i = 1, 2, . . . , m. Using the fact that the

Lagrangian function is separable in the two decision variables,x andu [5], we derive an
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explicit form for the dual objective functionh(λ,y) [37] as follows:

h(λ,y) = −
n∑

j=1

inf
xj≥0

{
1
2 (xj + dj) ln

(
1
2 (xj + dj)

)
+

1
2
xj ln xj

+
m∑

i=1

(λibT
i + yT

i Ai)jxj

}

+
m∑

i=1

inf
ui∈Rni

{
1
2
λiuT

i ui − yT
i ui

}
+ cT λ + dT z. (3.3)

Let us now denote the terms involvingx’s of the right hand side ofL(x,u; λ,y) by

f(x; λ,y) = −
n∑

j=1

1
2 (xj + dj) ln

(
1
2 (xj + dj)

)

+
1
2

n∑

j=1

xj ln xj +
m∑

i=1

(λibT
i + yT

i Ai)x. (3.4)

It is easy to see that

∂

∂xj
f(x; λ,y) = −1

2
ln

(
1
2 (xj + dj)

)
+

1
2

ln xj +
m∑

i=1

(λibT
i + yT

i Ai)j .

In order to find the optimal point, we set the above equation equal to zero, so we have

∂

∂xj
f(x; λ,y) = 0 ⇔

xj =
dj

2 exp
{

2
m∑

i=1

(λibT
i + yT

i Ai)j

}
− 1

. (3.5)

Substituting Equation 3.5 to Equation 3.4, and settingsj =
∑m

i=1(λibT
i + yT

i Ai)j , j =
1, . . . , n we have that

−
n∑

j=1

1
2

(
dj

2e2sj − 1
+ dj

)
ln

(
1
2

(
dj

2e2sj − 1
+ dj

))

+
1
2

n∑

j=1

dj

2e2sj − 1
ln

(
dj

2e2sj − 1

)
+

n∑

j=1

sj
dj

2e2sj − 1

= −
n∑

j=1

dje
2sj

2e2sj − 1
ln

(
dje

2sj

2e2sj − 1

)
+

1
2

n∑

j=1

dj

2e2sj − 1
ln

(
dj

2e2sj − 1

)
+

n∑

j=1

djsj

2e2sj − 1

= −
n∑

j=1

dj

2e2sj − 1

{
e2sj ln

(
dje

2sj

2e2sj − 1

)
− 1

2
ln

(
dj

2e2sj − 1

)
− sj

}
,

which is the minimum value of the first infimum in Equation 3.3.
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Settingg(u; λ,y) for the last term of the Lagrangian functionL(x,u; λ,y), i.e.

g(u; λ,y) =
m∑

i=1

(
1
2
λiuT

i ui − yT
i ui

)
(3.6)

we have that
∂

∂ui
g(u;λ,y) = λiui − yi.

In order to find the optimal point, we set the above equation equal to zero, so we have

∂

∂ui
g(u;λ,y) = 0 ⇔

λiui = yi,

which means that

ui =
1
λi

yi. (3.7)

By substitution of Equation 3.7 to Equation 3.6 we have that

m∑

i=1

(
1
2
λi

(
1
λi

yi

)T (
1
λi

yi

)
− yT

i

(
1
λi

yi

))
= −1

2

m∑

i=1

‖yi‖2
λi

,

which is the minimum value of the second infimum in Equation 3.3.

Theorem 3.2. (a) If (P ) is feasible theninf (P ) is attained andmin (P ) = sup (D).
Moreover, if there exists anx ∈ Rn satisfyingx > 0, gi(x) < 0, i = 1, . . . , m, then

sup (D) is attained andmin (P ) = max (D).
(b) If x? solves the primal problem(P ) and y?

i ∈ Rni , λ? ∈ Rm
+ solve the dual

problem(D), then

x?
j =

dj

2 exp
{

2
m∑

i=1

(λ?
i b

T
i + y?T

i Ai)j

}
− 1

.

Proof. The proof of the theorem can be obtained via standard duality results (see for ex-

ample [19], [30] or [5]).

(a) Because of the nonnegativity of the constraints, i.e.λ ∈ Rm
+ , of the dual problem

(D), this satisfies the strongest constraint qualification which implies lack of duality gap

and attainment of the primal infimum. Thus the first part follows immediately. The second

part follows from the definition of duality.

(b) The optimality condition forx = x? to solve the minimization ofh(λ,y) given in

Equation (3.3) is the optimal solutionx?
j , given above, and thus the desired result follows.

By part (a) we have that a saddle point(x?,y?
i ,λ?) exists and so

minx≥0 L(x,y?
i , λ?) = L(x?,y?

i , λ?) [2].
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4 Numerical Illustration

4.1 Determination of a client’s disability distribution with Jensen’s difference

In this subsection we use the Jensen difference to determine the disability distribution

that meets the special characteristics of a client than the reference table that the insurance

company uses. The data that we use comes from [4, Table 13.2]. It is a standard table

of probabilitiesqi with mean durationµst = 31.35 days given in the second column of

Table 4.1. It is easy to notice that
∑n

i=1 q?
i = 1. Suppose that we have a client with

expected disability duration ofµ = 21 days and we want to construct a duration table

for this particular client which is the least distinguishable from the standard one. This

problem was also solved by Brockett [6] by minimizing the Kullback-Leibler divergence

between the unknown probabilities for the client and the corresponding probabilities of the

standard table subject to the constraints
∑n

i=1 p?
i = 1 and

∑n
i=1 xip

?
i = 21. His results are

shown in the third column of Table 4.1. Our approach is the minimization of an alternative

divergence - the Jensen difference - subject to the same constraints.

The results are shown in the fourth column of Table 4.1. We followed the same pro-

cedure in order to derive the duration table for two clients withµ = 26.8 andµ = 38,

respectively. Comparing the results via the smoothness measureS =
∑n−3

i=1

(
∆3p?

i

)2
,

where∆ is the difference operator, and the mean square errorMSE = 1
n

∑n
i=1(q

?
i − p?

i )
2

(given in Table 4.2), the best disability distribution forµ = 21 andµ = 26.8 is obtained

through the minimization of the Jensen difference while forµ = 38 the best disability dis-

tribution is obtained via the minimization of the Kullback - Leibler divergence. A further

numerical illustration allows us to propose the use of the Jensen difference whenµ < µst

and the use of the Kullback - Leibler divergence whenµ > µst, whereµst is the mean

duration of the standard table.

4.2 Actuarial graduation

For the illustration, we will use a data set of death probabilities coming from [23, p. 20].

It consists of 15 death probabilities belonging to ages 70 to 84 (computed from a total of

2073 observations). These data set was graduated by London in [23] by graphic means and

a linear transformation of the graduated values and by Brockett in [6] via the minimization

of the Kullback-Leibler divergence subject to constraints (i) - (v).

We graduated the crude values via the minimization of the Jensen difference. The min-

imization was conducted subject to constraints (i) - (v), proposed in [6], the additional

constraint (vi) that Sachlas and Papaioannou proposed in [32] and finally subject to con-

straints (i) - (iii) and (vi). The sixth constraint we propose has no any particular actuarial

interpretation. However it is necessary in the light of the information theoretic properties.

The relevant results are presented along with the raw data in Table 4.3(a). Graphically, the
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µ = 21 µ = 26.8 µ = 38
x Standard K-L Jensen K-L Jensen K-L Jensen

1 0.03500 0.05081 0.05298 0.04101 0.04130 0.02777 0.02810

2 0.03474 0.04968 0.05151 0.04048 0.04073 0.02775 0.02806

3 0.03349 0.04717 0.04865 0.03880 0.03901 0.02694 0.02721

4 0.03318 0.04604 0.04724 0.03822 0.03841 0.02687 0.02712

5 0.03195 0.04367 0.04459 0.03660 0.03675 0.02606 0.02627

6 0.03160 0.04254 0.04324 0.03599 0.03612 0.02595 0.02614

7 0.03040 0.04031 0.04079 0.03443 0.03453 0.02514 0.02530

8 0.03002 0.03921 0.03951 0.03381 0.03388 0.02499 0.02513

9 0.02885 0.03712 0.03725 0.03231 0.03236 0.02419 0.02430

10 0.02701 0.03423 0.03423 0.03008 0.03011 0.02280 0.02289

11 0.02530 0.03159 0.03147 0.02801 0.02803 0.02150 0.02157

12 0.02370 0.02915 0.02894 0.02609 0.02609 0.02028 0.02033

13 0.02222 0.02692 0.02664 0.02433 0.02431 0.01915 0.01917

14 0.02083 0.02485 0.02452 0.02268 0.02265 0.01808 0.01808

15 0.01953 0.02295 0.02258 0.02114 0.02111 0.01706 0.01706

16 0.01831 0.02120 0.02080 0.01971 0.01967 0.01611 0.01609

17 0.01772 0.02021 0.01978 0.01897 0.01892 0.01570 0.01567

18 0.01662 0.01867 0.01823 0.01769 0.01764 0.01483 0.01479

19 0.01611 0.01783 0.01737 0.01705 0.01699 0.01447 0.01442

20 0.01510 0.01646 0.01600 0.01589 0.01583 0.01366 0.01361

21 0.01465 0.01573 0.01526 0.01533 0.01527 0.01334 0.01328

22 0.01374 0.01453 0.01408 0.01430 0.01423 0.01260 0.01254

23 0.01334 0.01390 0.01344 0.01380 0.01374 0.01232 0.01225

24 0.01295 0.01329 0.01283 0.01332 0.01325 0.01204 0.01196

25 0.01214 0.01227 0.01183 0.01242 0.01235 0.01136 0.01129

26 0.01180 0.01175 0.01132 0.01200 0.01193 0.01112 0.01104

27 0.01106 0.01085 0.01044 0.01119 0.01112 0.01050 0.01041

28 0.01076 0.01039 0.00999 0.01082 0.01075 0.01028 0.01020

31 0.06361 0.05873 0.05634 0.06290 0.06247 0.06206 0.06145

38 0.04832 0.04014 0.03846 0.04592 0.04557 0.04947 0.04886

45 0.03753 0.02805 0.02698 0.03428 0.03402 0.04032 0.03976

52 0.02980 0.02004 0.01943 0.02616 0.02598 0.03360 0.03312

59 0.02399 0.01452 0.01424 0.02024 0.02013 0.02839 0.02800

66 0.01939 0.01056 0.01051 0.01573 0.01567 0.02408 0.02380

73 0.01586 0.00777 0.00787 0.01236 0.01235 0.02067 0.02051

80 0.01300 0.00573 0.00592 0.00974 0.00976 0.01778 0.01773

87 0.01077 0.00427 0.00451 0.00776 0.00780 0.01546 0.01552

91 0.12561 0.04690 0.05025 0.08844 0.08918 0.18531 0.18697
Table 4.1: Disability distribution determination through Kullback-Leibler divergence and Jensen’s

difference
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µ = 21 µ = 26.8 µ = 38
KL Jensen KL Jensen KL Jensen

S 0.02308 0.0217 0.0298 0.0296 0.5027 0.0504

MSE 0.000219 0.000214 0.000045 0.000044 0.000108 0.000112
Table 4.2: Comparison of the disability distributions

results in a logarithmic scale are presented in Figure 4.1.

The results appear nearly equivalent to those presented by London and Brockett. The

differences are small. The value of the smoothness measureS =
∑n−3

x=1

(
∆3vx

)2
and the

goodness of fit measures, i.e.F =
∑n

x=1 wx(ux − vx)2, wherewx = lx/(ux(1 − ux))
are weights withlx being the number of people at risk at agex, log-likelihoodlog L(v) =∑n

i=1[dx log vx + (lx − dx) log(1 − vx)], devianceD(v) = 2 log L(u) − 2 log L(v) and

χ2 =
∑n

i=1
(dx−lxvx)2

lxvx(1−vx) , are given in Table 4.3(b). The numerical investigation in [32], with

same data set, compared the graduations made in [6], [23], and through the use of Cressie-

Read power divergence. The overall winner is the graduation through the minimization of

the Jensen difference subject to constraints (i) - (v), as judged by smoothness and fidelity.

However we believe that constraint (vi) is necessary as this is the minimal requirement for

the Jensen difference (and other measures, such as the Kullback - Leibler divergence and

the Cressie and Read power divergence) with non-probability vectors to be a measure of

divergence.
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Figure 4.1: Several graduations through the Jensen difference
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(a) Graduated values

x ux vx (5 constraints) vx (6 constraints) vx (4 constraints)

70 0.044 0.062 0.054 0.059

71 0.084 0.066 0.061 0.064

72 0.071 0.071 0.068 0.069

73 0.076 0.075 0.075 0.073

74 0.040 0.080 0.082 0.078

75 0.104 0.086 0.089 0.085

76 0.160 0.093 0.097 0.092

77 0.058 0.099 0.104 0.098

78 0.110 0.106 0.112 0.105

79 0.093 0.113 0.119 0.112

80 0.139 0.131 0.138 0.132

81 0.154 0.156 0.159 0.157

82 0.183 0.182 0.180 0.184

83 0.206 0.209 0.201 0.212

84 0.239 0.238 0.222 0.242

(b) Smoothness and goodness of fit values

5 constraints 6 constraints 4 constraints

S 0.000199 0.0002 0.0002

F 16.62 16.70 16.93

Deviance 16.40 16.89 16.48

log-likelihood -713.12 -713.37 -713.16

χ2 16.59 16.68 16.93

Table 4.3: Several graduations through Jensen’s difference
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5 Conclusions

In this paper we studied the use of Jensen’s difference in actuarial science as an alterna-

tive measure of divergence in problems where the Kullback - Leibler divergence is mainly

used. Specifically, we investigated its use in two actuarial problems - the determination

of a client’s disability distribution and the graduation of mortality rates. Because in the

latter case, mortality rates do not form probability vectors, and in order to useJ(p,q) for

this purpose, we investigated the properties of the Jensen difference in the case of non-

probability vectors. We showed that, under some conditions it is nonnegative, additive

and invariant under sufficient transformations. It also shares the property of maximal in-

formation and the limiting one. So, we can regardJ(p,q) as a measure of divergence,

provided that
∑

i pi =
∑

i qi, and use it for graduation. Combining with results from our

previous research on KL and CR measures [32], this condition should be considered as the

minimal requirement for a bivariate functionD(p,q) to be a measure of divergence along

with the statement thatD(p,q) ≥ 0 with equality if and only ifp = q when we have

non-probability vectors.

We also provided Lagrangian duality results for the problem of minimizing the Jensen

difference subject to quadratic and linear inequality constraints. Especially, we derived the

Lagrangian dual problem, which proved to be unconstrained, and its solution. These results

are important in actuarial science, especially in the problem of graduation.

In the case of the determination of a client’s disability distribution, the Jensen difference

is a comparable alternative to the Kullback - Leibler divergence. The numerical illustration

allows us to propose the following empirical rule: use the Jensen difference whenµ <

µst while use the Kullback - Leibler divergence whenµ > µst, whereµst is the mean

duration of the standard table. The numerical investigation concerning the graduation of

mortality rates indicated that the minimization of the Jensen difference between the crude

and graduated rates seems to be the best ”divergence” method. Targeting on smoothness

and goodness of fit, its results are comparable with those obtained using the Kullback -

Leibler directed divergence and the Cressie and Read power divergences.
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