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Abstract: In this paper, mathematical investigation has been made to study the effect of double exponentially weighted moving average
(DEWMA) model on economic design ofX control chart for non-normal population. Formulae are derived for calculating the value
of n and h when the characteristics of an item posses DEWMA model. The sample mean of DEWMA model has been represented by
first four terms of an Edgeworth series. A numerical example is given to verify the performance of DEWMA model in the presence
of non-normality. The DEWMA charts working together with non-normality affects the control chart scheme when small to moderate
shifts in the mean of the controlled parameter are expected.It is found that when shifts are uncertain the optimal designfor DEWMA
chart should be more conservative.
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1 Introduction

Statistical Process Control (SPC) is defined as a set of statistical methods used widely to scrutinize and improve the
quality and efficiency of industrial processes and service operations. As quality has become a crucial factor in global
market competition, statistical process control (SPC) techniques are becoming significant in both manufacturing and
service industries that aim at 6 excellence. With modern measurement and inspection technologies, It is common to
collect large volumes of data from individual units usuallyon very short time intervals. Such nearly continuous
measurement unavoidably results in data that tend to be non-normally distributed. However, most existing SPC
techniques were not designed for such environments. It is known that conventional SPC techniques are affected by
skewed data. Specifically, false alarm rates are so high thattrue alarms are often ignored. Since the primary purpose of
SPC is to detect quickly unusual sources of variability so that their root cause can be properly addressed, data skewness
has severe adverse impacts on the economic benefits of implementing SPC. For such purpose control chart is one of the
most helpful techniques in SPC. The ShewhartX chart has been considered to be the best statistical tool in process
surveillance. However, this chart has some limitations towards the detection of small and moderate process mean shifts.
Therefore, a popular control chart used to detect and identify small shifts in a process mean is the EWMA given by
Roberts [9]. The attempt to increase the sensitivity of EWMA control chart to detect small shifts and drift in a process, a
double EWMA (DEWMA) control chart was developed by Shamma and Shamma [11]. Zhang [15] has conducted
extensive studies on DEWMA control charts for the mean. Likemost commonly used control charts, the traditional
EWMA and DEWMA control charts for monitoring process means were developed under the assumption of normality.
Further research works have been conducted to suggest more and more effective tools for statistically monitoring the
quality of products and processes. Recently, many researchers have contributed to a wide variety of control charts to
improve process monitoring, such as Saghaei et al. [10], Amiri et al. [4] and Lee et al. [8]. Simulation studies on the
robustness of an EWMA control chart for process mean monitoring have been conducted by Borror et al. [5].

Economic design of control charts is used to determine various design parameters that minimize total economic
costs. These charts are the fundamental statistical tool for evaluating process concert, supervision process ability,
monitoring processes and getting better processes. The control chart is used to detect the occurrence of assignable cause.
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The design of a control chart, as is well known, has statistical and economic consequences; both are affected by the
choice of the control chart or design parameters. These include the sample size, the control limits and the time interval
between samples. A variety of costs is associated with control chart usage and is usually broken down into three main
categories. These are the costs of allowing non-conformingunits, cost of sampling and testing, and correcting the
assignable causes. Economic design (ED) of a control chart involves finding the design parameters that minimise the
total cost associated with maintaining the control of the process. Unfortunately, economic designs have weaknesses, as
Woodall [13] has noted. More recently, Akhavan et al. [[1,2] presented the ESD of the VSIX control charts for
correlated and non-normal data. They used the Burr distribution to model for the various non-normal situations and
implemented Yang and Hancock’s [14] model to take into custody the correlation structure. Furthermore, Akhavan et al.
[3]studied the ESD of the VSIX control charts in the presence of the multiple assignable causes with non-normal
population and correlated data. The effect of lot size of production on the quality of the product may also be significant.
If it shifts to an out - of - control state at the beginning of the production run, the whole lot will contain more faulty
items. Hence it is better to decrease the production cycle todecrease the fraction of defective items and, thus recover
output quality. On the other hand, reduction of the production cycle may result in an increase in cost due to frequent
setups. A balance must be maintained so that the total cost isminimized. It is assumed that that the cost of maintaining
the equipment increases with the age, therefore, an age replacement strategy is needed to minimize the total cost of the
system, which will simultaneously improve quality controland maintenance policy. Singh et al. [12] Studies the problem
on Variables sampling plan for correlated data, Khanday andSingh [7] study the effect of Markoffs model on Economic
design ofX control charts under independent observations.

2 Duncan’s model for the cost function:

Duncan [6] obtained an approximate function for the average net income per hour of using the control chart for mean
of normal variables as:

I =V0−
ηMB+(αT/h)+ηW

1+ηB
−

b+ cn
h

, (1)

Duncans cost model indicates (i) the cost of an out-of control conditions (ii) the cost of false alarms, (iii) the cost of
finding an assignable cause and (iv) the cost of sampling inspection, evolution, and plotting. The average cost per hour
involved for maintaining the control chart is(b+cn)

h . The average net income per hour of the process under the surveillance
of the control chart for mean can be rewritten as,I =V0−L Where,

L =
ηMB+(αT/h)+ηW

1+ηB
+

b+ cn
h

, (2)

L can now be treated as the per hour cost due to the surveillance of the process under the control chart. The probability
density function for non normal population is represented by the first four terms of Edgewoth series,P

′
and α ′

are
determined from the sampling distribution of mean and are written as.

P
′
= 1−Φ(ξ )+

λ3

6
√

n
φ (2)(ξ )−

λ4

24n
φ (3)(ξ )−

λ 2
3

72n
φ (5)(ξ ), (3)

α
′
= αN −αC (4)

Whereξ = (k− δ
√

n) , αc =
3λ4φ (3)(k)+λ 2

3 φ (5)(k)
36n is the non-normality correction forα

3 Derivation for optimum value of sample size n and sampling interval h:

One can determine the optimum value of sample size n and sampling interval h either by maximizing the gain
function I or by minimizing the cost function with respect ton and h, and we get,

∂L
∂n

=
(1+ηB)(ηM ∂B

∂n + T
h

∂α ′

∂n )− (ηMB+ α ′
T

h )+ηW)η ∂B
∂n

(1+ηB)2 +
c
h

(5)
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∂L
∂h

=
(1+ηB)(ηM ∂B

∂h − α ′
T

h2 )− (ηMB+ α ′
T

h +ηW)η ∂B
∂n

(1+ηB)2 −
b+ cn

h2 (6)

Where,
∂B
∂n

=−
h

P′2

∂P
′

∂n
+ c,

∂B
∂h

=
1

P′ −
1
2
+

ηh
6

and
∂α ′

∂n
= 0−

∂αc

∂n
(7)

∂α ′

∂n =
3λ4φ (3)(k)+λ 2

3 φ (5)(k)
36n2

∂P
′

∂n
=

δ
2
√

n
φ(ξ )+

1
144n2(−12λ3[δnφ3(ξ )−

√
nφ2(ξ )]+3λ4[δ

√
nφ4(ξ )+2φ3(ξ )]+λ 2

3 [δ
√

nφ6(ξ ))+2φ5(ξ )]) (8)

The solutions of the equations (5) and (6) for n and h yield therequired optimum values, and The equations (5) and
(6) can be rewritten as follows:

ηh(M−ηMB−
α ′

T
h

−ηW )
∂B
∂n

+
T
h

∂α ′

∂n
+ηB(ηM

∂B
∂n

+
T
h

∂α ′

∂n
)+ c(1+ηB)2 = 0 (9)

ηh2(M−ηMB−
α ′

T
h

−ηW)
∂B
∂h

−α
′
T (1+ηB)+η2h2MB

∂B
∂n

− (b+ cn)(1+ηB)2= 0 (10)

By assumingη to be small and noting that the optimum h is roughly of order of1√η , we neglect terms containing

ηWc , and α
′
T

h and the terms equating higher powers ofη . The equations (9) and (10) are simplified and put in the
following form

−
ηh2M

P′2

∂P
′

∂n
−ηα

′
T +

T
h
.
αc

n
+ c = 0, (11)

ηMh2(
1

P′ −
1
2
)− (α

′
T + b+ cn) = 0 (12)

From the equation (12) we get

h = [
α ′

T + b+ cn

ηM( 1
P′ − 1

2)
]

1
2 (13)

By eliminating h from the equation (11), we get,

−
α ′

T + b+ cn

P′2( 1
P′ − 1

2)

∂P
′

∂n
−ηα

′
T +

Tαc

n
[

ηM( 1
P′ − 1

2)

α ′T + b+ cn
]

1
2 + c = 0 (14)

The values of n for which the equation (14) satisfy yield us the required optimum value of sample size n. Substituting
this value of n in equation (13), we find the optimum value of the sampling interval h.

4 Derivation of the optimum values of sample size n and sampling interval h under DEWMA:

Suppose that a process is on targetµ initially and successive measurementsX t , (t = 1,2,3,) are taken it may be
average of several measurements taken at time t to check whether there is a shift from the target. To use a control chart
based on the statistic

Yt = λ Xt +(1−λ )Yt −1 and Zt = λYt +(1−λ )Zt −1 (15)

Such that 0< λ < 1 and Y0 = Z0 = µ0

Zt = λ 2
t

∑
j=1

(t − j+1)(1−λ )t− jX j + tλ (1−λ )tY0+(1−λ )tZ0 (16)
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where E(Zt ) = µ0 (17)

σ2
Zt = λ 4(

1+(1−λ )2(1−λ )2t +(2t2+2t −1)(1−λ )2t+2− t2(1−λ )2t+4

(1− (1−λ )2)3 )σ0 (18)

The control limits for DEWMA control chart are

UCL = µ0+Lσ
√

σ2
Zt , CL = µ0, and LCL = µ0−Lσ

√
σ2

Zt (19)

Where L is as defined. For large values of L, the control limitsbecome

UCL = µ0+Lσ

√

λ (2−2λ +λ 2

(2−λ )3 ,CL = µ0 and LCL = µ0−Lσ

√

λ (2−2λ +λ 2

(2−λ )3 (20)

Assuming thatXt is drawn independently from a normal distribution with varianceσ2 so that t is sufficiently large.
One of the disturbing thing here is thatλ is quite arbitrary and lies between 0 and 1. Suppose that a machine whose
performance can be effectively represented by a single unknown qualityµ is inspected regularly to see whether the quality
of performance is deteriorated. The successive performance levelµ1,µ2,µ3, ...,µt are tracked by the observations x1 , x2,
..., xt The operation continues until a decision is made to overhaul it in which case the level is set to zero instantaneously
and the whole sequence begins again. This resetting after overhaul may be subject to error and so it is assumed thatµ0 is

N(0, σ2

n ) and each subsequent state of repair is drawn independently from this distribution. Thus we get

E(Zt) = µ0 and V (Zt) =
σ2

n
λ (2−2λ +λ 2)

(2−λ )3 =
σ2

n
g2, where g2 =

λ (2−2λ +λ 2)

(2−λ )3 (21)

The corresponding measures of skewness and kurtosis for DEWMA are found out to beλ3g andλ4g2 respectively. So
for the DEWMA model, the probability density function for non-normal population represented by the first four terms of
an Edgeworth series is

P
′

e = 1−Φ(ξe)+
gλ3

6
√

n
φ (2)(ξe)−

g2λ4

24n
φ (3)(ξe)−

g2λ 2
3

72n
φ (5)(ξe), (22)

α
′

e = αNe −αce,ξe =
k− δ

√
n

g
(23)

αNe = 2Φ(−k
g ) , αCe =

3λ4g2φ (3)(k)+g2λ 2
3 φ (5)(k)

36n
For DEWMA model, the equation (5) and (6) will reduce in following form

∂L
∂n

=
(1+ηB)(ηM ∂B
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By solving the equation (24) and (25) we get

h = [
α ′

eT + b+ cn

ηM( 1
P′

e
− 1

2)
]

1
2 (27)

−
α ′

eT + b+ cn

P′2
e ( 1

P′
e
− 1

2)

∂P
′

e

∂n
−ηα

′

eT +
T αc

n
[

ηM( 1
P′

e
− 1

2)

α ′
eT + b+ cn

]
1
2 + c = 0 (28)

The values of n for which the equation (28) satisfy yield us the required optimum value of sample size n. Substituting
this value n in equation (27), we find the optimum value of the sampling interval h under non normality for DEWMA
model.

5 Numerical illustration and Conclusion:

In order to illustrate the result we take k=2.0, 2.5, 3.0,δ=1.0, 1.5, 2.0,λ3= -0.5, 0.0, 0.5,λ4 = -0.5, 0.0, 1.0, 2.0,η =0.01,
M=100, W=25, T=50, C=0.05, D=2, b=0.5, c=0.1 andλ =1, 0.8, 0.6 and 0.2 to determine the optimum values of sample
size and sampling interval. The values of n and h are presented in Tables 1 to 4., it is clearly seen that for given k and the
sample size n and sampling interval h decrease with the increase in the values of , on the other hand the sample size n
decreases with the decrease of k, while the sampling interval h increases with decreasing k. When the rate of occurrences
of assignable cause is fixed, the value of sample size and sampling interval are different for different values of (shifts).
The effect of non-normality is more serious for DEWMA model for different parameters. Results show that in general,
the in-control ARL performances of DEWMA control charts were more robust. The degree of robustness of DEWMA
control chart to non-normality increases for smaller values of smoothing parameter. Thus the performance of DEWMA is
conservative and is recommended as it performs better results than that of EWMA model for smaller shifts. The DEWMA
chart working together with non-normality affects the control chart scheme when small shifts to moderate shifts in the
mean of the controlled parameter are expected. Thus we conclude that the DEWMA model is more serious under non-
normality when the shifts are certain and large. For economic point of view DEWMA chart performs better when there
are spoiled data thus we recommend DEWMA model under non-normality.

Table 1: Values of optimal sample size n and sampling interval h underDEWMA for λ = 1.

6 lxicon of parameters and variables:

V0= the rate per hour at which income accrues from operation of the process is in control and process average isµ
V1=the rate per hour at which income accrues from operation of the process when process is not in control and process

average isµ ′
= µ + δσ ,
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Table 2: Values of optimal sample size n and sampling interval h underDEWMA for λ = 0.8.

Table 3: Values of optimal sample size n and sampling interval h underDEWMA for λ = 0.6.

Table 4:Values of optimal sample size n and sampling interval h underDEWMA for λ = 0.2.
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M= V0 - V0
η = the average number of times the assignable cause occur within an interval of time, starting in a state of control at

time t=0, the probability that the process will still be in control at timet1 is expηt1,
B=ah+Cn+D
α = ( 1

P − 1
2 +

ηh
12 )

h= the interval between samples measured in hours,
e = the rate at which the time taken between the sample and plotting of a point on theX chart increases with the sample

size n.
Cn= the time required to take and inspect a sample of size ,
D= average time taken to find the assignable cause after a point plotted on the chart falls outside the control limits,
P= Probability of detecting an assignable cause when it exists,

=
∫

µ+ kσ√
n

∝
g( x

µ ′ g( x
µ ′ )dx +

∫

∝

µ− kσ√
n

g( x
µ ′ g( x

µ ′ )dx

=1 - Φ(k− δ
√

n)
Whereg( x

µ ′ ) is the density function ofx when the true meanµ andΦ(x) is the normal probability.

α= probability of wrongly indicating the presence of assignable cause.

=
∫

µ+ kσ√
n

µ− kσ√
n

g( x
µ ′ )dx =2Φ(−k)

T=The cost per occasions of looking for an assignable cause when no assignable cause exists,
W= the average cost per occasion of finding the assignable cause when it exist,
b=per sample cost of sampling and plotting, that is independent of sample size,
and c = the cost per unit of measuring an item in a sample.
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