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Abstract: In this paper we will consider anαth order fractional boundary value problem,n− 1 < α ≤ n, n ∈ N, with boundary
conditions that include a fractional derivative at 1. We will develop properties of the Green’s Function for this boundary value problem
and use these properties along with the Contraction MappingPrinciple, and the Schuader’s, Krasnosel’skii’s, and Leggett-Williams
fixed point theorems to prove the existence of positive solutions under different conditions.
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1 Introduction

Let n≥ 2 denote an integer, and letα andβ be positive reals such thatn−1< α ≤ n and 0≤ j ≤ β ≤ n−1, for some
j ∈ {0, 1, . . . , n−2}. We will consider the boundary value problem for the fractional differential equation given by

Dα
0+u+a(t) f (u,u′, . . . ,u( j)) = 0, 0< t < 1, (1)

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , n−2, Dβ
0+u(1) = 0, (2)

whereDα
0+ andDβ

0+ are the standard Riemann-Liouville fractional derivatives. We make the following assumptions on the
functions f anda:

(H1)f : [0,∞) j+1 → [0,∞) is continuous, and
(H2)a : [0,1]→ [0,∞) with a∈ L∞[0,1] and|a|∞ = M.

The topic of fractional calculus, once thought to be inapplicable to real world situations, is now being studied in many
branches of science due to the ability of fractional differential equations to model certain situations better than differential
equations of integer order. Today, there are an increasing number of papers relating to differential equations of arbitrary
order being published. The use of fixed point theory and cone-theoretic techniques to show the existence of solutions to
difference equations, ordinary differential equations, and singular boundary value problems is abundant, (see [1,2,3]) but
still far less work has been done to develop the existence of solutions to fractional, or arbitrary order differential equations,
as in [4,5,6,7].

In this paper, we shall develop properties of the Green’s function of (1), (2), constructed in [8], necessary to prove
the existence of positive solutions under different conditions using the Contraction Mapping Principle and the Schuader
Fixed Point Theorem. We will then restrictn−2≤ β < n−1 and j = n−2 and prove the existence of positive solutions
to the resulting boundary value problem when certain conditions are met, using Krasnosel’skii’s and the Leggett-Williams
fixed point theorems.

In the following section, we provide the fundamental definitions of fractional calculus. In the third section, we
develop properties of the Green’s function necessary to apply the Contraction Mapping Principle and Schuader Fixed
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Point Theorem, which we do in the following two sections. In the sixth section, we restrict our problem and apply
Krasnosel’skii’s Fixed Point Theorem, and in the subsequent section we apply the Leggett-Williams Fixed Point
Theorem.

2 Preliminary Definitions

Definition 1.Letν > 0. The Riemann-Liouville fractional integral of a function uof orderν, denoted Iν0+u, is defined as

Iν
0+u(t) =

1
Γ (ν)

∫ t

0
(t − s)ν−1u(s)ds, (3)

provided that the right-hand side exists.

Definition 2.Let n denote a positive integer, and assume that the positivereal α satisfies n−1< α ≤ n. The Riemann-
Liouville fractional derivative of orderα of the function u: [0,1]→R, denoted Dα0+u, is defined as

Dα
0+u(t) =

1
Γ (n−α)

∂ n

∂ tn

∫ t

0
(t − s)n−α−1u(s)ds,

= DnIn−α
0+ u(t),

(4)

provided the right-hand side exists.

3 The Green’s Function

The Green’s Function for the boundary value problem (1), (2) is given by (see [8])

G(β ; t,s) =























tα−1(1− s)α−1−β

Γ (α)
−

(t − s)α−1

Γ (α)
, if 0 ≤ s≤ t < 1,

tα−1(1− s)α−1−β

Γ (α)
, if 0 ≤ t ≤ s< 1.

(5)

Thus,u is a solution of (1), (2) if and only if

u(t) =
∫ 1

0
G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u( j)(s))ds, 0≤ t ≤ 1.

We will develop properties of (5) to prove the existence of positive solutions to (1), (2).

Lemma 1.Let β be a positive real and j∈ {0,1, . . . ,n− 2} be an integer, satisfying0 ≤ j ≤ β ≤ n− 1. The kernel,
G(β ; t,s), satisfies the following properties:

∂ i

∂ t i G(β ; t,s)≥ 0, (t,s) ∈ [0,1]× [0,1), i = 0,1, . . . , j, (6)

max
0≤t≤1

∫ 1

0

∂ i

∂ t i G(β ; t,s)ds=
(α − i)tα−i−1

i − (α −β )tα−1
i

Γ (α − i)(α −β )(α − i)
:= Gi , (7)

where

ti = min

{

(α −1− i)
(α −β )

, 1

}

.

Proof.Define, for 0≤ s≤ t < 1, the functiong1 by

g1(β ; t,s) =
tα−1(1− s)α−1−β − (t − s)α−1

Γ (α)
,
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and define, for 0≤ t ≤ s< 1, the functiong2 by

g2(β ; t,s) =
tα−1(1− s)α−1−β

Γ (α)
, 0≤ t ≤ s< 1.

In order to prove (6), let sandt be positive reals such that 0≤ s≤ t < 1, and leti ∈ {0, 1, . . . , j}. Then

∂ i

∂ t i G(β ; t,s) =
∂ i

∂ t i g1(β ; t,s)

=
∂ i

∂ t i

tα−1(1− s)α−1−β − (t− s)α−1

Γ (α)

=
1

Γ (α)

∂ i

∂ t i [t
α−1(1− s)α−1−β − (t− s)α−1]

=
1

Γ (α)

[

(1− s)α−1−βΓ (α)tα−1−i

Γ (α − i)
−

Γ (α)(t − s)α−1−i

Γ (α − i)

]

=
1

Γ (α − i)
[(1− s)α−1−β tα−1−i − (t − s)α−1−i]

≥
1

Γ (α − i)
[(1− s)α−1−itα−1−i − (t− s)α−1−i]

=
1

Γ (α − i)
[(t − ts)α−1−i − (t− s)α−1−i].

But ts< s, and hence
1

Γ (α − i)
[(t − ts)α−1−i − (t− s)α−1−i]> 0, implying that

∂ i

∂ t i g1(β ; t,s)≥ 0.

Next, let 0≤ t ≤ s< 1 andi ∈ {0, 1, . . . , j}. Then

∂ i

∂ t i G(β ; t,s) =
∂ i

∂ t i g2(β ; t,s)

=
∂ i

∂ t i

tα−1(1− s)α−1−β

Γ (α)

=
1

Γ (α)

(1− s)α−1−βΓ (α)tα−1−i

Γ (α − i)

=
1

Γ (α − i)
(1− s)α−1−β tα−1−i

≥ 0,

and hence
∂ i

∂ t i G(β ; t,s)≥ 0, wheni ∈ {0, 1, . . . , j}. This proves (6).

Now,

∫ t

0

∂ i

∂ t i g1(β ; t,s)ds=
∫ t

0

∂ i

∂ t i

(

tα−1(1− s)α−1−β − (t− s)α−1

Γ (α)

)

ds

=
tα−1−i(α − i)− tα−1−i(1− t)α−β(α − i)− tα−i(α −β )

Γ (α − i)(α −β )(α − i)
,

and

∫ 1

t

∂ i

∂ t i g2(β ; t,s)ds=
∫ 1

t

∂ i

∂ t i

(

tα−1(1− s)α−1−β

Γ (α)

)

ds

=
tα−1−i(1− t)α−β

Γ (α − i)(α −β )
.
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Hence
∫ 1

0

∂ i

∂ t i G(β ; t,s)ds=
tα−i−1(α − i)− tα−i(α −β )

Γ (α − i)(α −β )(α − i)
.

Now, by properties of the first derivative of any function, max
t∈[0,1]

∫ 1

0

∂ i

∂ t i G(β ; t,s)ds occurs when

∂
∂ t

[

∫ 1

0

∂ i

∂ t i G(β ; t,s)ds

]

=
∂
∂ t

(α − i)tα−i−1− (α −β )tα−i

Γ (α − i)(α −β )(α − i)

= (α −1− i)(α − i)tα−2−i − (α − i)(α −β )tα−1−i

= 0,

which occurs whent =
α −1− i

α −β
. Note that if

α −1− i
α −β

> 1, then by (6), the maximum occurs whent = 1. It follows that

max
0≤t≤1

∫ 1

0

∂ i

∂ t i G(β ; t,s)ds=
(α − i)tα−i−1

i − (α −β )tα−i
i

Γ (α − i)(α −β )(α − i)
,

whereti = min

{

α − i −1
α −β

, 1

}

, which proves (7).

Throughout this paper, we will make use of the Banach space

B = {u∈C( j)[0,1] : u(0) = u′(0) = · · ·= u( j−1)(0) = 0},

endowed with the norm
‖u‖= max

0≤t≤1
|u( j)(t)|= |u( j)|0,

and the operatorT : B → B by

(Tu)(t) =
∫ 1

0
G(t,s) f (s,u(s), . . . ,u( j)(s))ds (8)

for all t ∈ [0,1] andu∈ B. First, notice ifû is a fixed point ofT, û solves (1), (2). Also, notice that, fori = 1, 2, . . . , j,

|u( j−i)(t)|= |u( j−i)(t)−u( j−i)(0)|

=

∣

∣

∣

∣

∫ t

0
u( j+1−i)(s)ds

∣

∣

∣

∣

≤

∫ t

0

∣

∣

∣
u( j+1−i)(s)

∣

∣

∣
ds

≤ |u( j+1−i)(t)|

≤ |u( j+1−i)|0.

Therefore,|u|0 ≤ |u′|0 ≤ ·· · ≤ |u( j−1)|0 ≤ |u( j)|0 = ‖u‖.

4 Contraction Mapping Principle

The theory behind the use of the Contraction Mapping Principle in proving the existence of fixed points for differential
equations has been studied in papers such as [9]. These authors make use of the Contraction Mapping Principle to show
the existence of solutions to differential equations of integer order in partially ordered and ordered metric spaces. The
existence and uniqueness of solutions to a nonlinear fractional Cauchy problem in a special Banach space is developed in
[10]. We will develop a theorem and proof for the existence and uniqueness of solutions of problem (1), (2).

Theorem 1.Assume (H2) is satisfied and f satisfies a Lipschitz condition| f (y0,y1, . . . ,y j)− f (z0,z1, . . . ,zj )| ≤ k|y j − zj |

on [0,∞) j+1. Then, if MkG j < 1, (1), (2) has a unique solution.
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Proof.Notice that

|(Tu)( j)(t)− (Tv)( j)(t)| ≤ Mk‖u− v‖
∫ 1

0

∂ jG(β ; t,s)
∂ t j ds

≤ MkG j‖u− v‖,

and, consequently,
‖Tu−Tv‖ ≤ MkG j‖u− v‖.

Hence, sinceMkG j < 1, T is a contraction mapping onB, and thusT has a unique fixed point ˆu, which is the unique
solution of (1), (2).

5 Schauder Fixed Point Theorem

The Schauder Fixed Point Theorem has been utilized in the study and proof of existence of solutions to fractional order
differential equations and systems of fractional order differential equations as well, see [11,12]. We will use the Schauder
fixed point theorem to show the existence of positive solutions of (1), (2).

Theorem 2(Schauder Fixed Point Theorem [13]). If M is a closed, bounded, convex subset of a Banach spaceB and
T : M → M is completely continuous, then T has a fixed point inM .

Lemma 2.The operator T is completely continuous onM , where for fixed N> 0, the setM is defined to beM = {u∈
B : ‖u‖< N}.

The proof is a standard application of the Arzelà-Ascoli theorem.

Theorem 3.Let N be fixed and defineM = {u∈ B : ‖u‖< N} and‖u‖= |u( j)|0. Then(1), (2) has a solution inM .

Proof.By definition,M is bounded.

To see thatM is closed, let{hi}
∞
i=1 ⊆ M , and leth0 ∈ B be such that‖hi −h0‖ → 0 asi → ∞. Thenh( j)

i → h( j)
0 on

[0,1]. Thus, sincehi ∈ M for all i, |h( j)
i | ≤ N for all i, and|h( j)

0 (x)| ≤ N on [0,1]. So,‖h0‖ ≤ N, andh0 ∈ M . Hence,M
is closed.

Let h, g∈ M , and, for realλ with 0≤ λ ≤ 1, considerλh+(1+λ )g.Well, sinceh, g∈ M , we have

|λh( j)(x)+ (1−λ )g( j)(x)| ≤ |λh( j)(x)|+ |(1−λ )g( j)(x)|

= λ |h( j)(x)|+(1−λ )|g( j)(x)|

≤ λN+(1−λ )N
= N.

Henceλh+(1−λ )g∈ M for all h, g∈ M , andM is convex.
From Lemma2, T is completely continuous onM . Hence, the assumptions of the Schauder Fixed Point Theorem are

met, and thusT has a fixed point inM which is a solution of (1), (2).

6 Krasnosel’skii’s Fixed Point Theorem

In this section, we will use Krasnosel’skii’s well-known fixed point theorem for operators acting on a cone in a Banach
space. In order to apply Krasnosel’skii’s fixed point theorem, we needn−2≤ β < n−1 and j = n−2. So the specified
boundary value problem is

Dα
0+u+a(t) f (u,u′, . . . ,u(n−2)) = 0, 0< t < 1, (9)

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , n−2, Dβ
0+u(1) = 0, (10)

whereDα
0+ andDβ

0+ are the standard Riemann-Liouville fractional derivatives. The Banach space and norm used in the
forthcoming analysis is the same as the Banach space and normused above, withj = n−2 as well. Some authors have
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used Krasnosel’skii’s fixed point theorem to show the existence of solutions of ordinary differential equations, difference
equations, and dynamic equations on time scales; however, few papers have been published that were devoted to the study
of boundary value problems of fractional order as in [4,5,6], where the authors develop proofs for the existence of positive
solutions to the nonlinear fractional boundary value problems

Dαu+a(t) f (u) = 0, 0< t < 1, 1< α ≤ 2,

and
Dαu+a(t) f (u) = 0, 0< t < 1, 3< α ≤ 4,

satisfying boundary conditions
u(0) = 0= u′(1) = 0,

and
u(0) = 0= u′(0) = u′′(0) = u′(1) = 0,

respectively, which are two specific cases of problem (9), (10). We seek to show the existence of positive solutions of (9),
(10) for arbitrary positive integern and positive realα, n−1< α ≤ n.

Theorem 4(Krasnosel’skii’s Fixed Point Theorem [14]). Let B be a Banach space, and letK ⊂ B be a cone inB.
Assume thatΩ1, Ω2 are open sets with0∈ Ω1, andΩ 1 ⊂ Ω2. Let T : K ∩ (Ω 2\Ω1)→ K be a completely continuous
operator such that either

(i)‖Tu‖ ≤ ‖u‖, u∈ K ∩∂Ω1, and‖Tu‖ ≥ ‖u‖, u∈ K ∩∂Ω2, or
(ii)‖Tu‖ ≥ ‖u‖, u∈ K ∩∂Ω1, and‖Tu‖ ≤ ‖u‖, u∈ K ∩∂Ω2.

Then T has a fixed point inK ∩ (Ω2\Ω1).

We will need the following additional properties of the Green’s function.

Lemma 3.Letγ and s be fixed nonnegative reals, with0≤ γ ≤ s<1, and letβ be a positive real such that n−2<β ≤n−1.
The kernel, G(β ; t,s), satisfies the following properties:

Gn−2 = max
t∈[0,1]

∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)ds

=
(α −n+1)α−n+1(α −n+2)− (α−n+1)α−n+2

(α −β )α−n+2Γ (α −n+2)(α−n+2)
,

(11)

whereGn−2 is the specific case ofGi as defined in Lemma1 where i= n−2, and

min
γ≤t≤1

∂ n−2

∂ tn−2G(β ; t,s)≥ [1− (1− γ)β−n+2]γα−n+1s
∂ n−2

∂ tn−2G(β ;s,s). (12)

Proof.Let i = n−2. Notice thattn−2 =
α −n+1

α −β
sinceα −β ≥ α −n+1, implying that

α −n+1
α −β

≤ 1. Hence,

max
0≤t≤1

∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)ds=

(α −n+1)α+1−n

(α −β )α+1−n (α −n+2)−
(α −n+1)α−n+2

(α −β )α−n+2

(α −β )α−n+2Γ (α −n+2)(α−n+2)

=
(α −n+1)α−n+1(α −n+2)− (α−n+1)α−n+2

(α −β )α−n+2Γ (α −n+2)(α−n+2)
,

which proves (11).
To prove (12), note that

∂ n−1

∂ tn−1 g1(t,s) =
(1− s)α−1−β tα−n− (t− s)α−n

Γ (α −n+1)
.

Now,

(1− s)α−1−β tα−n− (t − s)α−n = (1− s)α−β−1tα−n−
(

t
(

1−
s
t

))α−n

= tα−n
(

(1− s)α−β−1−
(

1−
s
t

)α−n
)

.
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Note that, ift = 0, thens= 0, and thus,
∂ n−1

∂ tn−1g1(t,s) = 0. If 0 < s≤ t < 1, then
1
t
> 1, and since,s is positive,

s
t

> s. This implies that 1−
s
t

< 1 − s, and, since −1 < α − n ≤ 0 and

n− 1 < β + 1 ≤ n,
(

1−
s
t

)α−n
> (1− s)α−n ≥ (1− s)α−β−1. Therefore(1− s)α−β−1 −

(

1−
s
t

)α−n
< 0, and,

consequently,
∂ n−1

∂ tn−1g1(t,s)< 0. Also note that

∂ n−1

∂ tn−1 g2(t,s) =
(1− s)α−1−β tα−n

Γ (α −n+1)
> 0,

since(1− s)α−1−β tα−n > 0.

Since
∂ n−1

∂ tn−1g1(t,s)< 0,
∂ n−2

∂ tn−2 g1(t,s) is a decreasing function oft. Hence, for 0≤ γ ≤ s< 1,

min
γ≤t≤1

∂ n−2

∂ tn−2g1(t,s) =
∂ n−2

∂ tn−2g1(1,s)

=
(1− s)α−1−β − (1− s)α−n+1

Γ (α −n+2)

=
(1− s)α−1−β [1− (1− s)β−n+2]

Γ (α −n+2)

≥
(1− s)α−1−β [1− (1− γ)β−n+2]

Γ (α −n+2)

≥
(1− s)α−1−β [1− (1− γ)β−n+2]γα−n+1sα−n+2

Γ (α −n+2)

= [1− (1− γ)α−n+2]γα−n+1s
(1− s)α−1−βsα−n+1

Γ (α −n+2)

= [1− (1− γ)β−n+2]γα−n+1s
∂ n−2

∂ tn−2G(s,s).

Note that
∂ n−2

∂ tn−2g2(t,s) is an increasing function oft.

Hence, for 0≤ γ ≤ s< 1,

min
γ≤t≤1

∂ n−2

∂ tn−2g2(t,s) =
∂ n−2

∂ tn−2g2(γ,s)

=
(1− s)α−1−β γα−n+1

Γ (α −n+2)

≥
(1− s)α−1−β γα−n+1[1− (1− γ)β−n+2]sα−n+2

Γ (α −n+2)

= [1− (1− γ)β−n+2]γα−n+1s
∂ n−2

∂ tn−2G(s,s).

Thus, min
γ≤t≤1

∂ n−2

∂ tn−2 G(β ; t,s)≥ [1− (1− γ)β−n+2]γα−n+1s
∂ n−2

∂ tn−2G(β ;s,s) for all γ ≤ s< 1, which proves (12).

We need an additional assumption ona.

(H3)There exists aγ ∈ (0,1) and anm> 0 such thata(t)> ma. e. on[γ,1].

We first use the contractive portion of Krasnosel’skii’s fixed point theorem.
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Theorem 5.Suppose that (H1) and (H2) are satisfied and that there existsa γ ∈ (0,1) such that (H3) is satisfied. Let

A,B∈ R with 0≤ A≤
1

Gn−2M
and

B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2 G(β ;s,s)ds

]−1

.

If there exist positive constants r and R with r< R and Br< AR, and if f satisfies

(A1) f(x0,x1, . . . ,xn−2)≤ AR for all (x0,x1, . . . ,xn−2) ∈ [0,R]n−1, and
(A2) f(x0,x1, . . . ,xn−2)≥ Br for all (x0,x1, . . . ,xn−2) ∈ [0, r]n−1,

then(9), (10) has at least one positive solution u with r< ‖u‖< R.

Proof.Define the cone

K = {u∈ B : u(n−2)(t)≥ 0 for all t ∈ [0,1]}. (13)

Define the open setΩ2 = {u∈ B : ‖u‖< R}. Let u∈ K∩∂Ω2. Then assumption (A1) and (7) give

|Tu(n−2)|(t) =

∣

∣

∣

∣

∫ 1

0

∂ n−2

∂ tn−2 G(t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

∣

∣

∣

∣

≤

∫ 1

0

∣

∣

∣

∣

∂ n−2

∂ tn−2 G(β ; t,s)

∣

∣

∣

∣

|a(s)|| f (s,u(s), . . . ,u(n−2)(s))|ds

≤ MAR
∫ 1

0

∣

∣

∣

∣

∂ n−2

∂ tn−2G(β ; t,s)

∣

∣

∣

∣

ds

≤ MARGn−2

≤ R

= ‖u‖.

So,‖Tu‖ ≤ ‖u‖ for all u∈ K ∩∂Ω2.
Next, define the open setΩ1 = {u∈ B : ‖u‖ < r}. Let u ∈ K ∩ ∂Ω1. Then, using (H1)-(H3), assumption (A2) and

(12), we have that

Tu(n−2)(t)≥
∫ 1

0

∂ n−2

∂ tn−2G(t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

≥
∫ 1

γ

∂ n−2

∂ tn−2G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

≥ mBr
∫ 1

γ

∂ n−2

∂ tn−2G(β ; t,s)ds

≥ mBr
∫ 1

γ
[1− (1− γ)β−n+2]γα−n+1s

∂ n−2

∂ tn−2G(β ;s,s)ds

= mBr[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2G(β ;s,s)ds

≥ r

= ‖u‖.

Therefore,‖Tu‖ ≥ ‖u‖ for all u ∈ K ∩ ∂Ω1. Since 0∈ Ω1 ⊂ Ω2, the contractive part of Kraznosel’skii’s Theorem
gives the existence of at least one fixed point ofT in K ∩ (Ω 2\Ω1). So, there exists at least one solution ofu of (9), (10)
with r < ‖u‖ ≤ R.

The expansive part of Krasnosel’skii’s fixed point theorem can also be applied. The proof is similar to Theorem5 and
is therefore omitted.

c© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.2, No. 3, 193-204 (2016) /www.naturalspublishing.com/Journals.asp 201

Theorem 6.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Let A,B∈R

with 0≤ A≤
1

Gn−2M
and

B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2 G(β ;s,s)ds

]−1

.

If there exist positive constants r and R such that r< R and Ar< BR, and if f satisfies

(A3) f(x0,x1, . . . ,xn−2)≥ BR for all (x0,x1, . . . ,xn−2) ∈ [0,R]n−1 and
(A4) f(x0,x1, . . . ,xn−2)≤ Ar for all (x0,x1, . . . ,xn−2) ∈ [0, r]n−1.

then(9), (10) has at least one positive solution u with r< ‖u‖< R.

As is shown in the following theorems, Krasnosel’skii’s fixed point theorem can be used to show the existence of
finitely many solutions to (9), (10).

Theorem 7.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Let A,B∈R

with 0≤ A≤
1

Gn−2M
and

B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2 G(s,s)ds

]−1

.

If there exists a k∈ N such that there are positive constants ri and Ri for i = 1, 2, . . . , k such that r1 < R1 < r2 < R2 <

· · · < rk < Rk and Bri < ARi, and if f satisfies

(A5) f(x0,x1, . . . ,xn−2)≤ ARi for all (x0,x1, . . . ,xn−2) ∈ [0,Ri ]
n−1, and

(A6) f(x0,x1, . . . ,xn−2)≥ Bri for all (x0,x1, . . . ,xn−2) ∈ [0, r i ]
n−1,

then(9), (10) has at least k positive solutions ui, where ui satisfies ri < ‖u‖< Ri .

Proof.Define open setsΩ2i = {u∈ B : ‖u‖ < Ri} for i = 1, . . . ,k andΩ1i = {u∈ B : ‖u‖ < r i} for i = 1, . . . ,k. Then a
proof similar to the proof of Theorem5 shows the existence of at least one fixed point ofT in K ∩ (Ω 2i\Ω1i ) for eachi.
So, there exists at least one solution ofui of (9), (10) with r i < ‖u‖ ≤ Ri for eachi = 1, . . . , k.

The expansive part of Krasnosel’skii’s fixed point theorem can also be applied to show the solutions of finitely many
solutions. The proof is omitted since it is similar to the proof above.

Theorem 8.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Let A,B∈R

with 0≤ A≤
1

Gn−2M
and

B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2 G(s,s)ds

]−1

.

If there exists a k∈ N such that there are positive constants ri and Ri for i = 1, 2, . . . , k such that r1 < R1 < r2 < R2 <

· · · < rk < Rk and Bri < ARi, and if f satisfies

(A7) f(x0,x1, . . . ,xn−2)≥ BRi for all (x0,x1, . . . ,xn−2) ∈ [0,Ri ]
(n−1), and

(A8) f(x0,x1, . . . ,xn−2)≤ Ari for all (x0,x1, . . . ,xn−2) ∈ [0, r i ]
(n−1),

then(9), (10) has at least k positive solutions ui, where ui satisfies ri < ‖u‖< Ri .

Krasnosel’skii’s fixed point theorem can be also used to showthe existence of infinitely many solutions to (9), (10).
The proofs are similar to the proofs of the theorems above andare therefore omitted.

Theorem 9.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Let A,B∈R

with 0≤ A≤
1

Gn−2M
and

B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2 G(s,s)ds

]−1

.

If there are positive constants ri and Ri for i = 1, 2, . . . such that r1 < R1 < r2 < R2 < · · · and Bri < ARi , and if f satisfies
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(A9) f(x0,x1, . . . ,xn−2)≤ ARi for all (x0,x1, . . . ,xn−2) ∈ [0,Ri ]
n−1, and

(A10) f(x0,x1, . . . ,xn−2)≥ Bri for all (x0,x1, . . . ,xn−2) ∈ [0, r i ]
n−1,

then(9), (10) has infinitely many positive solutions ui, where ui satisfies ri < ‖u‖< Ri .

Theorem 10.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Let

A,B∈ R with 0≤ A≤
1

Gn−2M
and B≥

[

m[1− (1− γ)β−n+2]γα−n+1
∫ 1

γ
s

∂ n−2

∂ tn−2G(s,s)ds

]−1

.

If there are positive constants ri and Ri for i = 1, 2, . . . such that r1 < R1 < r2 < R2 < · · · and Bri < ARi , and if f satisfies

(A11) f(x0,x1, . . . ,xn−2)≥ BRi for all (x0,x1, . . . ,xn−2) ∈ [0,Ri ]
(n−1), and

(A12) f(x0,x1, . . . ,xn−2)≤ Ari for all (x0,x1, . . . ,xn−2) ∈ [0, r i ]
(n−1),

then(9), (10) has infinitely many positive solutions ui, where ui satisfies ri < ‖u‖< Ri .

7 The Leggett-Williams Fixed Point Theorem

In this section, we will consider (9) and (10) along with the Banach spaceB, the coneK , and the operatorT defined
in the previous section. To again show the existence of multiple solutions, we will use the Leggett-Williams fixed point
theorem, as in [6]. In order to do this, forα a positive concave functional, we define the following subsets ofK :

Kc = {u∈ K : ‖u‖< c},

Ka = {u∈ K : ‖u‖< a},

K (α,b,d) = {u∈ K : b≤ α(u), ‖u‖ ≤ d}, and

K (α,b,c) = {u∈ K : b≤ α(u), ‖u‖ ≤ c}.

Theorem 11(Leggett-Williams [15]). Suppose that T: K c → K c is completely continuous, and suppose there exists a
concave positive functionalα onK such thatα(u)≤ ‖u‖ for u∈ K c. Suppose there exist constants0< a< b< d ≤ c
such that

1.{u∈ K (α, b, d) : α(u)> b} 6= /0 andα(Tu)> b if u∈ K (α, b, d);
2.‖Tu‖< u if u∈ Ka; and
3.α(Tu)> b for u∈ K (α, b, c) with ‖Tu‖> d.

Then T has at least three fixed points u1, u2, and u3 such that‖u1‖< a, b< α(u2), and‖u3‖> a with α(u3)< b.

Theorem 12.Suppose that (H1) and (H2) are satisfied and that there existsγ ∈ (0,1) such that (H3) is satisfied. Define

the continuous positive concave functionalα : B → B byα(u) = min
γ≤t≤1

|u(n−2)(t)|, and let0< A≤
1

MGn−2
and

B≥

[

m[1− (1− γ)β−1]γα−n+1
∫ γ

0
s

∂ n−2

∂ tn−2G(β ;s,s)ds

]−1

.

Let a, b, and c be such that0< a< b< c. Assume that the following hold:

(L1) f(u(t),u′(t), . . . ,u(n−2)(t))< Aa for all (t,u(n−2)(t)) ∈ [0,1]× [0,a],
(L2) f(u(t),u′(t), . . . ,u(n−2)(t))> Bb for all (t,u(n−2)(t)) ∈ [γ,1]× [b,c],
(L3) f(u(t),u′(t), . . . ,u(n−2)(t))≤ Ac for all (t,u(n−2)(t)) ∈ [0,1]× [0,c].

Then(9), (10) has at least three positive solutions u1, u2, u3 ∈ K satisfying

‖u1‖< a,

b< α(u2), and

a< ‖u3‖ with α(u3)< b.
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Proof.Let u∈ Kc. Then‖u‖< c and by(L3) and (7),

|Tu(n−2)|(t) =

∣

∣

∣

∣

∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

∣

∣

∣

∣

≤

∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)|a(s)|| f (u(s),u′(s), . . . ,u(n−2)(s))|ds

≤ M
∫ 1

0

∂ n−2

∂ tn−2 G(β ; t,s)| f (u(s),u′(s), . . . ,u(n−2)(s))|ds

< AcM
∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)ds

≤ AcMGn−2

= c.

Hence,‖Tu‖< c andT : Kc → Kc.

Similarly, letu∈ Ka. Then‖u‖< a, and by(L1) and (7),

|Tu(n−2)|(t) =

∣

∣

∣

∣

∫ 1

0

∂ n−2

∂ tn−2G(t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

∣

∣

∣

∣

≤

∫ 1

0

∣

∣

∣

∣

∂ n−2

∂ tn−2G(β ; t,s)

∣

∣

∣

∣

|a(s)|| f (u(s),u′(s), . . . ,u(n−2)(s))|ds

≤ M
∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)| f (u(s),u′(s), . . . ,u(n−2)(s))|ds

< MAa
∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)ds

= MGn−2Aa

= a.

So,T : Ka → Ka.

Let d be a constant such thatb < d ≤ c. Then, foru(t) =
d

(n−2)!
tn−2, α(u) = d > b andu ∈ K (α, b, d). Thus

K (α, b, d) 6= /0. Hence,‖Tu‖< u if u∈ Ka, and condition(B2) of Theorem11holds.

Let u∈ K (α, b, d). Then‖u‖ ≤ d ≤ c andα(u) = min
γ≤t≤1

|u(n−2)(t)|= min
γ≤t≤1

u(n−2)(t)≥ b. Now, by(L2) and (12),

α(Tu) = min
γ≤t≤1

∫ 1

0

∂ n−2

∂ tn−2G(t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

> min
γ≤t≤1

∫ 1

γ

∂ n−2

∂ tn−2G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

> Bbm[1− (1− γ)β−1]γα−n+1
∫ 1

0
s

∂ n−2

∂ tn−2G(β ;s,s)ds

= b.

Thus, for allu∈ K (α, b, d), we have thatα(Tu)> b. So, condition(B1) of Theorem11holds.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


204 C. A. Hollon, J. T. Neugebauer: Existence of positive solutions to a family of...

Finally, let u∈ K (α, b, c) with ‖Tu‖ > d. Then‖u‖ ≤ c andα(u) = min
0≤t≤1

|u(n−2)(t)| = min
γ≤t≤1

u(n−2)(t) ≥ b. From

assumption(L2) and (12),

α(Tu) = min
γ≤t≤1

∫ 1

0

∂ n−2

∂ tn−2G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

> min
γ≤t≤1

∫ 1

γ

∂ n−2

∂ tn−2G(β ; t,s)a(s) f (u(s),u′(s), . . . ,u(n−2)(s))ds

> Bbm[1− (1− γ)β−1]γα−n+1
∫ 1

0
s

∂ n−2

∂ tn−2 G(β ;s,s)ds

= b.

This shows that condition(B3) of Theorem11holds.
Thus, from Theorem11, T has at least three fixed pointsu1, u2, u3 such that‖u1‖< a, b< α(u2), and a< ‖u3‖ with

α(u3)< b. These fixed points are solutions of (9), (10).

8 Conclusions

Here it was shown how four classical fixed point theorems, theContraction Mapping Principle, Schauder’s fixed point
theorem, Krasnosel’skii’s fixed point theorem and the Leggett-Williams fixed point theorem, can be used to show the
existence of a unique, at least one, at least three, finitely many and infinitely many positive solutions of a fractional
boundary value problem. Important properties of the Green’s function associated with the boundary value problem were
developed in order to apply these fixed point theorems. Theseproperties may also be useful when applying other fixed
point theorems to this boundary value problem.
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