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Abstract: In this paper, consider dual to ratio estimator for estimating mean using auxiliary information on both occasions in successive
sampling scheme. Dual to ratio estimators have been developed by Srivenkataramana (1980) under simple random sampling. Using
this estimator under successive sampling scheme, the bias and mean squared error are obtained upto the first order of approximation
and show theoretically that the proposed estimator is more efficient than the Cochran’s estimator using no auxiliary variable and simple
mean per unit estimator. Optimum replacement strategy is also discussed. Results have been justified through empiricalinterpretation.
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1 Introduction

Now a days, it is often seen that sample surveys are not limited to one time inquiries. A survey carried out on a finite
population is subject to change overtime if the value of study character of a finite population is subject to change (dynamic)
overtime. A survey carried out on a single occasion will provide information about the characteristics of the surveyed
population for the given occasion only and can not give any information on the nature or the rate of change of the
characteristics over different occasions and the average value of the characteristics over all occasions or most recent
occasion. A part of the sample is retained being replaced forthe next occasion ( or sampling on successive occasions,
which is also called successive sampling or rotation sampling).

The successive method of sampling consists of selecting sample units on different occasions such that some units are
common with samples selected on previous occasions. If sampling on successive occasions is done according to a specific
rule, with replacement of sampling units, it is known as successive sampling. Replacement policy was examined by Jessen
(1942) who examined the problem of sampling on two occasions, without or with replacement of part of the sample in
which what fraction of the sample on the first occasion shouldbe replaced in order that the estimator ofȲ may have
maximum precision. Yates (1949) extended Jessen’s scheme to the situation where the population mean of a character
is estimated on each of(h > 2) occasions from a rotation sample design. These results weregeneralized by Patterson
(1950) and Narain (1953), among others. Rao and Mudhdkar (1983) and Das (1982), used the information collected on
the previous occasions for improving the current estimate.Data regarding changing properties of the population of cities or
counties and unemployment statistics are collected regularly on a sample basis to estimate the changes from one occasion
to the next or to estimate the average over a certain period. An important aspect of continuous surveys is the structure of
the sample on each occasion. To meet these requirements, successive sampling provide a strong tool for generating the
reliable estimates at different occasions.

Sen (1971) developed estimators for the population mean on the current occasion using information on two auxiliary
variables available on previous occasion. Sen (1972, 1973)extended his work for several auxiliary variables. Singhet.al
(1991) and Singh and Singh (2001) used the auxiliary information on current occasion for estimating the current
population mean in two occasions successive sampling and Singh (2003) extended his work forh−occasions successive
sampling. Feng and Zou (1997) and Biradar and Singh (2001) used the auxiliary information on both the occasions for
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estimating the current mean in successive sampling. In manysituations, information on an auxiliary variate may be
readily available on the first as well as the second occasions; for example, tonnage (or seat capacity) of each vehicle or
ship is known in survey sampling of transportation and number of beds in hospital surveys.

Most of the studies related to dual to ratio estimators have been developed by Srivenkataramana (1980). He considered,
the relationship between the response y and the subsidiary variate x, is linear through the origin and variance of y is
proportional to x. It is assumed that X is known. Motivated with the above argument and utilizing the information on
an addition auxiliary variable is available on the both occasions, the dual to ratio estimator for estimating the population
mean on current occasion in successive sampling has been proposed. It has been assumed that the additional auxiliary
variable over two occasions.

The paper is spread over ten sections. Sample structure and notations have been discussed in section 2 and section 3
respectively. In section 4, the proposed estimators have been formulated. Properties of proposed including mean square
error are derived under section 5. In section 6, optimum replacement policy is discussed. Section 7 contains comparison
of the proposed estimator with Cochran (1977) and simple mean per unit when there is no matching from the previous
occasion and the estimator when no additional auxiliary information has been used. In Section 8 and 9, the theoretical
results are supported by a numerical interpretation and give conclusion in Section 10.

2 Selection of the sample

Consider a finite populationU = (U1,U2 . . .UN) which has been sampled over two occasions. Letx andy be the study
variables on the first and second occasions respectively, further assumed that the information on the auxiliary variable z,
whose population mean is known which is closely related (positively related) tox andy on the first and second occasions
respectively available on the first as well as on the second occasion. For convenience, it is assumed that the population
under consideration is large enough. Allowing SRSWOR (Simple Random Sampling without Replacement) design in
each occasions, the successive sampling scheme as follows is carried out:

–n units which constitutes the sample on the first occasion. A random sub sample ofnm = nλ (0 < λ < 1) units is
retained (matched) for use on the second occasion.

–In the second occasionnu = nµ (= n− nm) (0 < µ < 1) units are drawn from the remaining(N− n) units of the
population. Whereµ is the fraction of fresh sample on the current occasion.

So that the sample size on the second occasion is alson (= nλ +nµ).

3 Description of Notations

The following notations in this paper.

X̄: The population mean of the study variable on the first occasion.
Ȳ: The population mean of the study variable on the second occasion.
Z̄: The population mean of the auxiliary variable on both occasions.
S2

y: Population mean square ofy.
z̄n: The sample mean based onn units drawn on the first occasion.
z̄nu: The sample mean based onnu units drawn on the second occasion.
x̄n: The sample mean based onn units drawn on the first occasion.
x̄nm: The sample mean based onnm units observed on the second occasion and common with the first occasion.
ȳnu: The sample mean based onnu units drawn afresh on the second occasion.
ȳnm: The sample mean based onnm units common to both occasions and observed on the first occasion.
ρyx: The correlation coefficient between the variablesy onx.
ρxz: The correlation coefficient between the variablesx onz.
ρyz: The correlation coefficient between the variablesy onz.
nm: The sample units observed on the second occasion and commonwith the first occasion.
nu: The sample size of the sample drawn afresh on the second occasion.
n: Total sample size.
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4 Proposed Product Ratio Estimators in Successive sampling

In this section some dual to ratio estimators using one auxiliary variable have been proposed. To estimate the population
meanȲ on the second occasion, two different estimators are suggested. The first estimator is dual to ratio estimator based
on sample of sizenu(= nµ) drawn afresh on the second occasion and is given by:

tnu = ȳnu

z̄nu
∗

Z̄
, (4.1)

wherez̄nu
∗ = (1+g)Z̄−gz̄ andg= n

N−n. The second estimator is a chain dual to ratio estimator basedon the sample of
sizenm(= nλ ) common with both the occasions and is defined as,

tnm = ȳnm

x̄∗nm

x̄n

z̄n
∗

Z̄
, (4.2)

wherex̄nm
∗ = (1+g)X̄−gx̄, x̄n

∗ = (1+g)X̄−gx̄ andg= n
N−n. Combining the estimatorstnu andtnm, the final estimator

tdr as follows

tdr = ψtnu +(1−ψ)tnm, (4.3)

whereψ is an unknown constant to be determined such thatMSE(tdr) is minimum and prove theoretically that the
estimator is more efficient than the proposed estimator by (i) Cochran (1977) when no auxiliary variables are used at any
occasion.This classical difference estimator is a widely used estimator to estimate the population meanȲ, in successive
sampling. It is given by

ȳ2
′ = φ2ȳ′2u+(1−φ2)ȳ

′
2m,

whereφ2 is an unknown constant to be determined such thatV( ˆ̄Y)opt is minimum and ¯y2u
′ = ¯y2u is the sample mean of

the unmatched portion on the second occasion and ¯y′2m = ȳ2m+b(ȳ1− ȳ1m) is based on matched portion. The variance of
this estimator is

V( ˆ̄Y)opt = [1+
√

(1−ρ2
yx)]

S2
y

2n
.

Similarly, the variance of the mean per unit estimator is given by

V(ȳ) =
S2

y

n
.

4.1 Properties oftdr

Sincetnu andtnm both are biased estimators oftdr, therefore, resulting estimatortdr is also a biased estimator. The bias
andMSEup to the first order of approximation are derived as using large sample approximation given below:

¯ynu = Ȳ(1+eȳnu
), ȳnm = Ȳ(1+eȳnm

),
x̄nm = X̄(1+ex̄nm

), x̄n = X̄(1+ex̄n),
z̄ = Z̄(1+ez̄n), z̄nu = Z̄(1+ez̄nu

)
whereeȳnu

,eȳnm
,ex̄nm

,ex̄n,ez̄n, z̄nu are sampling errors and are of very small quantities. We assume that
E(eȳnu

) = E(eȳnm
) = E(ex̄nm

) = E(ex̄n) = E(ez̄n) = E(ez̄nu
) = 0. Then for simple random sampling without replacement

for both first and second occasions, we write by using occasion wise operation of expectation as:

E(e2
ȳnu

) =
(

1
nu
− 1

N

)

S2
y,E(e

2
ȳnm

) =
(

1
nm

− 1
N

)

S2
y,

E(e2
x̄nm

) =
(

1
nm

− 1
n

)

S2
x,E(e

2
x̄n
) =

(

1
n −

1
N

)

S2
x,

E(e2
z̄n
) =

(

1
n −

1
N

)

S2
z,

E(e ¯ynu
ez̄nu

) =
(

1
nu
− 1

N

)

Syz, E(eȳnm
ex̄n) =

(

1
nm

− 1
n

)

Syx,

E(eȳnm
ex̄nm

) =
(

1
nm

− 1
n

)

Syx, E(eȳnm
ex̄n) =

(

1
n −

1
N

)

Syx,

E(eȳnm
ez̄n) =

(

1
n −

1
N

)

Syz, E(ex̄nm
ex̄n) =

(

1
n −

1
N

)

S2
x,

E(ex̄nm
ez̄n) =

(1
n −

1
N

)

Sxz, E(ex̄nez̄n) =
(1

n −
1
N

)

Sxz.

Derive the bias oftnu in lemma 4.1.

Lemma 4.1The bias of tnu denoted by B(tnu) is given by

B(tnu) =−Ȳ
(

1
nu
− 1

N

)

gρyzSySz
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Proof.Expressing (4.1) in terms ofe′s and get

tnu = Ȳ(1+eȳnu
)[(1+g)−g(1+ez̄nu

)]

= (1+eȳnu
)(1−gēznu

).

Taking expectation on both sides and ignoring higher orders,

E(tnu − Ȳ) = −Ȳg

(

1
nu

−
1
N

)

E(eȳnu
ez̄nu

)

B(tnu) = −Ȳ

(

1
u
−

1
N

)

gρyzSySz. (4.4)

The bias oftnm is derived in lemma 4.2.

Lemma 4.2The bias of tnm is denoted by B(tnm)given by

B(tnm) = Ȳ
(

1
nm

− 1
n

)

(S2
x −ρyxSySx)+

(

1
n −

1
N

)

[−gρyzSySz]

Proof.Expressing (4.2) in terms ofe′s, get

tnm = Ȳ(1+eȳnm
)(1+ex̄n)

−1(1−ge ¯xnm
)(1−gēzn).

Expanding the right hand side and neglecting the terms with power two or greater and get

tnm = Ȳ[(1+eȳnm
−ex̄n +e2

x̄n
−eȳnm

ex̄n)

(1−geȳnm
−gēzn +g2eȳnm

ez̄n)]. (4.5)

Taking expectation (4.5) on both sides,

B(tnm) = Ȳ

(

1
nm

−
1
n

)

(S2
x −ρyxSySx)+

(

1
n
−

1
N

)

[−gρyzSySz].

Using 4.1 and 4.2, derive the bias oftdr.

Theorem 4.1Bias of the estimator tdr to the first order approximation is,

B(tdr) = ψB(tnu)+ (1−ψ)B(tnm), (4.6)

where

B(tnu) = −Ȳ

(

1
u
−

1
N

)

gρyzSySz.

and

B(tnm) = Ȳ

(

1
nm

−
1
n

)

(S2
x −ρyxSySx)+

(

1
n
−

1
N

)

(−gρyzSySz).

Proof.The bias of the estimatortdr is given by

B(tdr) = E(tdr − Ȳ)

B(tdr) = ψE(tnu − Ȳ)+ (1−ψ)E(tnm− Ȳ), (4.7)

Using lemma (4.1) and (4.2) into equation (4.7), the expression for the bias of the estimatortdr as shown in (4.6)

We derive the MSE oftnu in lemma 4.3.

Lemma 4.3The mean square error of tnu denoted by M(tnu) is given by

M(tnu) = Ȳ2
(

1
nu
− 1

N

)

[

S2
y +g2S2

z −2gρyzSySz
]
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Proof.Expressingtnu in terms ofe′s, get

tnu = Ȳ(1+eȳnu
)(1−gēznu

). (4.8)

Expanding and squaring(4.8), the right hand side and neglecting the terms with power two or greater,

tnu = Ȳ(1+eȳnu
−gēznu

)2

tnu = Ȳ(1+e2
ȳnu

+g2e2
z̄nu

−2geȳnu
ez̄nu

). (4.9)

Taking expectation (4.9) on both sides and getM(tnu)

M(tnu) = Ȳ2
(

1
nu

−
1
N

)

[

S2
y +g2S2

z −2gρyzSySz
]

. (4.10)

The MSE oftnm is derived in lemma 4.4

Lemma 4.4The mean square error of tnm denoted by M(tnm) is given by

M(tnm) = Ȳ2[

(

1
nm

−
1
N

)

S2
y +

(

1
nm

−
1
n

)

(

g2Sx
2−2gρyxSySx

)

+

(

1
n
−

1
N

)

(

g2S2
z −2gρyzSySz

)

].

Proof.Expressingtnm in terms ofe’s,

tnm = Ȳ(1+eȳnm
)

{

[

(1+g)X̄−g(1+eȳnm
)X̄

]

(1+ex̄n)X̄
[(1+g)Z̄−g(1+ez̄n)Z̄]

Z̄

}

,

= Ȳ(1+eȳnm
)(1−gex̄nm

)(1−ex̄n)(1−ez̄n). (4.11)

Expanding (4.10), the right hand side and neglecting the terms with power two or greater, get

tnm = Ȳ(1+eȳnm
−gex̄n −gex̄nm

−gēzn). (4.12)

Squaring on both sides (4.11) and taking expectation,MSEof the estimatortnm upto first order of approximation as,

M(tnm) = Ȳ2[

(

1
nm

−
1
N

)

S2
y +

(

1
nm

−
1
n

)

(

g2Sx
2−2gρyxSySx

)

+

(

1
n
−

1
N

)

(

g2S2
z −2gρyzSySz

)

] (4.13)

.

Using lemma 4.3 and 4.4, we derive the MSE oftdr

Theorem 4.2The mean square error of the estimator tdr to the first order approximation is,

M(tdr) = ψ2M(tnu)+ (1−ψ)2M(tnm)+2ψ(1−ψ)Cov(tnu, tnm) (4.14)

where

M(tnu) = Ȳ2
(

1
nu

−
1
N

)

[

S2
y +g2S2

z +2gρyzSySz
]

M(tnm) = Ȳ2[

(

1
nm

−
1
N

)

S2
y +

(

1
nm

−
1
n

)

(

g2Sx
2−2gρyxSySx

)

+

(

1
n
−

1
N

)

(

g2S2
z −2gρyzSySz

)

].

and

Cov(tnu, tnm) = 0.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


54 N. Beevi : Dual to ratio estimators for mean estimation in...

Proof.The mean square error of the estimatortdr is given by

M(tdr) = E(tdr − Ȳ)2

M(tdr) = E[ψ(tnu − Ȳ)+ (1−ψ)(tnm− Ȳ)]2, (4.15)

M(tdr) = ψ2M(tnu)+ (1−ψ)2M(tnm)+2ψ(1−ψ)Cov(tnu, tnm),

using lemma (4.3) and (4.4) into the equation (4.15), the expression for theMSEof the estimatortdr as shown in (4.14)

Remark 4.3The estimators, tnu and tnm are based on two independent samples of sizes nu and nm respectively, therefore
the covariance term has been vanished.

5 Minimum Mean Square Error of t dr

To obtain the optimum value ofψ , partially differentiate the expression (4.14) with respect to ψ , and put it equal to
zero, we get

ψopt =
M(tnm)

M(tnu)+M(tnm)
(5.1)

substituting the values ofM(tnu) andM(tnm) from (4.10) and (4.13) in (5.1), get

ψopt =
(k1+ µk2)

(k1+ µ2k2)

=
µ [(k1+ µk2)]

(k1+ µ2k2)

. Substitution ofψopt from (5.1) into (4.14) gives optimum value ofMSEof tdr as:

M(tdr)opt =
M(tnm)M(tnu)

M(tnu)+M(tnm)
. (5.2)

Substituting the values ofM(tnm) andM(tnu) from (4.9) and (4.10) in (5.2), get

M(tdr)opt =
1
n

[

k2
1+ µk1k2

k1+ µ2k2

]

, (5.3)

, wherek1 = 1+g2−2gρyz, k2 = 2g(ρyx−ρyz), hereµ(= u
n) is the fraction of fresh sample drawn on the second occasion.

Again M(tdr)opt derived in equation (5.3) is the function ofµ . To estimate the population mean on each occasion the
better choice ofµ is 1 (no matching). However, to estimate the change in mean from one occasion to the other,µ should
be 0 (complete matching).

6 Replacement Policy

In order to estimatetdr with maximum precision an optimum value ofµ should be determined so as to know what fraction
of the sample on the first occasion should be replaced and minimize,M(tdr)opt in (5.3) with respect toµ , the optimum
value ofµ is obtained as,

µ̂ =
−k1±

√

k2
1+ k1k2

k2
, (6.1)

wherek1 = 1+g2−2gρyz, k2 = 2g(ρyx−ρyz). From (6.1) it is obvious that forρyz 6= ρyx two values ofµ̂ are possible,
therefore to choose a value ofµ̂ , it should be remembered that 0≤ µ̂ ≤ 1. All other values ofµ̂ are inadmissible. If
both the real values of̂µ are admissible, the lowest one will be the best choice as it reduces the total cost of the survey.
Substituting the value of̂µ from (6.1) in (5.3),

M(tdr)opt =
1
n

[

k2
1+ µ̂k1k2

k1+ µ̂2k2

]

. (6.2)
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7 Efficiency Comparisons

In this section, to comparetdr with respect to ¯y, (i) sample mean ofy, when a sample units are selected at second occasion
without any matched portion. (ii) difference estimator (Cochran 1977) when no auxiliary information is used at any
occasion, have been obtained for known values ofρyx andρyz. Since ¯y and ˆ̄Y are unbiased estimators ofȲ, their variances
for largeN are respectively given by

V(ȳ) =
S2

y

n
, (7.1)

V ˆ̄(Y)opt = [1+
√

(1−ρyx
2)]

SY
2

2n
. (7.2)

For different valuesρyx andρyz, the below shows the optimum value ofµ . That isµ̂. The percent relative efficiencies,R1

andR2 of topt with respect to ¯y and ˆ̄Y respectively, where

R1 =
V ¯(y)

M(tdr)opt
×100

and

R2 =
V ˆ̄(Y)opt

M(tdr)opt
×100.

The estimatortpr (at optimal conditions) is also compared with respect to theestimatorsV(ȳ) andV( ˆ̄Y), respectively.
Where

M(tpr)opt =
1
n

[

k2
1+ µ̂k1k2

k1+ µ̂2k2

]

(7.3)

and

µ̂ =
−k1±

√

k2
1+ k1k2

k2
, (7.4)

wherek1 = 1+g2−2gρyz, k2 = 2g(ρyx−ρyz).

7.1 Empirical Study

The expressions of the optimum value ofµ (i.e. µ̂) and the percent relative efficienciesR1 and R2 are in terms of
population correlation coefficientsρyx andρyz. The Table 7.1. shows that the values ofµ̂ , R1 andR2 for different choices
of ρyx, ρyz andµ .

Table 1: Table 7.1. optimum values ofµ and percent relative efficiencies oftdr with respect to ¯y and ˆ̄Y
ρyz ρyx

0.2 0.4 0.6 0.8
µ̂ 0.4973 0.5026 0.5081 0.5139

0.3 R1 104.66 105.82 106.98 108.19
R2 91.24 96.23 101.41 86.55
µ̂ 0.4920 0.4973 0.5028 0.5085

0.5 R1 108.14 109.17 110.50 109.89
R2 107.03 104.62 108.44 87.79
µ̂ 0.4864 0.4916 0.4972 0.5029

0.7 R1 111.18 113.03 114.29 115.62
R2 110.67 108.31 102.86 92.49
µ̂ 0.4805 0.4858 0.4913 0.4970

0.9 R1 115.79 117.06 118.38 119.76
R2 114.61 72.92 106.53 95.80
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8 Numerical Illustration

The results obtained in previous selections are now examined with the help of one natural population set of data.
Population Source: [Free access to the data by the Statistical Abstracts of the United States.]Let Y (study variable)
be the level of corn production (in per acre) and Z (auxiliaryvariate) be the dosage of fertilizer using in corn filed in 50
counties in the United states in 2007 and X be the corn production in the year 2006 in the States of United states.
Based on the above description, the values of the different required parameters for population is,
N = 50, X̄ = 139, Ȳ = 118, SY

2 = 3314.2, ρyx = 0.9827, ρyz= 0.2141, µ̂ = 0.4796, ψopt = 0.4996.

Table 2: Table 8.1. Percent Relative Efficiencies oftdr with Respect to ¯y and ˆ̄Y
f g Relative Efficiencies

0.5 1 R1 = 4018.18
R2 =2381.82

0.7 2.33 R1 = 4063.95
R2 = 2408.15

0.9 9 R1 = 4068.33
R2 = 2410.87

where

R1 =
V(ȳ)

M(tdr)opt

and

R2 =
V ˆ̄(Y)opt

M(tdr)opt
.

ρyz ρyx
-0.2 -0.4 - 0.6 -0.8

µ̂ 0.4973 0.5026 0.5081 0.5139
-0.3 R1 104.66 105.82 106.98 108.19

R2 91.24 96.23 101.41 86.55
µ̂ 0.4920 0.4973 0.5028 0.5085

-0.5 R1 108.14 109.17 110.50 109.89
R2 107.03 104.62 108.44 87.79
µ̂ 0.4864 0.4916 0.4972 0.5029

-0.7 R1 126.18 135.03 142.29 159.62
R2 135.67 142.31 159.86 192.49
µ̂ 0.4805 0.4858 0.4913 0.4970

-0.9 R1 115.79 117.06 118.38 119.76
R2 114.61 72.92 106.53 95.80
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Table 3: Table 8.2. MSE and Bias of Different Estimators.

MSE Bias |Bias|
Ȳ

M(tdr)opt = 3.2585 -734816.16 6227.255
V(ȳ) = 132.5680

V ˆ̄(Y)opt = 78.5600
M(tdr)opt =2.3275 -484314.82 4104.36
V(ȳ) = 94.6914

V ˆ̄(Y)opt =56.1143
M(tdr)opt = 1.8103 -163808.63 1388.20

V(ȳ) = 73.6500

V ˆ̄(Y)opt = 43.6440

9 Interpretations of Empirical Results of tdr

From Table 7.1., the relative efficiency is observed that thesuggested estimator is compared with mean per unit estimator
and Cochran (1977) estimator. So, the use of auxiliary information at both occasions is justified.

1.For fixed values ofρyx, the value ofR1 andR2 are increasing with increasing values ofµ and the increasingρyz.

2.The values ofR1, R2 andµ are increasing with increasing values ofρyz. This is an agreement with the results Sukhatme
et.al (1984), which justifies that higher the value ofρyx, higher the fraction of fresh sample required at the second
(current) occasion.

3.For fixed values ofρyx andρyz, there is appreciable gain in the performance of the proposed estimatortdr overȳ and ˆ̄Y
with the increasing value ofµ .

10 Conclusion

From Table 7.1. clearly seen that the value ofµ̂ (at optimum condition) also exist for both the considered populations.
Hence, it justifies that the suggested family of estimatorstdr is feasible under optimal conditions.
Tables 8.1. and 8.2. indicates that the suggested estimators tdr at optimum conditions is preferable over sample mean per
unit estimator and also performs better than the Cochran’s estimator.

Hence, it may be concluded that the estimation of mean at current using auxiliary information on both occasions in
successive sampling is highly in terms of precision and reducing the cost of survey.clearly indicates that the proposed
estimators is more efficient than simple arithmetic mean estimator and Cochran (1977) estimator. The following
conclusion can be formed from Tables 7.1. For fixedρyx, ρyxz and µ , the values ofR1 and R2are increasing. This
phenomenon indicates that smaller fresh sample at current occasion is required, if a highly positively correlated auxiliary
characters is available. That is the performance of precision of the estimates also reduces the cost of the survey.

11 Perspective

Table 7.1. clearly indicates that the suggested estimatorsis more efficient than simple arithmetic mean and Cochran (1977)
estimators. The following conclusion can be made from Table7.1. Fixedρyx, the values ofR1 andR2 are increasing while
µ̂ is decreasing with the increasing values ofρyz. This phenomenon indicates that smaller fresh sample at current occasion
is required, if a highly positively correlated auxiliary characters is available. For Fixedρyz, the values ofR1 and µ̂ are
increasing whileR2 is decreasing for initial values of the increasing values ofρyx. Thus behavior is in agreement with
Cochran (1977) results, which explains that more the value of ρyx, more fraction of fresh sample is required at current
occasion. That is the performance of precision of the estimates as well as reduces the cost of the survey.

Under the given framework (Tables 8.1.and 8.2.) tables it ispossible to reduce the bias and mean square error of
the estimator, the analytical and empirical results support the theoretical justification of the work. The estimation of
population mean on successive occasions should be encouraged as there are numerous practical situations that require the
estimate of mean at different points of time as the characters are time dependent. Hence, the proposed estimators should
be recommended for their use in practice.
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