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Abstract: This paper is concerned with deriving an operational matfixactional-order integration of Fibonacci polynomiafs an

application of this matrix, a spectral algorithm for solyisome fractional-order initial value problems is exhidisd implemented.
The key idea for obtaining the suggested spectral numesatations for these equations is actually based on utdizive developed
Fibonacci operational matrix along with the applicatioriaaf method in order to reduce the fractional-order difféediequation with

its initial conditions into a system of linear algebraic atjons in the unknown expansion coefficients which can beieffily solved.

Some illustrative examples are included aiming to asaetta efficiency and applicability of the presented algonitirfhe numerical
results reveal that the proposed algorithm is easy andcaiyé.

Keywords: Fibonacci polynomials, operational matrix of integratitau method, fractional-order differential equations

1 Introduction

Fractional calculus is an important branch of mathematemdlysis. Several types of differential equations of
fractional-order appear in problems related to severatidiedf applied science such as fluid mechanics, biology,
engineering, electromagnetism and physik®]. So, due to the frequent importance of such equationsetises great
focus on obtaining solutions of them through different t@ghes. Solving fractional-order differential equations
analytically is not always possible, and therefore the eyplent of different numerical techniques for solving such
equations is necessary.

There are extensive studies in the numerical methods feingpVarious kinds of fractional-order differential eqiaaus.
Some of the proposed numerical methods for solving suchtemsaare: the Adomian’s decomposition meth8g4];
finite difference methodd, 6]; Taylor collocation method7], variational iteration methodg], higher order numerical
methods @]. The approach of utilizing operational matrices for sotyifractional-order fractional differential equations
is followed in a variety of papers. For example, Saadatmandi Dehghan inJ0] introduced and used a Legendre
operational matrix of fractional derivatives for solvingnse fractional-order differential equations. Also, Rosyeet al.

in [11] introduced a Bernstein operational matrix of fractionatidatives for handling these equations.

The employment of spectral methods (see, for instance, Bijcand Canuto et al.1[3]) is powerful in handling various
types of differential equations. Spectral methods are ssafitechniques in which the numerical solution is expregse
terms of certain "basis functions”, which may be expresseéiims of various polynomials, which are often orthogonal.
These methods take on a global approach unlike finite elemetiiods which use a local approach, and this of course
leads to excellent error properties, and high converge®pectral methods have been used by many authors for solving
ordinary, partial and fractional differential equatioi®r some articles concerning spectral solutions of orginar
differential equations, see for exampl®4f17], and for some other articles concerning solutions of fomatl-order
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differential equations, see for example3[19].

As an alternative approach to differentiating solutionamgions is to integrate the differential equatiptimes, where

is the order of the equation. This approach has the advatttatj¢he resulted algebraic systems are cheaper in solving
than those obtained by the differentiated forms. This apghnois followed in a number of papers. For example,
Abd-Elhameed et al. in20] and Doha et al. in Z1] solved the integrated forms of third- and fifth-order €ilip
differential equations using general parameters gerexhllacobi polynomials. Also, this approach is followed in
solving fractional-order differential equation, see feample R2].

The operational matrices of derivatives of various orthed@olynomials are widely used for solving various kinds of
differential equations. To be more precise, these operattimatrices are used for solving both linear and nonlinear
ordinary and fractional differential equations. For exémjg3-29].

The Fibonacci polynomials and their related polynomiaés@afrinterest. In addition, the celebrated Fibonacci number
and golden ratio appear in several applications in diffefiefds of applied science. For properties and applicatmns
Fibonacci polynomials and some other generalizationscanebe refereed to the important book of KosBg|[ Many
authors were interested in investigating Fibonacci paigiads and their generalizations from a theoretical pointietv,
see, for example3[1-33], however the use of these polynomials numerically is r&og.example, the authors i134]
employed these polynomials for solving some boundary vgitgblems through the collocation method. Also, a
collocation tau method using Fibonacci technique is foldvun [35] for handling some ordinary differential equations.

The main aim of this article is to obtain new numerical salng of some types of fractional-order initial value probéem
(IVPs). An operational matrix of fractional integration Bfbonacci polynomials is constructed, and then it is used
together with the application of the spectral tau method dbtaining the proposed numerical solutions for some
fractional-order differential equations. The paper isamiged as follows. Section 2 is devoted for presenting some
fundamental definitions of the fractional calculus and alsme relevant properties of Fibonacci polynomials. Ini®act

3, the operational matrix of the fractional integration d@dnhacci polynomials in Caputo sense is constructed. Iti@&ec

4, we present and implement a numerical algorithm for sglfiactional-order linear differential equations based on
utilizing the introduced operational matrix along with thpplication of the spectral tau method. In Section 5, the
proposed algorithm is tested through some numerical exasnplfinal conclusion is given in Section 6.

2 Preliminaries and Used Formulae

2.1 Some definitions and properties of fractional calculus

In this section, we recall some well-known definitions aneliprinary facts of the fractional calculus.

Definition 1.The Riemann-Liouville fractional integral operatof lof order a on the usual Lebesgue spacgQ, 1] is
defined as

t

1 a-1 .
I“f(t):{m/o(t_r) f(r)dr, o > 0; 1)

f(t), a=0.

The operatot? satisfies the following identities:
(i)1918 = 9+B (i)191B =1P 9, 2)
riv+1
At _\Wv_ " \" "7  o\v+a

(li)9(t—a) FvratD (t—a)’ 9, 3

wheref € L1]0,1], a,3 > 0, andv > —1.

Definition 2.The Riemann-Liouville fractional derivative of order> 0 is defined by

(DYf)(t) = (%)n(ln‘“f)(t),n—1<a<n, neN. 4)

For more details on the mathematical properties of fraeliderivatives and integrals, see for exampsg].[
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2.2 Some relevant properties of Fibonacci polynomials

The Fibonacci polynomials can be defined by many ways. Fomplg they can be generated with the aid of the
recurrence relation
Fni2(X) = XFny1(X) + Fn(x),n > 0,

with the initial values:
Fo(x) =0, Fi(x)=1,

and they also can be generated by the following explicit form
n n
(x+ \/X2+4) - (x— \/x2+4)

Fn(X) = ,
) NV +4

or by the following power form representation:
%) i .
rog= 3 ("1 e ©)
=

The derivatives of the Fibonacci polynomials can be giverteiims of their corresponding original polymelias. For
example, Falcon and Plaza7] found the following relation for the first derivative of Fohacci polynomials

1]

m=0

/

Fi(X) = ()M (i—2mF_om(x), i>1, (6)

™M

where the notationz| denotes the largest integer less than or equal to
Also, the following inversion formula td5) in which the polynomialg' is expressed in terms of the Fibonacci polynomials
is of interest (see, Falcon and Pla3d])

= E(—l)i (7)-(;"))] Fraat. m=o0 )

In what follows, it is more convenient to write the power forepresentation of the Fibonacci polynomiad$ &nd its
inversion formula7) in the following two forms:

Fi(x) = i (&%)! X i>0 (8)
T =Tl
(k+i) odd
and ’
m+1 -1 m-ktl
XMy mEJrl))' () Fk(x), m> 0. 9)
2 ' 2 '

=1
(k+m) odd

3 Fibonacci Operational Matrix of Integration

Let y(x) be a square Lebesgue integrable functioi@r), and assume that it can be expressed in terms of the linearly
independent Fibonacci polynomials as:

y(x) =% ack(x),
K=1
and letyn(x) be an approximation tg(x), that is

n+1
YO =y = 3 aFX) = AT O(x) (10)
k=1
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where
AT = [a-la ap,... 7an+l]7 (11)

and
®(x) = [F1(X), Fa(X), ..., a2 ()] (12)

Now, we state the following lemma, from which the operatianatrix of integration of Fibonacci polynomials can be
introduced.

Lemma 1.The following integral formula holds (se87])

V 1 R0 +F(x), if i even
/0 Fipa(t)dt = i1 {F.+2(X) +F(x)—2, ifiodd. )

The integral vector of the vect@b(x) can be written in the form
X
/ o(t)dt~ GV o(x), (14)
0

whereGW is the(n+ 1) x (n+ 1) operational matrix of integration whose nonzero elemeatste written explicitly as
follows:

|

1, i=1+1

S e Y
7, j=0,io0ddi>3,
, j=0/i=1,

0, otherwise

Nﬂ ~h

Gij =937

L

N

For example iln = 4, then

|
i ©

|
Nl
OrrO O o

(9)

G

Il

o
O Owkr O
ORIk ONRF O

o
Uik Quwk O o

5x5

3.1 A Fibonacci Operational Matrix of Fractional Integraiti

The main purpose of this section is to find the operationatimat fractional integration of Fibonacci polynomials.dfn
relation (L4), it is easy to see that, for every positive integewe have

ID o(x) =~ G @(x), (15)
whereJ(") is the repeatedtimes integration ofp(x).

Now, we are going to state and prove an important theoremecairg the operational matrix of fractional integration of
Fibonacci polynomials.

Theorem 1Let @(x) be the Fibonacci polynomial vector defined in EtR). For everya > 0, one has
19 d(x) = x* Gl (x), (16)

whereG(? is the(n+1) x (n+ 1) Fibonacci operational matrix of fractional integration ofder a, and it is defined by:

6 =(¢7). (17)
where . o
(@) _ J&alis]), i>;
9 = 0, otherwise.
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and k—j+1
S | —1)" 72 Kk (kL
Sal,)) = k1Y EH'+)1 | k+j(+12| ) ' (18)
(1K) ot {}-+K) odd ()" ( 2 ) ( 2 ) rFk+1+a)
Explicitly, G has the following form
0 0 0 0
EG(I—aLl) Ea((a~|7|—a.|) 0 O
G = . : : . . (19)
&al(i,1) Eai,i) 0
Ea(N+11) &+12) &N+L13) .. E&n+Lln+l)
Prooflf we apply the integral operatdf to Eq. 8), and make use of the identit@)( then we get
a i (%)' k+a
I"F(x) = : X 20
=2 ()T (k+1+a) (9
(k+i) even
and accordingly Eq.9) enables one to turn EqRQ) into the form
i
19R(X) =X Y &ali,])Fi(X), (21)
=1
whereéq (i, j) is given in (L8). We rewrite Eq. 21) in the following vector form:
1YF(x) =x9 [&q(i,1),&q(i,2),...,&q(i,i),0,0,...,0) @(x), 1<i<n+1 (22)

Finally, Eq. @2) leads to the desired result.

4 Spectral Solutions for Fractional-Order Differential Equation Through the Fibonacci
Operational Matrix

In this section, we describe in detail how the operationdtimaf fractional integration of Fibonacci polynomialsrche
employed for solving linear multi-order fractional initialue problems.
Consider the following linear fractional differential egfion:

ul@(x) = ’ lai ul®(x) + gux)+ f(x),  xe(0,1), (23)

subject to the following initial conditions:
u’(0)=a, r=0,1,....m—1, (24)
wheree; are known constants amde (m—1,m|, 0<a;<ap<---< @y 1 < a, andu® (x) = DY u(x) is the Riemann-

Liouville fractional derivative of ordea of u(x) and f(x) is the source function. For the existence and uniquenesof t
solution of Eq. 23), see B8|. Now apply the operatd”® to Eq. £3) to get

m-1 i k-1 [ai]-1
+ &l u(x) + 1% f(x). (25)

j X a—aj o+ x!
u(x)—;)u“)(oﬂj—!:i;al u(x) — ,Zo u(o )ﬁ

If we make use of the initial condition24) together with relation3), then we get

u(x) = klegi 1975u(x) + & u(x) +9(x), (26)
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where
k-1[ai]-1 xi+a—ai

9(x) +Z)aj +Z¢ Zo ST ita—a)

Now, if u(x) is approximated as

u(x) = un(x) = AT d(x), (27)

then based on Theoreinthe following approximations can be obtained

19u(x) ~ x7 AT G o (x), (28)
and
19=%y(x) ~ x0T~ % AT GO0 @(x), (29)
and therefore the residual d1) is given by
k—1
R(x) = AT @(x) — gx7 AT G@) o (x) — Zl g X779 AT GO~ @(x) — g(x). (30)
i=

Now, the application of the spectral tau method26) (see, for examplelfg]) leads to
/ RXF(X)dx=0, i=12,. . .n+1 (31)

Now Egs. 81) generate a linear algebraic system in the unknown expamsiefficientsa; of dimension(n+ 1). This
system can be solved through any suitable solver such asdhestan elimination procedure, and consequently the
approximate solution can be obtained.

5 Numerical Examples

In this section, we illustrate some numerical examples mp@amied with comparisons to ascertain the efficiency of the
proposed algorithm for handling multi-term fractionatler IVPs. In all examples, we apply the Fibonacci operationa
matrix method (FOMM) which is implemented in the previoustsm.

Example 1[39] Consider the linear fractional-order IVP:

u3) (x) +3u(x) = 33+ %Tx%, xe (0,1), (32)
subject to the initial conditions
u(0) =u'(0) =0, (33)

with the exact smooth solutiamx) = x3. If we apply the integral operatcb% to both sides of Eq.32) and make use of

the initial conditions, then we get
64 9

u(x) 4312 u(x) = X3+105\/7_r X2,

(34)

The residual of Eq.34) is given by
64 o
2

R(x) = AT o(x) +3x2 AT G2 o(x) - x® - T

where the matrisG?) is given by

w
3
ogNo r
|goo-umo
oY o o
50 0o

=)
o
al
=
o
a
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The application of tau method to EQ4) leads to the following linear system of four equations:
1
/ RXF(X)dx=0, i=1234 (35)
0

The solution of this system yields
a0:07 a-l:_27 a3:07 a4:17

and consequently
Us(X) = (0,-2,0,1). (1,142, 2x+3) " =58,

which is the exact solution.
Example 2[40] Consider the linear fractional-order IVP:
u® (x) 4 3u (x) 4+ 2u@1379(x) 4 u@09(x) 4 BuU(x) = f(x),  x€(0,1), (36)

subject to the initial conditions
u(0)=1, u(0)=0, (37)

2
wheref (x) is chosen such that the exact solution@8)(is u(x) = 1+ XE If we apply the operatdr to both sides of Eq.

(36), and make use of the initial conditions, then the followatgiation is obtained
u(x) + 31 u(x) + 211862 y(x) 411984 y(x) + 51 u(x) = g(x), (38)
where
g(x) = 6+ 3x+ 1.1313 7186211 0.50736519841 1 3x% + 0.5x% + 0.10235238621 10,0426 75339841
The residual of Eq.38) is given by

R(X) = AT @(x) + 3AT GV @(x) 4 2x1862IAT G (18621 o x)
4 xL9BAIAT 5(19841) O(X) + 5ATG®? ®(x) — g(x),

where the involved matrices can be written explicitly as

0.565684 0 0
G(11862 0 0197647 0 ,
2

0.463332 0 010235

0.507365 O 0
G(1984D _ 0 0170023 0 .

0.422014 0 00853506

ol ONIFE N~
N~ — -

The application of tau method t88) yields the system

1
/ RXF(X)dx=0, =123, (39)
0
which can be solved to give
ag = %7 a = 07 az = :_2L7
and consequently
X2

W) = (3,0.3). (Lx1+¥) =1+,

which is the exact solution.
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Table 1: Comparison between different solutions of Exantpfer a = 0.5
X | [42 BPOM | [43] Exact | [41] ADM FOMM
0.1 | 0.039754 | 0.039750 | 0.039874 | 0.039750
0.2 | 0.157043 | 0.157036 | 0.158512 | 0.157035
0.3 | 0.347373 | 0.347370 | 0.353625 | 0.347369
0.4 | 0.604699 | 0.604695 | 0.622083 | 0.604695
0.5| 0.921768 | 0.921768 | 0.960047 | 0.921767
0.6 | 1.290458 | 1.290457 | 1.363093 | 1.290456
0.7 | 1.702007 | 1.702008 | 1.826257 | 1.702008
0.8 | 2.147286 | 2.147287 | 2.344224 | 2.147286
0.9 | 2.616998 | 2.617001 | 2.911278 | 2.617000
1.0 | 3.101902 | 3.101906 | 3.521462 | 3.101905

Table 2: Comparison between different solutions of Exantpfer a = 1.5
X | [42 BPOM | [43] Exact | [41] ADM FOMM
0.1 | 0.033510 | 0.033507 | 0.036478 | 0.033507
0.2 | 0.125226 | 0.125221 | 0.140640 | 0.125220
0.3| 0.267611 | 0.267609 | 0.307485 | 0.267608
0.4 | 0.455439 | 0.455435 | 0.533284 | 0.455435
0.5| 0.684336 | 0.684335 | 0.814757 | 0.684334
0.6 | 0.950395 | 0.950393 | 1.148840 | 0.950392
0.7 | 1.249959 | 1.249959 | 1.532571 | 1.249960
0.8 | 1.579558 | 1.579557 | 1.963033 | 1.579558
0.9 | 1.935832 | 1.935832 | 2.437331 | 1.935831
1.0 | 2.315526 | 2.315526 | 2.952567 | 2.315526

Example 3[41-43] Consider the fractional-order IVP:
u@ () +u@(x)+ux)=8, xe(0,1), ac(0,2), (40)
subject to the initial conditions
u0) =1, U(0)=0.

A series solution of this problem is given i43]. We apply FOMM withn = 7. In Tablesl and2, we display a comparison
between the results obtained by the application of FOMM witise obtained by the using the following methods:

—Exact series solutiordf].
—Adomian decomposition method ADMT].
—Block pulse operational method BPOMZ],

for the casesr = 0.5 anda = 1.5.
Example 4[41]Consider the following fractional IVP:
U2 (x) +1.3ut¥(x) + 2.6u(x) = sin(2x),  xe (0,1), (41)

subject to
u(0) = u'(0) = u”’(0) = 0.

Eq. (41) have the following series solution (sedl])

28561 g 2 4, 13 49 169 s 8 s,

uS(X)_%ooood(“L/'(4.2)X3 _5/'(4.9)’(3 +50F(5.6)X4 _I'(6.2)X5
2197 3 26 <, 52 .,
“sooredtsrea” TEree”

(42)
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Table 3: Maximum absolute error of Example
n 3 5 7 9 11 13 15

E 52.10% 20.10° 34.10% 59.1019 47.101% 16.101% 12.107%%

We apply FOMM for various values af. In Table3 we list the maximum absolute err&r of Example4 for different
values ofn, where
E = max |un(X) — us(X)],
x€[0,1]

Moreover, Figure 1 illustrates a comparison between owtiswol forn = 3,5, 7 with the series solution obtained ih1].

0.14

o - Series solutio
N n:7

n=5 //7/

-
g =3 /L
=]

0.04 ;

0074

>

Fig.1. Different solutions of Examplé.

6 Conclusion

In this paper, we have introduced a novel operational matfifractional integration of Fibonacci polynomials. This
matrix is utilized to solve fractional-order differentiafjuations. The spectral tau method is applied to convert the
fractional differential equation into a system of lineagethraic equations which can be efficiently solved. To the bes
our knowledge, this is the first time in which such operationatrix of fractional integration is employed for handling
fractional-order differential equations. Moreover, we lalieve that some other generalizations for this work can be
done to handle various ordinary differential equations &l s fractional differential equations. The illustrated
numerical examples in this paper indicate the high effigiear@ applicability of the proposed algorithm.
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