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Abstract: In this paper we will consider anth order fractional boundary value problem-1 < a < n, n € N, with boundary
conditions that include a fractional derivative at 1. Wel dévelop properties of the Green’s Function for this boupdalue problem
and use these properties along with the Contraction MapBntciple, and the Schuader’s, Krasnosel'skii's, and lezgg@Villiams
fixed point theorems to prove the existence of positive gmigtunder different conditions.
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1 Introduction

Letn > 2 denote an integer, and letand be positive reals such that- 1 < a <nand 0< j <8 <n-1, for some
j€{0, 1,..., n—2}. We will consider the boundary value problem for the fractibdifferential equation given by

DS, utat)f(uu,...,uly=0, 0<t<1, (1)
satisfying the boundary conditions
u(0)=0,i=0,1,...,n-2, DL.u1)=0, )

whereDg. anoIDg+ are the standard Riemann-Liouville fractional derivativ&/e make the following assumptions on the
functionsf anda:

(H1)f :[0,00)+1 — [0, 00) is continuous, and
(H2)a: [0,1] — [0,0) with a € L*[0, 1] and|ale = M.

The topic of fractional calculus, once thought to be inagaddie to real world situations, is now being studied in many
branches of science due to the ability of fractional diffei@ equations to model certain situations better thafiedhtial
equations of integer order. Today, there are an increasintper of papers relating to differential equations of aalbjt
order being published. The use of fixed point theory and d¢breretic techniques to show the existence of solutions to
difference equations, ordinary differential equatioms] aingular boundary value problems is abundant, (6&23]) but
still far less work has been done to develop the existencelofisns to fractional, or arbitrary order differentialiefions,
asin {,5,6,7].

In this paper, we shall develop properties of the Green’stion of (1), (2), constructed in§], necessary to prove
the existence of positive solutions under different candi using the Contraction Mapping Principle and the Schuad
Fixed Point Theorem. We will then restrist- 2 < 3 < n—1 andj = n— 2 and prove the existence of positive solutions
to the resulting boundary value problem when certain canmtitare met, using Krasnosel’skii's and the Leggett-\Afilis
fixed point theorems.

In the following section, we provide the fundamental deiomis of fractional calculus. In the third section, we
develop properties of the Green’s function necessary tdyapp Contraction Mapping Principle and Schuader Fixed
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Point Theorem, which we do in the following two sections. e tsixth section, we restrict our problem and apply
Krasnosel'skii's Fixed Point Theorem, and in the subsetection we apply the Leggett-Williams Fixed Point
Theorem.

2 Preliminary Definitions

Definition 1.Letv > 0. The Riemann-Liouville fractional integral of a functiorofiorderv, denoted |, u, is defined as

)= s [ -9 s )

provided that the right-hand side exists.

Definition 2.Let n denote a positive integer, and assume that the poséblen satisfies - 1 < o < n. The Riemann-
Liouville fractional derivative of ordea of the function u [0,1] — R, denoted [3, u, is defined as

DY, u(t) = ;in/t(t— )n-a-1y(s)ds
O T F(n—a) ath Jo ’ (4)
=D"g u(t),
provided the right-hand side exists.
3 The Green’s Function
The Green’s Function for the boundary value probléjn @) is given by (seef])
tafl(l_s)aflfﬁ (t_s)afl )
— <s<
@) @) LF0 <s<t<1,
G(B;t,s) = . s (5)
tH(1—9) .
_ <t< .
@) , ifo<t<s<l1

Thus,u is a solution of 1), (2) if and only if
1 .
ut) = | (Bt 9a9f ueu(s)....ul(s)ds 0<t<L

We will develop properties off) to prove the existence of positive solutions 1, (2).

Lemma 1Let B be a positive real and § {0,1,...,n— 2} be an integer, satisfyin@ < j < 8 < n—1. The kernel,
G(B;t,s), satisfies the following properties:

0i

5 GBS =0, (t,s) €[0,1] x [0,1), i=0,1,....], (6)
Lo o _(a—ifT (@Bt
R Jo ar P T gy ")

where

fj :min{%, 1}.

ProofDefine, for 0< s<t < 1, the functiong; by

ta—l(l _ s)a—l—ﬁ —(t— s)a—l

01(B;t,s) = @) ;
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and define, for <t < s< 1, the functiorg, by

ta—l(l _ s)a—l—B

,0<t<s< 1L
r(a) - -

o2(B;t,s) =

In order to prove), letsandt be positive reals such thatOs<t < 1,and leti € {0, 1,..., j}. Then

. i _

WG(B!LS) = ng(ﬁitvs)

(9i ta—l(l o s)a—l—B o (t o S)or—l

ot I (a)

~ a9 -9

1 |A-92 Y Brae [(a)t—s2 1
r(a) I(a—i) - T(a-i)

- I'(al_ ) [(1- S)O’—l—BtO’—l—i —(t— S)a—l—i]

1
r(a—1)

1 a—1-i a—1-i
=t eyt

[(1_ S)aflfitaflfi _ (t _ S)aflfi]

. _ [
Butts<'s, and hencel_(al—_i)[(t — )71 — (t—5)9-1-1] > 0, implying that%gl(ﬁ;t,s) >0.
Next,let0<t<s<landi€ {0, 1,..., j}. Then
o' 0’
WG(B!LS) = WQZ(BJ?S)
0i ta—l(l_s)a—l—ﬁ
T oot r(a)
1 (-9 Pr(ape
I (a) I(a—i)
_ 1 o\ a—1-Bya—1—i
“Fa—pt 9

>0

- )

and hence%G(B;t,s) >0,wheni €{0, 1,..., j}. This proves6).

Now, ?
ot g_tligl(ﬁ;t,s)dsz /ot %‘ <ta_1(1_5)a/:1(j)_ (t_S)a_1> ds
@t — i) — t0 (1 - 1) B(a — i) — 19 (a — B)
r(a—i)(a—p)(a—i ’
and

1 (9i . 1 (9i ta—l(l_s)a—l—B
\/t ﬁgz(ﬁ,t,s)dSZ/t % (T) dS

B taflfi(l_t)afﬁ
- Ma-i)(a-p)
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Hence 1 i o—i l( ) a i( )
17} ) T a—i) -t (a - B
A T I Ay o Py T P
1 i
Now, by properties of the first derivative of any function[(,)ﬁn %G(B;t, s)ds occurs when
tc[0.1] Jo
afrro . .. 0 (a—ite 1 (a—B)o-t
at { 0 ﬁG(B’t’S)dS} Tt T(a—i)(a—B)a—1)
=(a—1—i)(a—it2" —(a—i)(a—p)r 1
:07
. o—1—i La—1—i .
which occurs wheh= o F . Note that if T F > 1, then by @), the maximum occurs when= 1. It follows that
1O e (@D (@B
e A T R N [ IR

oa—i—1

wheret; = min{i,
a —

1} , which proves 7).
Throughout this paper, we will make use of the Banach space
% ={uec0,1]:u0)=u(0)=---=ul=Y0) =0},

endowed with the norm _ _
lu = max|u? ()] = [uVo,
0<t<1

and the operator : 4 — % by
1 .
TuM) = [ t9fsus).....ul()ds (8)
0
forallt € [0,1] andu € A. First, notice ifu’is a fixed point ofT, G solves (), (2). Also, notice that, for=1, 2,..., ],
Wi @) = ui @) ~ui (o)
/t w41 (g) ds
0
t ) .
< / ‘u(JJrl*')(s)‘ ds
0

< uH ()
<UD,

Therefore|ujo < |U']o < --- < Jui=D|g < JuD |o = ||ul.

4 Contraction Mapping Principle

The theory behind the use of the Contraction Mapping Prladipproving the existence of fixed points for differential
equations has been studied in papers sucB]a3 fiese authors make use of the Contraction Mapping Pigtipshow

the existence of solutions to differential equations oégar order in partially ordered and ordered metric spaces. T
existence and unigueness of solutions to a nonlinear draatiCauchy problem in a special Banach space is developed in
[10]. We will develop a theorem and proof for the existence andugness of solutions of problerh)( (2).

Theorem 1Assume (H2) is satisfied and f satisfies a Lipschitz condifioy, y1, . ..,Yj) — f(20,21,-..,7j)| < Klyj — 7]
on[0,00)*L, Then, if MIG; < 1, (1), (2) has a unique solution.
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ProofNotice that

T )~ (T )] < Mku—v] [ 2B g

< MkGjlu—vl,

and, consequently, _
[[Tu—Tv|| < MKGj|u—V].

Hence, sinceMkG;j < 1, T is a contraction mapping o, and thusT has a unique fixed point, Which is the unique
solution of @), (2).

5 Schauder Fixed Point Theorem

The Schauder Fixed Point Theorem has been utilized in thy stnd proof of existence of solutions to fractional order
differential equations and systems of fractional ordefedéntial equations as well, seEl] 12]. We will use the Schauder
fixed point theorem to show the existence of positive sohstiof (1), (2).

Theorem 2(Schauder Fixed Point Theorem13]). If .# is a closed, bounded, convex subset of a Banach spaand
T :.# — .# is completely continuous, then T has a fixed poin¥in

Lemma 2 The operator T is completely continuous.efi, where for fixed N> 0, the set# is defined to be# = {u e
A ||u|| < N}.

The proofis a standard application of the Arzela-Ascatidtem.

Theorem 3Let N be fixed and defing = {uc % : ||u|| < N} and|u|| = |u¥|o. Then(1), (2) has a solution in/.

ProofBy definition,.# is bounded. _ .
To see that/ is closed, let(h; }I 1€ C ., and lethy € %’ be such thalih; — ho|| — 0 asi — . Thenh!) — h{l’ on

[0,1]. Thus, sincey € . for all i, |h | < Nforall i, and|h ( )] <N onJ0,1]. So,|ho|| <N, andhy € .#. Hence, #
is closed.
Leth, g€ .#, and, for real with 0 <A <1, consided h+ (1+ A)g. Well, sinceh, g € .#, we have

AR () + (1= 2)g P (x)] < ARV )]+ (1 - A)g P (x)]
=AY 9]+ (1-2) gV (x)|
<AN+(1-A)N
=N.

HenceAh+ (1—A)ge .# forallh, ge .4, and.# is convex.

From Lemma2, T is completely continuous a. Hence, the assumptions of the Schauder Fixed Point Theaeem a
met, and thug has a fixed point in# which is a solution of1), (2).

6 Krasnosel'skii's Fixed Point Theorem

In this section, we will use Krasnosel'skii's well-known éigt point theorem for operators acting on a cone in a Banach
space. In order to apply Krasnosel'skii's fixed point theorgve neech— 2 < 3 < n—1 andj = n— 2. So the specified
boundary value problem is

DS utat)f(ud,...,u"?)=0, 0<t<1, 9)

satisfying the boundary conditions
uV(©0)=0,i=0,1,...,n-2, DE u1)=0 (10)

whereDg, and Dg+ are the standard Riemann-Liouville fractional derivegivEhe Banach space and norm used in the
forthcoming analysis is the same as the Banach space andusaaimabove, with) = n— 2 as well. Some authors have
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used Krasnosel'skii's fixed point theorem to show the eristeof solutions of ordinary differential equations, diéfece
equations, and dynamic equations on time scales; howevepdpers have been published that were devoted to the study
of boundary value problems of fractional order asdyb[6], where the authors develop proofs for the existence otipesi
solutions to the nonlinear fractional boundary value peois

D +a(t)f(uy=0, O0<t<l 1<a<2,

and
D% +a(t)f(uy=0, 0<t<l 3<a<4,

satisfying boundary conditions

and
u(0) =0=Uu(0) =u"(0) =u' (1) =0,

respectively, which are two specific cases of probl&m(L0). We seek to show the existence of positive solution®pf (
(10) for arbitrary positive integem and positive realr, n— 1< a <n.

Theorem 4(Krasnosel'skii's Fixed Point Theorem [14]). Let # be a Banach space, and lef” C % be a cone inZ.
Assume tha@;, Q, are open sets witB € Q;, andQ1 C Q. Let T: # N (Q2\Q1) — ¢ be a completely continuous
operator such that either

Q) Tul < [|ull, ue £ NdQy, and||Tul| > ||ull, ue # NIQ,, or
@[ Tul > [Jull, ue # NdQq, and||Tul| < [|ul|, ue £ NIQa.

Then T has a fixed point ¢’ N (Q2\ Q).
We will need the following additional properties of the Gmésfunction.

Lemma 3Letyand s be fixed nonnegative reals, witkl y < s< 1, and letf be a positive real such thatn2 <  <n-—1.
The kernel, GB;t,s), satisfies the following properties:

on- 2
Gz = m01/ atn-2 C(Bit,s)ds

11
~(a—n+1)*""(a—n+2)— (a—n41)7 "2 D
(a—B)a"2[(a—n+2)(a—n+2) ’
whereG,_» is the specific case @; as defined in Lemmhawhere i=n— 2, and
; n-2 n+2 n l o
min 5GBS = [1- (1-y)P MY T s BB o) (12)
ProofLeti = n— 2. Notice that,_, = a%mﬁ—l sincea — B > a —n+ 1, implying thataa%nz;l < 1. Hence,
(a —n+41)0+1n (a —n41)0-"+2
-2 . Ta—pertn TN
t —
O<t<1/ a2 OB LS O = —— e G T 2 (a—n+2)

(@—n+1)%""a-n+2)—(a—n+1)9-"2
(a—B)a"+2[ (a—n+2)(a—n+2) ’

which proves11).
To prove (2), note that

gn-1 (1—s)9-1- Bra—n ~(t—gon
atn— S oa(t,s) = Fla—nTD)
Now,
(1—92 7PN (t—9) "= (19 P la " (t (1— ts))i
e )
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n—-1

. 1 : : o
Note that, ift = 0, thens= 0, and thus t,s)=0.1f0<s<t<1, thenf > 1, and sinces is positive,

,ng(

> s This implies that 1—? < 1-5s and, since -1 < a —-—n < 0 and
S\ a-n

—1<pB+1l<n, (1—5) > (1- 99

0nfl
Consequentlyatﬁgl(t,s) < 0. Also note that

S
t
n

a—n
N > (1-9)9F-1 Therefore(1—s)9 A1 — (1— ES) < 0, and,

on- 1 (1 S)a 1- ﬁta n

R RS T

since(1—s)? 1-Fta-n > Q,
on- 1 0n72
Slnced —1(t,s) <0, ng(t,s) is a decreasing function 6fHence, for 0K y <s< 1,

] n-2 n—-2
A

_ (1 o s)a—l—ﬁ o (1 o s)a—n+1

MNa—-n+2)
(-9 P1-(1-9F
B r(a—n+2)
(1-9* " Pl1-(1-yPf "2
MNa—-n+2)
L (=97 P (1 Py gt
- Ma-n+2)

_gq)a-1-Bga—n+1
:[1_(1_V)a,n+2]ya,ms(1 s) 7

Ma—-n+2)
an -2
= 1= (=P s mG(s ).
0n72
Note thatmgz(t,s) is an increasing function af
Hence, for0K y <s< 1,
n—-2 n-2
y<t<1 ot 292( ) atn- ng(Va )
(1_S)aflfﬁyafn+l
 I(a—n+2)
(1_s)a—1—ﬁya—n+1[ (1 V)B—n+2]sa—n+2
>
- [(a—n+2)
on —2
B n+ n+l
o 2 B—n+2), 0—n+1 0n72 ;
Thus mm FT) G(B;t,s) >1—-(1—y) s sdtn_zG(B;s,s) for all y < s< 1, which proves 12).

We need an additional assumptionan
(H3)There exists & € (0,1) and arm > 0 such thag(t) > ma. e.only, 1].

We first use the contractive portion of Krasnosel'skii’s ixgoint theorem.
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Theorem 5Suppose that (H1) and (H2) are satisfied and that there egists (0,1) such that (H3) is satisfied. Let

ABeRwWthO<A< — ! and
nsz

1

1 dn—Z -
B> [m1—(1—y)P Myl [ s G(B;s,s)ds| .

v atnfz

If there exist positive constants r and R witkiiR and Br< AR and if f satisfies

(A1) f(X0,X1, ..., X—2) < AR for all (xo,X1,...,%_2) € [0,R"%, and
(A2)f(X0,X1,---,X_2) > Brforall (xo,X1,...,%_2) € [0,r]""2,

then(9), (10) has at least one positive solution u witkar|ju|| < R

ProofDefine the cone
A ={ue#:u"2(t)>0forallt € [0,1]}. (13)
Define the open s&®, = {ue A : |u|| < R}. Letu e KNdQ,. Then assumption (Al) and)give

LTI A e R ENERNE R IEIE

an72
< /
0

WG(&LS)
1
gMAR/
0

la(s)|| f(s,u(s),...,u"2(s))|ds

anfz
WG(B;LS)
< MARanz

<R

= [ull.

ds

So,||Tul| < ||| forallue £ NaQy.

Next, define the open s€@; = {ue€ % : ||u|| < r}. Letu e KNadQ;. Then, using (H1)-(H3), assumption (A2) and
(12), we have that

TU2 (1) > 01%G(t,s)a(S)f(U(s),U/(S)v---aU(”2)(5))0'3
> 1%e(ﬁn,@a(s)f(u(s),u/(s%---,u<“‘2><5>>ds
y

1 ﬁn—Z
> mBr/ ——G(B;t,s)ds
y dt”*Z ( )

> mer [ 1 (1o Ay e G ds
1 0n72

— MBH1— (1— y)f-ya—nl /y s=5G(Biss)ds

>r

= |lull.

Therefore,||Tu|| > |jul| for all u € KN adQ;. Since 0 Q; C Q», the contractive part of Kraznosel'skii's Theorem

gives the existence of at least one fixed poinTdh K N (Q,\Q1). So, there exists at least one solutioruaff (9), (10)
withr < |lul| <R

The expansive part of Krasnosel'skii's fixed point theorean also be applied. The proof is similar to Theorfgand
is therefore omitted.
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Theorem 6 Suppose that (H1) and (H2) are satisfied and that there exist®, 1) such that (H3) is satisfied. LetBe R
With0 <A< — ! and
n72'\/I

1 0n—2 -1
B> [mi1-(L-yf 3y [ o(pis s ds
v atn 2

If there exist positive constants r and R such thatR and Ar< BR and if f satisfies

(A3)f(X0,X1, . ..,%_2) > BR for all (xg,X1,...,%,_2) € [0,R"*and
(A4)f(X0,X1,- ., Xn_2) < Arforall (xo,Xg,...,%_2) € [0,r]""L.

then(9), (10) has at least one positive solution u witkcr||u|| < R.

As is shown in the following theorems, Krasnosel'skii’s fixpoint theorem can be used to show the existence of
finitely many solutions to9), (10).

Theorem 7 Suppose that (H1) and (H2) are satisfied and that there exist§), 1) such that (H3) is satisfied. LetBe R

withO <A< — 1 and
n—2
) e on-2 -1
B> |m[1—(1—y)P 2y /y S5z0(s9 ds} :
If there exists a k& N such that there are positive constantand R fori=1, 2, ..., ksuchthatf <Ry <rp <Ry <
-+ <rk<R¢and B < AR, and if f satisfies

(A5)f(X0,X1, - .-, %_2) < AR forall (xo,Xq,...,%_2) € [0,R]"%, and
(AB)f(X0,X1,...,X_2) > Bri for all (Xo,X1,...,%_2) € [0,ri]",

then(9), (10) has at least k positive solutiong where ysatisfies r < |Jul| < R;.
ProofDefine open set®, ={uec % |u| <R} fori=1,... kandQy ={ue A |u]| <r}fori=1,...,k Thena

proof similar to the proof of Theore®shows the existence of at least one fixed poirif @ K N (Q5\Qy,) for eachi.
So, there exists at least one solutiorupbf (9), (10) with rj < ||lu|| < R foreachi=1, ..., k.

The expansive part of Krasnosel'skii’s fixed point theorean also be applied to show the solutions of finitely many
solutions. The proof is omitted since it is similar to the@rabove.

Theorem 8Suppose that (H1) and (H2) are satisfied and that there exist®, 1) such that (H3) is satisfied. LetBe R
With0 <A< — ! and
n72'\/I

) e on-2 -1
R G ey (L= =I-CE TS

If there exists a k& N such that there are positive constantand Rfori =1, 2, ..., ksuchthatf <Ry <ro <Ry <
- <rg < R¢andBr < AR, and if f satisfies

(A7) f(X0,X1,...,%_2) > BR forall (xo,X1,...,%_2) € [0,R]™Y and
(A8B) f(X0,X1,. .., %_2) < Ar; for all (Xo,X1,...,%_2) € [0,r;]("1),
then(9), (10) has at least k positive solutiong where ysatisfies r < |Jul| < R;.

Krasnosel'skii's fixed point theorem can be also used to sti@existence of infinitely many solutions 1) (10).
The proofs are similar to the proofs of the theorems aboveaamtherefore omitted.

Theorem 9Suppose that (H1) and (H2) are satisfied and that there exist®, 1) such that (H3) is satisfied. LetBe R
with0 <A< = 1 and
Gn72M

1 gn-2 -1
B> m[l—(l—y)B‘”Jrz]y"‘“*l/y satnzG(s,s)ds} .

If there are positive constantsand Rfori =1, 2, ... suchthatf <R; <r, <Ry, <--- and B < AR, and if f satisfies
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(A9)f(X0,X1,...,X—2) < AR forall (Xo,X1,...,%_2) € [0,R]"1, and
(A10)f(x0,X1, ..., %n_2) > Bri for all (xo,Xq,...,%,_2) € [0,ri]"2,

then(9), (10) has infinitely many positive solutiong where y satisfies r < ||u|| < R:.

Theorem 10Suppose that (H1) and (H2) are satisfied and that there existg0,1) such that (H3) is satisfied. Let
. 1 1 gn-2 -
ABERWIMO<AS o and B> m{1—(1- y)B—“+2]ya—n+1/y 523059 ds}
If there are positive constantsand Rfori =1, 2, ... suchthatf <Ry <r, <R, < --- and B < AR, and if f satisfies
(A11)f(X0,X1, ..., %n_2) > BR for all (Xo,X,...,X,_2) € [0,R]™Y, and
(AL12)f(X0, X1, ..., Xn_2) < Ari for all (xo,X1,...,%_2) € [0,ri]" D),

then(9), (10) has infinitely many positive solutiong where y satisfies r < ||u|| < R:.

7 The Leggett-Williams Fixed Point Theorem

In this section, we will conside9f and (L0) along with the Banach spac®, the cone’?’, and the operatofr defined
in the previous section. To again show the existence of plalgolutions, we will use the Leggett-Williams fixed point
theorem, as ing]. In order to do this, for a positive concave functional, we define the following stbeé.7

He={ue A |u <c},
Ha={ue |l <al},
H(a,b,d)={ue . # :b<a(u), |u| <d}, and

A (a,b,c)={ue Z :b<a(u), ul| <c}.

Theorem 11(Leggett-Williams [L5]). Suppose that T.# ¢ — % ¢ is completely continuous, and suppose there exists a
concave positive functional on.7” such thata (u) < ||u|| for u € J# c. Suppose there exist constafits a<b<d<c

such that

1{ue . (a, b, d):a(u)>b}#0anda(Tu) >bifue % (a, b, d);
2/|Tul| <uifue ;; and
3.a(Tu) >bforue % (a, b, c) with || Tu|| > d.

Then T has at least three fixed poings uz, and s such that|uy|| < a, b < a(up), and|jug|| > a witha(uz) <b.

Theorem 12Suppose that (H1) and (H2) are satisfied and that there eyist$0,1) such that (H3) is satisfied. Define

the continuous positive concave functional Z — 2 by a(u) = r<ntigl|u(“‘2) (t),and let0 < A< G and
ysts n—-2
y gn-2 -1
B> m1—(1— y)B‘l]y"‘“+1/ sZ__G(B;ssds| .
o Otn 2

Leta b, and c be such thdl < a < b < ¢. Assume that the following hold:

(L) f(u(t),u'(t),...,u2(t)) < Aafor all (t,u™2(t)) € [0,1] x [0,a],
(L2)f(u(t),u'(t),...,u™ 3 (t)) > Bb for all (t,u™2(t)) € [y, 1] x [b,d],
(L3)f(u(t),u'(t),...,um 2 (1)) < Ac for all (t,u"2)(t)) € [0,1] x [0,c].

Then(9), (10) has at least three positive solutiong w, uz € K satisfying
Ju]l <a,

b < a(up), and
a < ||ug|| with a(ug) < b.
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ProofLetu € J#;. Then||u|| < cand by(L3) and (7),

1 an72
———G(B:t,9)a(s) f (u(s),u(s),...,u"2(s))ds
o Ot

1 gn-2
| Sz GBS f(u(e).u(9),....u"(s))]|ds

Tu™2|(t) =

1 An—-2
M/ ;’tnz G(B;t,9)| f(u(9),U(5),...,u"2(9))| ds

< AcM/0 WG(B;I,S) ds

S AC M6n72
=C.

Hence,||Tu|| < candT : ¢ — .
Similarly, letu € #3. Then||u|| < a, and by(L1) and (),

oth— 2

on- 2
WG(B;LS)

1 on- 2
Tu"2) ‘/ )a(s) f(u(s),u'(s),...,u"?(s))ds

la(s)||f (u(s),u'(s),...,u"2(s))|ds

1 An—-2
M/ ftnz (B9 (U(S),...,u™ 2 ()] ds

< MAa/0 WG(B;t,s)ds

== Mén_ZAa
=a

So,T: 7y — Ha.

Let d be a constant such that< d < c. Then, foru(t) = EZ)'t”Z, a(uy=d>bandue #(a, b, d). Thus

A (a, b, d)#0. Hence||Tu|| < uif u e 4, and condition(B2) of Theoreml1 holds.

Letue.# (a, b, d). Then|ju|| < d < canda(u) = min |[u™2(t)| = min u™ 2 (t) > b. Now, by (L2) and (L2),

y<t<1l y<t<1

_[ton2
a(Tu) = yr<nt|21/ WG(t,s)a(s)f(u(s),u’(s),...,u<”*2>(s))ds

o2
y<t<1/ A CHUCRTCRIRTLI B

G(B;s,s)ds

> Bon(L - (1P [

=h.

Thus, forallue # (a, b, d), we have thatr(Tu) > b. So, conditionB1) of Theoreml1 holds.
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Finally, letu € .7 (a, b, c) with || Tu| > d. Then|ju|| < canda(u) = min [uU™2(t)| = min u™ 2 (t) > b. From
0<t<1 y<t<1
assumptior{L2) and (12),

o= min [ 2 Gt a(s) f(us),u ("-2)(g))d
af u)_yr§nt|§r1l/o FTO (B;t,9)a(s)f(u(s),u’(s),...,u (s))ds

. 1 dn—2
> i, [ BB 9AS (U (9), ... (s

dn72
atnfz

> Bbm{1—(1— y)ﬁfl]y“*““/ols G(B;s,s)ds

=h.

This shows that conditio(B3) of Theoreml1 holds.
Thus, from Theoreri1, T has at least three fixed pointg uy, uz such thatjui|| < a, b < a(uz), and a < |Jug|| with
a(uz) < b. These fixed points are solutions &) (10).

8 Conclusions

Here it was shown how four classical fixed point theorems Gbatraction Mapping Principle, Schauder’s fixed point
theorem, Krasnosel'skii’s fixed point theorem and the Lég@élliams fixed point theorem, can be used to show the
existence of a unique, at least one, at least three, finitelgynand infinitely many positive solutions of a fractional
boundary value problem. Important properties of the Gieimiction associated with the boundary value problem were
developed in order to apply these fixed point theorems. Thesgerties may also be useful when applying other fixed
point theorems to this boundary value problem.
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