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Abstract: This paper is concerned with deriving an operational matrixof fractional-order integration of Fibonacci polynomials. As an
application of this matrix, a spectral algorithm for solving some fractional-order initial value problems is exhibited and implemented.
The key idea for obtaining the suggested spectral numericalsolutions for these equations is actually based on utilizing the developed
Fibonacci operational matrix along with the application oftau method in order to reduce the fractional-order differential equation with
its initial conditions into a system of linear algebraic equations in the unknown expansion coefficients which can be efficiently solved.
Some illustrative examples are included aiming to ascertain the efficiency and applicability of the presented algorithm. The numerical
results reveal that the proposed algorithm is easy and applicable.
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1 Introduction

Fractional calculus is an important branch of mathematicalanalysis. Several types of differential equations of
fractional-order appear in problems related to several fields of applied science such as fluid mechanics, biology,
engineering, electromagnetism and physics [1, 2]. So, due to the frequent importance of such equations, there is a great
focus on obtaining solutions of them through different techniques. Solving fractional-order differential equations
analytically is not always possible, and therefore the employment of different numerical techniques for solving such
equations is necessary.

There are extensive studies in the numerical methods for solving various kinds of fractional-order differential equations.
Some of the proposed numerical methods for solving such equations are: the Adomian’s decomposition method [3, 4];
finite difference method [5, 6]; Taylor collocation method [7], variational iteration method [8], higher order numerical
methods [9]. The approach of utilizing operational matrices for solving fractional-order fractional differential equations
is followed in a variety of papers. For example, Saadatmandiand Dehghan in [10] introduced and used a Legendre
operational matrix of fractional derivatives for solving some fractional-order differential equations. Also, Rostamy et al.
in [11] introduced a Bernstein operational matrix of fractional derivatives for handling these equations.

The employment of spectral methods (see, for instance, Boyd[12] and Canuto et al. [13]) is powerful in handling various
types of differential equations. Spectral methods are a class of techniques in which the numerical solution is expressed in
terms of certain ”basis functions”, which may be expressed in terms of various polynomials, which are often orthogonal.
These methods take on a global approach unlike finite elementmethods which use a local approach, and this of course
leads to excellent error properties, and high convergence.Spectral methods have been used by many authors for solving
ordinary, partial and fractional differential equations.For some articles concerning spectral solutions of ordinary
differential equations, see for example [14–17], and for some other articles concerning solutions of fractional-order

∗ Corresponding author e-mail:youssri@sci.cu.edu.eg

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/020207


142 Y. H. Youssri, W. M. Abd-Elhameed: Fibonacci polynomial solutions for...

differential equations, see for example [18,19].

As an alternative approach to differentiating solution expansions is to integrate the differential equationq times, whereq
is the order of the equation. This approach has the advantagethat the resulted algebraic systems are cheaper in solving
than those obtained by the differentiated forms. This approach is followed in a number of papers. For example,
Abd-Elhameed et al. in [20] and Doha et al. in [21] solved the integrated forms of third- and fifth-order elliptic
differential equations using general parameters generalized Jacobi polynomials. Also, this approach is followed in
solving fractional-order differential equation, see for example [22].

The operational matrices of derivatives of various orthogonal polynomials are widely used for solving various kinds of
differential equations. To be more precise, these operational matrices are used for solving both linear and nonlinear
ordinary and fractional differential equations. For example [23–29].

The Fibonacci polynomials and their related polynomials are of interest. In addition, the celebrated Fibonacci numbers
and golden ratio appear in several applications in different fields of applied science. For properties and applicationsof
Fibonacci polynomials and some other generalizations, onecan be refereed to the important book of Koshy [30]. Many
authors were interested in investigating Fibonacci polynomials and their generalizations from a theoretical point ofview,
see, for example [31–33], however the use of these polynomials numerically is rare.For example, the authors in [34]
employed these polynomials for solving some boundary valueproblems through the collocation method. Also, a
collocation tau method using Fibonacci technique is followed in [35] for handling some ordinary differential equations.

The main aim of this article is to obtain new numerical solutions of some types of fractional-order initial value problems
(IVPs). An operational matrix of fractional integration ofFibonacci polynomials is constructed, and then it is used
together with the application of the spectral tau method forobtaining the proposed numerical solutions for some
fractional-order differential equations. The paper is organized as follows. Section 2 is devoted for presenting some
fundamental definitions of the fractional calculus and alsosome relevant properties of Fibonacci polynomials. In Section
3, the operational matrix of the fractional integration of Fibonacci polynomials in Caputo sense is constructed. In Section
4, we present and implement a numerical algorithm for solving fractional-order linear differential equations based on
utilizing the introduced operational matrix along with theapplication of the spectral tau method. In Section 5, the
proposed algorithm is tested through some numerical examples. A final conclusion is given in Section 6.

2 Preliminaries and Used Formulae

2.1 Some definitions and properties of fractional calculus

In this section, we recall some well-known definitions and preliminary facts of the fractional calculus.

Definition 1.The Riemann-Liouville fractional integral operator Iα of order α on the usual Lebesgue space L1[0,1] is
defined as

Iα f (t) =

{

1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ)dτ, α > 0;

f (t), α = 0.
(1)

The operatorIα satisfies the following identities:

(i) Iα Iβ = Iα+β
, (ii) Iα Iβ = Iβ Iα

, (2)

(iii )Iα (t −a)ν =
Γ (ν +1)

Γ (ν +α +1)
(t −a)ν+α

, (3)

where f ∈ L1[0,1], α,β > 0, andν >−1.

Definition 2.The Riemann-Liouville fractional derivative of orderα > 0 is defined by

(Dα f )(t) =

(

d
dt

)n

(In−α f )(t), n−16 α < n, n∈ N. (4)

For more details on the mathematical properties of fractional derivatives and integrals, see for example, [36].
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2.2 Some relevant properties of Fibonacci polynomials

The Fibonacci polynomials can be defined by many ways. For example, they can be generated with the aid of the
recurrence relation

Fn+2(x) = xFn+1(x)+Fn(x), n≥ 0,

with the initial values:
F0(x) = 0, F1(x) = 1,

and they also can be generated by the following explicit form

Fn(x) =

(

x+
√

x2+4
)n

−
(

x−
√

x2+4
)n

2n
√

x2+4
,

or by the following power form representation:

Fn(x) =
⌊ n−1

2 ⌋
∑
j=0

(

n− j −1
j

)

xn−2 j−1
. (5)

The derivatives of the Fibonacci polynomials can be given interms of their corresponding original polymelias. For
example, Falcon and Plaza [37] found the following relation for the first derivative of Fibonacci polynomials

F
′
i+1(x) =

⌊ i−1
2 ⌋

∑
m=0

(−1)m(i −2m)Fi−2m(x), i ≥ 1, (6)

where the notation⌊z⌋ denotes the largest integer less than or equal toz.
Also, the following inversion formula to (5) in which the polynomialsxi is expressed in terms of the Fibonacci polynomials
is of interest (see, Falcon and Plaza [37])

xm =
⌊m

2 ⌋
∑
i=0

(−1)i
[(

m
i

)

−
(

m
i −1

)]

Fm−2i+1(x), m≥ 0. (7)

In what follows, it is more convenient to write the power formrepresentation of the Fibonacci polynomials (5) and its
inversion formula (7) in the following two forms:

Fi(x) =
i

∑
k=0

(k+i) odd

(

i+k−1
2

)

!

k!
(

i−k−1
2

)

!
xk
, i ≥ 0, (8)

and

xm = m!
m+1

∑
k=1

(k+m) odd

(−1)
m−k+1

2 k
(

m−k+1
2

)

!
(

m+k+1
2

)

!
Fk(x), m≥ 0. (9)

3 Fibonacci Operational Matrix of Integration

Let y(x) be a square Lebesgue integrable function on(0,1), and assume that it can be expressed in terms of the linearly
independent Fibonacci polynomials as:

y(x) =
∞

∑
k=1

ak Fk(x),

and letyn(x) be an approximation toy(x), that is

y(x)≈ yn(x) =
n+1

∑
k=1

ak Fk(x) = AT Φ(x), (10)
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where
AT = [a1,a2, . . . ,an+1], (11)

and
Φ(x) = [F1(x),F2(x), . . . ,Fn+1(x)]

T
. (12)

Now, we state the following lemma, from which the operational matrix of integration of Fibonacci polynomials can be
introduced.

Lemma 1.The following integral formula holds (see [37])

∫ x

0
Fi+1(t)dt =

1
i +1

{

Fi+2(x)+Fi(x), if i even,
Fi+2(x)+Fi(x)−2, if i odd.

(13)

The integral vector of the vectorΦ(x) can be written in the form

∫ x

0
Φ(t)dt ≈ G(1)Φ(x), (14)

whereG(1) is the(n+1)× (n+1) operational matrix of integration whose nonzero elements can be written explicitly as
follows:

gi j =



























1
i+1, j = i +1,
1

i+1, j = i −1, i ≥ 2,
−2
i+1, j = 0, i odd, i ≥ 3,
−1
2 , j = 0, i = 1,

0, otherwise.

For example ifn= 4, then

G(1) =













0 1 0 0 0
− 1

2 0 1
2 0 0

0 1
3 0 1

3 0
− 1

2 0 1
4 0 1

4
0 0 0 1

5 0













5×5

.

3.1 A Fibonacci Operational Matrix of Fractional Integration

The main purpose of this section is to find the operational matrix of fractional integration of Fibonacci polynomials. From
relation (14), it is easy to see that, for every positive integerr, we have

J(r) Φ(x)≈ G(r) Φ(x), (15)

whereJ(r) is the repeatedr times integration ofΦ(x).
Now, we are going to state and prove an important theorem concerning the operational matrix of fractional integration of
Fibonacci polynomials.

Theorem 1.Let Φ(x) be the Fibonacci polynomial vector defined in Eq.(12). For everyα > 0, one has

Iα Φ(x) = xα G(α) Φ(x), (16)

whereG(α) is the(n+1)× (n+1) Fibonacci operational matrix of fractional integration oforderα, and it is defined by:

G(α) =
(

g(α)
i, j

)

, (17)

where

g(α)
i, j =

{

ξα(i, j), i ≥ j;
0, otherwise.
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and

ξα(i, j) = j!
i

∑
k=1

(i+k)odd,( j+k)odd

(−1)
k− j+1

2 k!
(

i+k−1
2

)

!
(

i−k−1
2

)

!
(

k− j+1
2

)

!
(

k+ j+1
2

)

! Γ (k+1+α)
. (18)

Explicitly, G(α) has the following form

G(α) =



















0 0 0 . . . 0
. . . .. . . .. . . .

ξα(⌈α⌉,1) ξα(⌈α⌉,⌈α⌉) 0 . . . 0
. . . .. . . .. . . .

ξα(i,1) ... ξα(i, i) . . . 0
. . . .. . . .. . . .

ξα(n+1,1) ξα(n+1,2) ξα(n+1,3) . . . ξα(n+1,n+1)



















. (19)

Proof.If we apply the integral operatorIα to Eq. (8), and make use of the identity (3), then we get

Iα Fi(x) =
i

∑
k=1

(k+i) even

(

i+k
2

)

!
(

i−k
2

)

! Γ (k+1+α)
xk+α

, (20)

and accordingly Eq. (9) enables one to turn Eq. (20) into the form

Iα Fi(x) = xα
i

∑
j=1

ξα(i, j)Fj (x), (21)

whereξα(i, j) is given in (18). We rewrite Eq. (21) in the following vector form:

Iα Fi(x) = xα [ξα(i,1),ξα(i,2), . . . ,ξα(i, i),0,0, . . . ,0] Φ(x), 1≤ i ≤ n+1. (22)

Finally, Eq. (22) leads to the desired result.

4 Spectral Solutions for Fractional-Order Differential Equation Through the Fibonacci
Operational Matrix

In this section, we describe in detail how the operational matrix of fractional integration of Fibonacci polynomials can be
employed for solving linear multi-order fractional initial value problems.
Consider the following linear fractional differential equation:

u(α)(x) =
k−1

∑
i=1

εi u
(αi)(x)+ εk u(x)+ f (x), x∈ (0,1), (23)

subject to the following initial conditions:

u(r)(0) = ar , r = 0,1, . . . ,m−1, (24)

whereεi are known constants andα ∈ (m−1,m], 0<α1 <α2 < · · ·<αk−1 <α, andu(α)(x) =Dα u(x) is the Riemann-
Liouville fractional derivative of orderα of u(x) and f (x) is the source function. For the existence and uniqueness of the
solution of Eq. (23), see [38]. Now apply the operatorIα to Eq. (23) to get

u(x)−
m−1

∑
j=0

u( j)(0+)
x j

j!
=

k−1

∑
i=1

εi I
α−αi

[

u(x)−
⌈αi⌉−1

∑
j=0

u( j)(0+)
x j

j!

]

+ εk Iα u(x)+ Iα f (x). (25)

If we make use of the initial conditions (24) together with relation (3), then we get

u(x) =
k−1

∑
i=1

εi I
α−αi u(x)+ εk Iα u(x)+g(x), (26)
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where

g(x) = Iα f (x)+
m−1

∑
j=0

a j
x j

j!
+

k−1

∑
i=1

⌈αi⌉−1

∑
j=0

εi a j
x j+α−αi

Γ ( j +1+α −αi)
.

Now, if u(x) is approximated as
u(x)≈ un(x) = AT Φ(x), (27)

then based on Theorem1, the following approximations can be obtained

Iα u(x)≈ xα AT G(α) Φ(x), (28)

and
Iα−αi u(x)≈ xα−αi AT G(α−αi) Φ(x), (29)

and therefore the residual of (26) is given by

R(x) = AT Φ(x)− εk xα AT G(α) Φ(x)−
k−1

∑
i=1

εi xα−αi AT G(α−αi) Φ(x)−g(x). (30)

Now, the application of the spectral tau method to (26) (see, for example [16]) leads to

∫ 1

0
R(x)Fi(x)dx= 0, i = 1,2, . . .n+1. (31)

Now Eqs. (31) generate a linear algebraic system in the unknown expansion coefficientsai of dimension(n+ 1). This
system can be solved through any suitable solver such as the Gaussian elimination procedure, and consequently the
approximate solution can be obtained.

5 Numerical Examples

In this section, we illustrate some numerical examples accompanied with comparisons to ascertain the efficiency of the
proposed algorithm for handling multi-term fractional-order IVPs. In all examples, we apply the Fibonacci operational
matrix method (FOMM) which is implemented in the previous section.

Example 1.[39] Consider the linear fractional-order IVP:

u(
3
2 )(x)+3u(x) = 3x3+

8√
π

x
3
2 , x∈ (0,1), (32)

subject to the initial conditions
u(0) = u′(0) = 0, (33)

with the exact smooth solutionu(x) = x3. If we apply the integral operatorI
3
2 to both sides of Eq. (32) and make use of

the initial conditions, then we get

u(x)+3I
3
2 u(x) = x3+

64
105

√
π

x
9
2 . (34)

The residual of Eq. (34) is given by

R(x) = AT Φ(x)+3x
3
2 AT G( 3

2) Φ(x)− x3− 64
105

√
π

x
9
2 ,

where the matrixG( 3
2) is given by

G( 3
2) =

4
3
√

π









1 0 0 0
0 2

5 0 0
27
35 0 8

35 0
0 52

105 0 16
105









.
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The application of tau method to Eq. (34) leads to the following linear system of four equations:

∫ 1

0
R(x)Fi(x)dx= 0, i = 1,2,3,4. (35)

The solution of this system yields
a0 = 0, a1 =−2, a3 = 0, a4 = 1,

and consequently

u3(x) = (0,−2,0,1).
(

1,x,1+ x2
,2x+ x3)T

= x3
,

which is the exact solution.

Example 2.[40] Consider the linear fractional-order IVP:

u(2)(x)+3u(1)(x)+2u(0.1379)(x)+u(0.0159)(x)+5u(x) = f (x), x∈ (0,1), (36)

subject to the initial conditions
u(0) = 1, u′(0) = 0, (37)

where f (x) is chosen such that the exact solution of (36) is u(x) = 1+
x2

2
. If we apply the operatorI2 to both sides of Eq.

(36), and make use of the initial conditions, then the followingequation is obtained

u(x)+3I (1)u(x)+2I (1.862)u(x)+ I (1.9841)u(x)+5I (2)u(x) = g(x), (38)

where

g(x) = 6+3x+1.13137x1.8621+0.507365x1.9841+3x2+0.5x3+0.102352x3.8621+0.0426753x3.9841
.

The residual of Eq. (38) is given by

R(x) = AT Φ(x)+3AT G(1) Φ(x)+2x1.8621AT G(1.8621)Φ(x)

+ x1.9841AT G(1.9841)Φ(x)+5AT G(2) Φ(x)−g(x),

where the involved matrices can be written explicitly as

G(1) =





0 1 0
− 1

2 0 1
2

0 1
3 0



 , G(1.1862) =





0.565684 0 0
0 0.197647 0

0.463332 0 0.102352



 ,

G(2) =





− 1
2 0 1

2
0 − 1

3 0
− 1

6 0 1
6



 , G(1.9841) =





0.507365 0 0
0 0.170023 0

0.422014 0 0.0853506



 .

The application of tau method to (38) yields the system

∫ 1

0
R(x)Fi(x)dx= 0, i = 1,2,3, (39)

which can be solved to give
a0 =

1
2, a1 = 0, a3 =

1
2,

and consequently

u2(x) =
(1

2,0,
1
2

)

.
(

1,x,1+ x2)T
= 1+

x2

2
,

which is the exact solution.
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Table 1: Comparison between different solutions of Example3 for α = 0.5
x [42] BPOM [43] Exact [41] ADM FOMM

0.1 0.039754 0.039750 0.039874 0.039750
0.2 0.157043 0.157036 0.158512 0.157035
0.3 0.347373 0.347370 0.353625 0.347369
0.4 0.604699 0.604695 0.622083 0.604695
0.5 0.921768 0.921768 0.960047 0.921767
0.6 1.290458 1.290457 1.363093 1.290456
0.7 1.702007 1.702008 1.826257 1.702008
0.8 2.147286 2.147287 2.344224 2.147286
0.9 2.616998 2.617001 2.911278 2.617000
1.0 3.101902 3.101906 3.521462 3.101905

Table 2: Comparison between different solutions of Example3 for α = 1.5
x [42] BPOM [43] Exact [41] ADM FOMM

0.1 0.033510 0.033507 0.036478 0.033507
0.2 0.125226 0.125221 0.140640 0.125220
0.3 0.267611 0.267609 0.307485 0.267608
0.4 0.455439 0.455435 0.533284 0.455435
0.5 0.684336 0.684335 0.814757 0.684334
0.6 0.950395 0.950393 1.148840 0.950392
0.7 1.249959 1.249959 1.532571 1.249960
0.8 1.579558 1.579557 1.963033 1.579558
0.9 1.935832 1.935832 2.437331 1.935831
1.0 2.315526 2.315526 2.952567 2.315526

Example 3.[41–43] Consider the fractional-order IVP:

u(2)(x)+u(α)(x)+u(x) = 8, x∈ (0,1), α ∈ (0,2), (40)

subject to the initial conditions
u(0) = 1, u′(0) = 0.

A series solution of this problem is given in [43]. We apply FOMM withn= 7. In Tables1 and2, we display a comparison
between the results obtained by the application of FOMM withthose obtained by the using the following methods:

–Exact series solution [43].
–Adomian decomposition method ADM [41].
–Block pulse operational method BPOM [42],

for the casesα = 0.5 andα = 1.5.

Example 4.[41]Consider the following fractional IVP:

u(2.2)(x)+1.3u(1.5)(x)+2.6u(x) = sin(2x), x∈ (0,1), (41)

subject to
u(0) = u′(0) = u′′(0) = 0.

Eq. (41) have the following series solution (see, [41])

us(x) =
28561

3600000
x6+

2
Γ (4.2)

x3.2− 13
5Γ (4.9)

x3.9+
169

50Γ (5.6)
x4.6− 8

Γ (6.2)
x5.2

− 2197
500Γ (6.3)

x5.3− 26
5Γ (6.4)

x5.4+
52

5Γ (6.9)
x5.9

.

(42)
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Table 3: Maximum absolute error of Example4
n 3 5 7 9 11 13 15

E 5.2 .10−4 2.0 .10−6 3.4 .10−8 5.9 .10−10 4.7 .10−12 1.6 .10−14 1.2 .10−16

We apply FOMM for various values ofn. In Table3 we list the maximum absolute errorE of Example4 for different
values ofn, where

E = max
x∈[0,1]

|un(x)−us(x)|,

Moreover, Figure 1 illustrates a comparison between our solution forn= 3,5,7 with the series solution obtained in [41].

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

u
H
x
L

n=3

n=5

n=7

Series solution

Fig.1.Different solutions of Example4.

6 Conclusion

In this paper, we have introduced a novel operational matrixof fractional integration of Fibonacci polynomials. This
matrix is utilized to solve fractional-order differentialequations. The spectral tau method is applied to convert the
fractional differential equation into a system of linear algebraic equations which can be efficiently solved. To the best of
our knowledge, this is the first time in which such operational matrix of fractional integration is employed for handling
fractional-order differential equations. Moreover, we dobelieve that some other generalizations for this work can be
done to handle various ordinary differential equations as well as fractional differential equations. The illustrated
numerical examples in this paper indicate the high efficiency and applicability of the proposed algorithm.
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