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Abstract: This paper considers that the goal of the fund manager is to minimize the expected utility loss function, and the noises
involved in the dynamics of some wealth are fractional Brownian motions with short-range dependence. By applying Hamilton and
Lagrange multiplier, the stochastic optimal control problem is converted into a non-random optimization. Furthermore, based on de-
terministic optimal control principle, it is obtained the explicit solution of the optimal strategies via moment equations. Finally, it is
presented a simulation to analyze the dynamic behavior of the optimal portfolio strategy influenced by the orders of fractional Brownian
motions.
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1. Introduction

In a defined contribution (DC) pension plan, the financial
risk is borne by the member: contributions are fixed in ad-
vance, and the benefits provided by the plan depend on
the investment performance experienced during the active
membership and on the price of the annuity at retirement,
in the case that the benefits are given in the form of an
annuity. Therefore, the financial risk can be split into two
parts: investment risk, during the accumulation phase, and
annuity risk, focused at retirement. Recently, due to the
demographic evolution and the development of the equity
market, DC schemes have become popular in global pen-
sion market.

A successful DC scheme will deliver good annuity at
retirement, so the investment strategy for the accumula-
tion phase in DC schemes is very critical. Literature about
investment strategy of DC pension funds is prolific and
from a methodological point of view, two approaches are
exploited. The first one is stochastic control, used for the
first time by [1]. Among the recent applications of this
theory to DC pension fund profolio, see, e.g.,[2-4] pen-
sion fund portfolio, see, e.g.,[2-4]. The second method,
also called the martingale method, was developed by[5]
in the setting of complete markets and relies on the theory

of Lagrange multipliers. In related literature, see, cf.,[6].
However, these studies generally supposed the risky asset
price dynamics driven by a geometric Brownian motion
(GBM,hereafter), which implies that the volatility of risky
asset price is only a constant without considering the time-
dependent in the market.

Whereas Lvy processes and stochastic volatility mod-
els are by now standard models for stock prices, more
recently long memory processes like fractional Brownian
motion (FBM) have attracted attention by stochastic ana-
lysts and mathematical finance researchers, cf. e.g. Hu and
Oksendal[7] and references therein. For an introduction to
FBM see [8]. Certain financial time series show long mem-
ory properties as observed since the 1980s; see [9-17].

The purpose of this paper is to extend the Brownian
motion about some noises involved in the dynamics of
wealth to fractional Brownian motion (FBM) with short-
range dependence in pension fund.Instead of using the clas-
sical tool of optimal control as optimization engine (e.g.,[3]),
we convert the stochastic optimal control problem into a
non-random optimization, and try to find explicit solutions
under the minimization of the expected utility loss func-
tion.

Finally, we provide a brief numerical example in or-
der to analyze the dynamic behavior of the optimal portfo-
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lio strategy influenced by the orders of fractional Brown-
ian motions. According to simulation, we derive six points
conclusions. First, the investment trends of the assets are
consistent with the portfolio managers experience and the
conventional wisdom, i.e., during the beginning of the in-
vestment period, the fund manager realizes a more aggres-
sive investment policy in order to boost the fund. Con-
sistently, as the time approaches the deadline, a shift of
wealth from the investment in higher risky asset to lower
risky asset and riskless asset.Second, as long as one frac-
tional order decreases and the other is fixed, the propor-
tion invested in the risky asset involved in the decreased
fractional order will increase. Third, as long as one frac-
tional order increases and the other is fixed, the propor-
tion invested in the risky asset involved in the increased
fractional order will decrease.Fourth, when one fractional
order increases and the other decreases, the proportion in-
vested in the corresponding risky asset has the opposite
change.Fifth, when the two fractional orders both decrease,
the optimal proportion invested in the risky asset with the
larger fractional order will increase and the other decrease.
Sixth, when the two fractional orders both increase, the op-
timal proportion invested in the risky asset involved in the
larger fractional order will decrease and the other increase.

The rest of the paper is organized as follows: in section
2, we introduce the classical model related to the problem
of the pension fund management. In section 3, we con-
sider the extended model, and in which some of the clas-
sical Brownian motions are replaced by fractional Brow-
nian motion with Hurst parameter lower than 1

2 , referred
to as fractional Brownian motion with short-range depen-
dence. In section 4, we convert the stochastic optimal con-
trol problem into a non-random optimization, and conclude
the solution of the initial problem. Section 5 presents a
simulation and calculates the sensitivity of the fractional
orders to the optimal strategies and section 6 concludes.

2. Backgrounds on Classical Model of
Pension Fund Management

Most of pension fund management models come from Mer-
tons model[1]. Consider that the market structure consists
of two financial assets, a risk-free asset and a risky asset.
The risk-free asset (i.e., the bank account) whose price at
time t, denoted by S0(t), (t ≥ 0) the evolution of S0(t) can
be expressed as:

dS0(t) = rS0(t), (1)

where r is a constant rate of interest.
The risky asset (called ’stock’ hereafter) whose price at

time t, denoted by S1(t), the dynamics of S1(t) are given
by:

dS1(t) = S1(t)(µdt +σdW (t)), (2)

where µ and σ denote an expected instantaneous rate of
return of the risky asset and instantaneous and volatility,

respectively. W (t) is a normalized Gaussian white noise
with zero mean and unit variance (cf.[6]).

Suppose that the contribution rate of a DC pension plan
is fixed and denoted by C, the proportion invested in the
risky asset at time t is denoted by y(t) (and thus 1−y(t) is
the proportion of fund invested into the risk less asset). The
wealth x(t) at time t evolves according to the stochastic
differential equation:

dx(t)= [y(t)x(t)+(1−y(t))rx(t)+c]dt+x(t)σdW (t) (3)

where x(0) = x0, a constant number.
The aim of the pension fund management is to maxi-

mize the expected utility at the retirement time T , and then
under the condition (3), the optimal control problem can be
described by:

max
y(t)

E(u(x(T ))), (4)

The maximum principle leads to the following result
(Hamilton-Jacobi method):

max
y

{vt +[y(t)(µ −r)x+rx]vx+
1
2

y(t)2σ2x2vxx}= 0 (5)

where V (t,x) is the value function, and Vt , Vx, Vxx denote
partial derivatives of first and second orders with respect
to time and wealth, respectively.

The first order maximizing conditions for the optimal
strategy y∗(t) is:

y∗(t) =
(r−µ)Vx

σ2xVxx
. (6)

In order to obtain an explicit solution to the problem,
Devolder et al.[6] used Mertons method to choose a par-

ticular function: µ(x(T )) =
xy(T )

γ
, γ ∈ (−∞,1)/0 and the

result is
y∗(t) =

µ − r
σ2

1
1− γ

. (7)

In practice, the financial market is composed of numer-
ous assets, in the next section, we shall consider n+1 kinds
of assets, one is riskless asset and the rest are risky assets.
Furthermore, considering that some important information
may continuously influence the risky asset price volatility
in many years, for example, the information of the govern-
ment policy’s adjustment to financial market may contin-
uously influence some financial asset price’s volatility in
several years, we then assume some noises are no longer
Gaussian white noises, but rather fractional white noises
with short range dependence.

3. Pension Model with Fractional Noises

In this section, we first introduce the general properties
for the fractional Brownian motion and then provide the
optimization problem with fractional noise for risky assets.
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3.1 Background on Fraction Brownian Motion.
The basic properties of the fractional Brownian motion

defined as a fractional derivative of Gaussian White noise
can be summarized as follows (cf. [11]).

Definition 1. Let (Ω ,F,P) denote a probability space,
and a, 0 < a < 1, referred to as the Hurst parameter. The
stochastic process W (t,a), t ≥ 0 defined on this probability
space is a fractional Brownian motion ( f Bm)a of order a
if

(1) p{W (0,a) = 0}= 1
(2) for each t ∈ R+, W (t,a) is an F-measurable random

variable such that E(W (t,a)) = 0
(3) for t,τ ∈ R+,

E[W (t,a)W (τ,a)] =
σ2

2
(t2a + τ2a −|t − τ|2a) (8)

where σ2 is the variance parameter.
It follows from (8) and from the kolmogorov’s conti-

nuity criterion that, for a >
1
2

, the sample path of W (t,a)
are continuous with probability one, but nowhere differen-
tiable.

Note that from Eq.(8), for a =
1
2

, W (t,a) is a classi-
cal Brownian motion. Further comments about the frac-
tional Brownian motion can be concluded (see e.g., Ju-
marie, 2001, 2005):

(1) Unlike the semblance, the equality (8) can be sim-
ply derived form the following equation:

W (ρt,a) = ρaW (t,a), ρ > 0 (9)

(2) The ( f Bm)a can be constructed form the classical
Brownian motion:

W (t) := Γ (a+1/2)−1
∫ t

0
(t − τ)a−1/2dW (τ) (10)

which has been proposed by Mandelbrot and Van Ness
(1968), where is the well-known gamma function.

(3) Using Maruyama’ notation(see e.g.,Jumarie, 2005),
it may be useful to write

dW (t,a) = w(t)(dt)a (11)

Definition 2. Let f : R → R,x → f (x),denote a contin-
uous function, its fractional derivative of order a is defined
by the following expression (see, e.g., Jumarie, 2001).

f a(x) =
1

Γ (−a)

∫ x

0
(x−ξ )−a−1 f (ξ )dξ , a < 0 (12)

For a positive a, one will set

f a(x) = ( f a−n)n, n−1 < a < n (13)

Under this definition, Eqs.(9) and (10) can be re-written
as:W (t,a) = D−(a+ 1

2 )W (t), where D denotes the derivative
operator. Jumarie (2005) concludes the integral (dt)a of
fractional Brownian motion for 0 < a < 1.

Lemma 3. Let f (t) denote a continuous function, and
then∫ t

0
f (τ)(dτ)a = a

∫ t

0
(t − τ)a−1 f (τ)dτ, 0 < a < 1

Proof. See appendix A.
B. The optimization program
Consider that the market structure consists of n+1 as-

sets, one risk-free asset and n risky assets. We denote the
price of the riskfree asset (i.e. the bank account) at time t
by S0(t), which evolves according to the following equa-
tion:

dS0(t) = rS0(t)dt (14)

where r is a constant rate of interest.
We denote the price of the risky asset i at time t by

Si(t)(i = 1, · · · ,n), which is described by the following
stochastic differential equation:

dSi(t) = Si(t)((r+µi)dt +
m

∑
j=1

σ (1)
i j dWj(t)

+
n

∑
j=m+1

σ (2)
i j dWj(t,a j)) (15)

where µi is an expected instantaneous rate of return of the
risky asset i, σ (1)

i j the co-variance of the risky asset i and
the asset j( j = 1, · · · ,m) under the classical Brown mo-
tion, σ (2)

i j the co-variance of the risky asset i and the asset
j, ( j = m+1, · · · ,n) under the fractional Brown motion.

Let x(t) denote the wealth of pension fund at time t ∈
[0,T ] and yi denote the proportion of the pension fund in-
vested in the risky asset i. Correspondingly, 1−∑n

i=1 yi de-
notes the proportion of the pension fund invested in the
bank. The dynamics of the pension fund are given by:

dx(t) = x(t)((r+
n

∑
i=1

yiµi)dt +
n

∑
i=1

m

∑
j=1

yiσ
(1)
i j dWj(t)

+
n

∑
i=1

n

∑
j=m+1

yiσ
(2)
i j dWj(t,α j)) (16)

and x(0) = x0, where x0 stands for an initial weal.
Suppose that the goal of the pension fund manager is

to choose portfolio strategies in order to minimize the ex-
pected value of utility loss function. Under the wealth pro-
cess denoted by (14), the investor looks for a strategy y∗t
minimizing the utility function:

min
y(t)

E[
∫ T

0
e−ρtU(F(t)− x(t))dt] (17)

where ρ is a discounted factor, and F(t) is the aim fund
level of the pension fund manager at time .That is to say,
F(t) is in advance given before investment. U(·) is a strictly
concave function and satisfies the Inada conditions µ ′(0)=
+∞ and µ ′(+∞) = 0.
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In this paper, we describe the pension fund investor’s
objective function with a power utility function, that is,

U(x) = xγ ,γ ∈ (−∞,1).

The choice of the power utility function is motivated
by three reasons.

First, pension funds are in general large companies who
define their strategies with respect to the amount of money
they are managing, more or less in a scaling way. This fea-
ture is well capture by the use of the power utility function.

Second, pension funds are managed in such a way that
they cannot reach negative values. This is true also in the
logarithm utility case, thanks to the infinite marginal utility
at zero.

Note that the diffusion equation (16) has fractional Brow-
nian motions; it is difficult to solve the explicit solution
of this problem. In the next section, we shall show how
one can obtain the closed form solution of this problem of
fractional stochastic optimal control by using the dynamic
equation of the moments.

4. Variational Approach Via Moment
Equations

We introduce the value function of the problem (17):

J(t,x) = E[
∫ T

t
e−ρsU(F(s)− x(s))ds|x(t) = x] (18)

For the sake of simplicity, we define:

f := r+
n

∑
i=1

yiµi, g j :=
n

∑
i=1

yiσ
(1)
i j , h j :=

n

∑
i=1

yiσ
(2)
i j (19)

Then Eq.(16) can be re-written as:

dx(t) = x(t)( f dt +
m

∑
j=1

g jdWj(t)

+
n

∑
j=m+1

h jdWj(t,α j)) (20)

Let
F(t)− x(t) = v(t)x(t) (21)

and then Eq.(18) may be re-written:

J(t,x) =
∫ T

t
[e−ρsvγ(s)E(xγ(s))ds|x(t) = x] (22)

Let σ be the matrix (σm,σn−m)n×n, (which we assume
is non-singular), where

σm = (σ (1)
i j ),

(i = 1, · · · ,n; j = 1, · · · ,m).

σn−m = (σ (2)
i j )n×(n−m),

(i = 1, · · · ,n; j = m+1, · · · ,n).

Note that Eq.(22) includes the term E(xγ(s)). Thus we
can define a new state variable: k(t) = E(xγ(t)).

The dynamical equation satisfied by k(t) is:

dk(t) = γ f k(t)dt +
γ(γ −1)k(t)

2

m

∑
j=1

g2
jdt

+
γ(γ −1)k(t)

2

n

∑
j=m+1

h2
j(dt)2α j (23)

with k(0) = xγ
0.

The initial stochastic optimal control problem (17) is
then converted into a non-random optimal control involv-
ing the dynamics (23). Finally, we can obtain the optimal
strategy of problem (17).

Proposition 4. The optimal portfolio proportions Y for
the risky assets are given by:

Y =
(σ ′)−1σ−1

∗ U
1− γ

,

with the residual fractional of wealth 1−E. Y allocated to
the bank, where

σ∗ = (σm,σ0
n−m)n×n,

Y = (y1, · · · ,yn)
′,

U = (µ1, · · · ,µn)
′,

σ0
n−m = (2a j(T − t)2a j−1,σ (2)

i j )n×(n−m),
(i = 1, · · · ,n; j = 1, · · · ,m),
E = (1, · · · ,1)n×1.

Proof. Introducing the Lagrange parameter function
λ (t), we consider the augmented gain function:

J(0,x) =
∫ T

0
{[e−ρtvγ(t)k(t)+λγ f k(t)

+
λγ(γ −1)k(t)

2

m

∑
j=1

g2
j ]dt

+
λγ(γ −1)k(t)

2

n

∑
j=m+1

h2
jdt2α j −λdk(t)} (24)

According Lemma 3, we have:∫ t

0
f (τ)(dτ)2α = 2α

∫ t

0
(t − τ)2α−1 f (τ)dτ, (25)

Submitting Eq. (25) into Eq.(24), we derive:

J(0,x) =
∫ T

0
[e−ρtvγ(t)k(t)+λγ f k(t)

+ λγ(γ −1)k(t)
n

∑
j=m+1

h2
jα j(T − t)2α j−1

+
λγ(γ −1)k(t)

2

m

∑
j=1

g2
j ]dt −

∫ T

0
λdk(t) (26)

Now the Hamiltonian operator is:

H = k(t)[e−ρtv(t)γ +λγ f +
λγ(γ −1)

2

m

∑
j=1

g2
j

+ λγ(γ −1)
n

∑
j=m+1

α jh2
j(T − t)2α j−1]. (27)
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Therefore, according to the optimal control conditions:

ui +(γ −1)
m

∑
j=1

σ (1)
i j g j +(γ −1)

n

∑
j=m+1

2α j(T − t)2α j−1σ (2)
i j h j = 0,(

∂H
∂yi

= 0) (28)

Namely,
m

∑
j=1

σ (1)
i j g j +

n

∑
j=m+1

2α j(T − t)2α j−1σ (2)
i j h j =

ui

1− γ
(29)

For the sake of simplicity, we define the variables:

σ0
n−m = (2α j(T − t)2α j−1σ (2)

i j )n×(n−m),
(i = 1, · · · ,n; j = 1, · · ·m)
σ∗ = (σm σ0

n−m)n×n,
A = (g1, · · · ,gm,hm+1, · · · ,hn)

′

Y = (y1, · · · ,yn)
′

U = (u1, · · · ,un)
′

(30)

Note that (2α j(T − t)2α j−1 ̸= 0) ,and then σ∗ is a non-
singular matrix. From Eq.(29), we derive:

σ∗A =
U

1− γ
(31)

According to (19), we have:

Y /σ = A′ (32)

Combining with Eqs.(30)and (31), we derive the propor-
tion invested risky assets:

Y =
(σ ′)−1σ−1

∗ U
1− γ

(33)

Correspondingly, the proportion of pension fund invested
in the bank such that:

1−E ·Y (34)

whereE = (1, · · · ,1)n×1.
Remark 5. Note that from Eqs. (11), (24), (27) and

lemma3 we can conclude:
(1) If we set a = 1

2 ,we get the optimal Merton’s port-
folio for the classical Brownian motion.

(2) When 1
2 < a < 1, according to the lemma 3,clearly

we have∫ t

0
f (τ)(dτ)2a = a2

[∫ t

0
(t − τ)a−1 f

1
2 (τ)dτ

]2

,

Then the Eq.(24) can be changed :

J(0,x) =
∫ T

0
[e−ρtvγ(t)k(t)+λγk(t)( f − v(t))

+
λγ(γ −1)k(t)

2

m

∑
j=1

g2
j ]dt +

λγ(γ −1)k(t)
2

m
∑
j=1

(∫ T

0
(T − τ)α j−1h j

√
k(t)dτ

)2

(35)

Since the above equation contains quadratic integral, it is
difficult to solve.

5. Simulation

In this section, we give a brief numerical example in order
to analyze the dynamic behavior of the optimal portfolio
strategy influenced by the orders of fractional Brownian
motions.

We assume that there are three assets, one is riskless
asset, and the other two are a lower risky asset (risky 1)
and a higher risky asset (risky 2), respectively. The key
parameters take the following values: (formula)

The eight parameters have been taken from Deestra
et al. (2003), who illustrate the cash, bond and stock dy-
namic models. We consider the investment period equal to
30 years, the value x(0)=1 is normalization. We suppose
two fractional Brownian motions with parameters a1 =
0.4,a2 = 0.333.

According to the proposition 4, we simulate the opti-
mal strategies illustrated in Fig.1, which shows that the op-
timal proportion invested in the risky 1 starts from about
25% to 40%, and the trend slowly decreases before 25
years but abruptly increases during the last few years. The
proportion invested in the riskless asset increases from an
initial value around 52% to about 63%. On the other hand,
the proportion invested in the risky 2 gradually decreases
from an initial value close to 21% to zero. The investment
trends of the three assets are consistent with the portfolio
manager’s experience and the conventional wisdom. Dur-
ing the beginning of the investment period, the fund man-
ager realizes a more aggressive investment policy in order
to boost the fund. Consistently, as the time approaches the
deadline T, Fig.1 shows a shift of wealth from the invest-
ment in higher risky asset to lower risky asset and riskless
asset.

Figure1 a1 = 0.4,a2 = 0.333

The sensitivity of the fractional orders to the optimal
investment strategies is shown as in Figs.2 to 6.

In Fig.2, we observe that, as a1 is equal to 0.392 (i.e.,
decreasing 2 percent) and the value of a2 is fixed, com-
pared with Fig.1, the proportion invested in the risky 1 in-
creases with respect to the same time (in Fig.2, the propor-
tion starts from about 38% to around 45%), moreover, the
trend apparently decreases before 25 years but abruptly in-
creases during the last few years. However, from Fig.2, we
notice that the optimal percentages invested in the riskless
asset and in risky 2 are all lower than those in fig.1 with
respect to the same time, respectively.
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Figure 2 a1 = 0.392,a2 = 0.333

Fig.3 shows that as a2 decreases 2 percent and a1 is
fixed, compared with Fig.1, the proportion invested in risky
1 decreases with respect to the same time. The proportion
invested in the risky 2 increases, but the downtrend be-
comes faster. The optimal proportion in riskless asset in-
creases.

Figure 3 a1 = 0.4,a2 = 0.32634

In Figs. 4 to 6, we let the two fractional orders syn-
chronously change in order to find the influence on the op-
timal strategies.

Figure 4 a1 = 0.4,a2 = 0.32634

In Fig.4, we notice that as a1 = 0.408 and a2 = 0.32634
(that is, a1 increases 2 percent, a2 decreases 2 percent),
compared with Fig.1, the proportion invested in the risky
1 decreases (in Fig.4, starting from about 18% to 40%).
The proportion invested in the risky 2 increases (in Fig.4,
from about 23% to zero). The optimal percentage invested
in the riskless asset increases. In Fig.4, we observe that,
compared with Fig.3, the proportion invested in the risky
1decreases, however, the proportions invested in the risk-
less asset and risky 2 all increase, moreover, the downtrend
of the risky 2 becomes slow. Comparing Fig.2 with Fig.4,
we can conclude that, in Fig.4, the proportion invested in
the risky 1 is lower than that in Fig.2, while the proportions
in riskless asset and risky 2 are all higher than those in
Fig.2, respectively. Form Figs.3 and 4, we find that as long

as one fractional order increases and the other is fixed, the
proportion invested in the risky asset involved in the in-
creased fractional order will decrease. Furthermore, form
Figs.1 and 4 (or, Figs.2 and 4, Figs.2 and 3), we conclude
that when one fractional order increases and the other de-
creases, the proportion invested in the corresponding risky
asset has the opposite change.

Figure 5 a1 = 0.393764,a2 = 0.32634

In Fig.5, let a1 be equal to 0.39374 and a2 equal to
0.32634, that is, compared with the values in Fig.1, a1 de-
creases 1.5 percent, a2 decreases 2 percent, we can ob-
serve that in Fig.5 the proportion invested in the risky 1
is higher than that in Fig.1 (in Fig.5, from an initial value
close to 47% to about 45%). While the optimal percent-
ages invested in the riskless asset and in risky 2 are all
lower than those in Fig.1, respectively.

Figure 6 a1 = 0.426564,a2 = 0.33966

Fig.6 shows that a1 is equal to 0.426564 and a2 equal
to 0.33966 (that is, a1 increases 7 percent, a2 increases
2 percent), compared with Fig.1, in Fig.6, the proportion
invested in the risky 1 is lower. However, the optimal per-
centages invested in the riskless asset and in risky 2 are all
higher than those in Fig.1, respectively. Form Figs.1 and
5, we can derive when the two fractional orders both de-
crease, the optimal proportion invested in the risky asset
with the larger fractional order will increase and the other
decrease. Compared with Figs.6 and 1(Figs.2, 3, 4, 5, etc.),
it can be concluded that when the two fractional orders in-
crease, the optimal proportion invested in the risky asset
involved in the larger fractional order will decrease and
the other increase.

6. Conclusion
In this paper, assuming that the goal of the fund manager
is to minimize the expected utility loss function, we ex-
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tend some noises involved in the dynamics of the wealth
satisfy fractional Brownian motions with short-range de-
pendence. Instead of using the dynamic programming ap-
proach, we convert the stochastic optimal control problem
into a non-random optimization. Based on deterministic
optimal control principle, we obtain the explicit solution
of the optimal strategies. The mathematical framework is
essentially engineering mathematics, and mainly one will
work formally by using the Maruyama notation of frac-
tional order. In future research about the pension fund in-
vestment field, it would be significant to consider frac-
tional Brownian motions with long-range dependence, that
is to say, with a Hurst parameter higher than 1

2 .
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Appendix Lemma 3.3

Proof. Let us consider the fractional differential equation

xa(t) = f (t), 0 < a < 1

In a straightforward manner, its solution is obtained as

x(t) = D−a f (t)

By using the fractional derivative, namely, Eq. (12),
one has

x(t) =
1

Γ (a)

∫ t

0
(t − τ)a−1 f (τ)dτ (36)

Using Taylor expansion of fraction order derivative(see,
e.g., [12]).

f a(x) = lim
h→0

∆ a f (x)
ha = Γ (1+a) lim

h→0

∆ f (x)
ha , 0 < a < 1

We can conclude: da f = Γ (1+a)d f .
From xa = f (t), so that, dxa = f (t)(dt)a and then

Γ (1+a)dx = f (t)(dt)a.

So
x(t) =

1
Γ (1+a)

∫ t

0
f (τ)dτ. (37)

Compared with (36) and (37), we shall obtain the equal-
ity:

1
Γ (1+a)

∫ t

0
f (τ)dτ =

1
Γ (a)

∫ t

0
(t − τ)a−1 f (τ)dτ

Therefore,∫ t

0
f (τ)dτ = a

∫ t

0
(t − τ)a−1 f (τ)dτ, 0 < a < 1 (38)
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