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Abstract: In this paper, we consider the class ofϕ-convex functions, which was introduced and investigated by Noor [12] in 2006.
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Convexity theory has played an important and
fundamental role in the developments of different fields
of pure and applied sciences. In recent years, it received
considerable attention. Several new generalizations and
extensions of classical convexity have been introduced
and investigated. For example see [1,2,9,11,12,13,?,15,
14,17,19,24,?]. A significant generalization of classical
convex functions is calledϕ-convex functions which was
introduced by Noor [12]. Noor has shown that the
optimality conditions of the differentiableϕ-convex
functions can be characterized by variational inequalities.
Noor [12] investigated some basic properties ofϕ-convex
functions and showed thatϕ-convex functions are
nonconvex functions. Noor [13] established some
Hermite-Hadamard type results forϕ-convex functions.
An other importance of theory of convexity is its close
relationship with theory of inequalities. A wide class of
inequalities have been derived via convex functions, see
[2,3,4,7,11,13,?,14,16,17,19,22,23,24]. In past few
years, several authors have used the concepts of quantum
calculus to obtain integral inequalities for different
classes of convex functions, see [6,18,20,21,25,27].
In this chapter, we again consider the class ofϕ-convex
functions. We obtain some new Hermite-Hadamard like
inequalities for ϕ-convex functions using quantum
calculus. These quantum Hermite-Hadamard inequalities
and their variant forms are useful for quantum physics
where lower and upper bounds of natural phenomena
described by integrals are frequently required. In passing,

we would like to point out that study of the quantum
calculus was initiated by Euler (1707-1783). He
introduced theq in tracks of Newton infinite series. In
quantum calculus, we obtain theq-analogues of
mathematical objects which can be recaptured asq → 1.
In fact, quantum calculus has emerge as fascinating and
dynamic field. We also discuss some special cases which
can be deduced from the main results. This is the main
motivation of this chapter. The interested readers are
encouraged to find the applications of quantum calculus
and ϕ-convexity in other fields of pure and applied
sciences.

1 Preliminaries of quantum calculus

In this section, we discuss some basic concepts and
results pertaining to quantum calculus. For more details
interested readers may consult [5,10].
Let us start withq-analogue of differentiation. For that
matter, consider

lim
x→x0

f (x)− f (x0)

x− x0
=

d f
dx

,

the above expression gives the derivative of a functionf (x)
atx= x0.
If we takex= qx0 where 0< q< 1 is a fixed number and
do not take limits, then we enter in the world of Quantum
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calculus. Theq-derivative ofxn is [n]xn−1, where

[n] =
qn−1
q−1

,

is theq-analogue ofn in the sense thatn is the limit of [n]
asq→ 1.
Now we give the formal definition ofq-derivative of a
function f .

Definition 1. The q-derivative is defined as

Dq f (x) =
f (qx)− f (x)
(q−1)x

. (1)

Note that whenq→ 1, then we have ordinary derivative.

Now we move to wordsq-antiderivatives of a function.

Definition 2. The function F(x) is a q-antiderivative of
f (x) if DqF(x) = f (x). It is denoted by
∫

f (x)dqx. (2)

Our next definition is due to Jackson.

Definition 3. The Jackson integral of f(x) is defined as
∫

f (x)dqx= (1−q)x
∞

∑
j=0

q j f (q jx). (3)

It is evident from above definition, that
∫

f (x)Dqg(x)dqx

= (1−q)x
∞

∑
j=0

q j f (q jx)Dqg(q jx)

= (1−q)x
∞

∑
j=0

q j f (q jx)
g(q jx)−g(q j+1x)

(1−q)q jx
.

Definiteq-integrals are defined as:

Definition 4([8]). Let0< a< b. The definite q-integral is
defined as

b
∫

0

f (x)dqx= (1−q)b
∞

∑
j=0

q j f (q jb), (4)

provided the sum converge absolutely.

A more general formula for definite integrals is given as

b
∫

0

f (x)dqx=
∞

∑
j=0

f (q j b)(g(q jb)−g(q j+1b)).

Remark.From above definition of definiteq-integral in a
generic interval[a,b] is given by

b
∫

a

f (x)dqx=

b
∫

0

f (x)dqx−

a
∫

0

f (x)dqx.

We now recall some basic concepts of quantum calculus on
finite intervals. These results are mainly due to Tariboon et
al. [26,27].

Let J = [a,b] ⊆ R be an interval and 0< q < 1 be a
constant. Theq-derivative of a functionf : J→R at a point
x∈ J on [a,b] is defined as follows.

Definition 5. Let f : J → R be a continuous function and
let x∈ J. Then q-derivative of f on J at x is defined as

Dq f (x) =
f (x)− f (qx+(1−q)a)

(1−q)(x−a)
, x 6= a. (5)

A function f is q-differentiable onJ if Dq f (x) exists for
all x∈ J.

Example 1.Let x ∈ [a,b] and 0< q< 1. Then, forx 6= a,
we have

Dqx2 =
x2− (qx+(1−q)a)2

(1−q)(x−a)

=
(1+q)x2−2qax− (1−q)x2

x−a
= (1+q)x+(1−q)a.

Note that whenx= a, we have lim
x→a

(Dqx2) = 2a.

Definition 6. Let f : J → R is a continuous function. A
second-order q-derivative on J, which is denoted asD2

q f ,
providedDq f is q-differentiable on J is defined asD2

q f =
Dq(Dq f ) : J → R. Similarly higher order q-derivative on
J is defined byDn

q f =: J → R.

Lemma 1.Letα ∈ R, then

Dq(x−a)α =
(1−qα

1−q

)

(x−a)α−1
.

Tariboon et al. [26,27] defined theq-integral as:

Definition 7. Let f : I ⊂ R→ R be a continuous function.
Then q-integral on I is defined as

x
∫

a

f (t)dqt = (1−q)(x−a)
∞

∑
n=0

qn f (qnx+(1−qn)a), (6)

for x∈ J.

These integrals can be viewed as Riemann-typeq-integral.
If a= 0 in (6), then we have the classicalq-integral, that is

x
∫

0

f (t)dqt = (1−q)x
∞

∑
n=0

qn f (qnx), x∈ [0,∞).

Moreover, ifc∈ (a,x), then the definiteq-integral onJ is
defined by

x
∫

c

f (t)dqt =

x
∫

a

f (t)dqt −

c
∫

a

f (t)dqt

= (1−q)(x−a)
∞

∑
n=0

qn f (qnx+(1−qn)a)

− (1−q)(c−a)
∞

∑
n=0

qn f (qnc+(1−qn)a).
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Theorem 1.Let f : I →R be a continuous function, then

1.Dq

x
∫

a
f (t)dqt = f (x)

2.
x
∫

c
Dq f (t)dqt = f (x)− f (c) for x∈ (c,x).

Theorem 2. Let f,g : I → R be a continuous functions,
α ∈R, then x∈ J

1.
x
∫

a
[ f (t)+g(t)]dqt =

x
∫

a
f (t)dqt +

x
∫

a
g(t)dqt

2.
x
∫

a
(α f (t))(t)dqt = α

x
∫

a
f (t)dqt

3.
x
∫

a

f (t)aDqg(t)dqt

= ( f g)|xc−

x
∫

c

g(qt+(1−q)a)Dq f (t)dqt

for c∈ (a,x).

Lemma 2.Let α ∈ R\ {−1}, then

x
∫

a

(t −a)αdqt =
( 1−q

1−qα+1

)

(x−a)α+1
.

2 ϕ-convexity

In this section, we recall the concept ofϕ-convex sets and
ϕ-convex functions respectively.

Definition 8([12]). Let Kϕ ⊂ H be a set. Then the set Kϕ
is said to beϕ-convex, if

u+ teiϕ(v−u) ∈ Kϕ , ∀u,v∈ Kϕ , t ∈ [0,1].

We would like to point out that the definition of the
ϕ−convex set has a clear geometric interpretation. This
definition says that there is a path starting from a pointu
which is contained inKϕ . We do not required that the
point v should be one of the end point of the path. This
observation plays crucial part in our studies. If we
demand thatv should be an end point of the path, then
obviously,u+ eiϕ(v− u) = v. This implies thatϕ = 0.
Consequently,ϕ−convex set reduces to the convex set.
That is,

u+ t(v−u)∈ K, ∀u,v∈ K, t ∈ [0,1].

Definition 9([12]). A function f : Kϕ → H is said to be
ϕ-convex with respect toϕ , if

f (u+ teiϕ(v−u)) ≤ (1− t) f (u)+ t f (v),

∀u,v∈ Kϕ , t ∈ [0,1].

Note that ifϕ = 0 in the above definition, then, we have
definition of classical convex functions.

Definition 10([12]). A function f : Kϕ → H is said to be
quasiϕ-convex with respect toϕ , if

f (u+ teiϕ(v−u)) ≤ max{ f (u), f (v)},

∀u,v∈ Kϕ , t ∈ [0,1].

For the applications and other properties of theϕ-convex
sets andϕ-convex functions, see [12].

3 Main Results

We are now ready to prove our main results. For simplicity
of the notations, we takeIϕ = [a,a+ teiϕ(b− a)] be the
interval andI0

ϕ be the interior ofIϕ .

Theorem 3(Hermite-Hadamard type inequality). Let
f : Iϕ → R be integrableϕ-convex function with respect
to ϕ , if

f

(

2a+eiϕ(b−a)
2

)

≤
1

eiϕ (b−a)

a+eiϕ (b−a)
∫

a

f (x)dqx

≤
q f(a)+ f (b)

2
. (7)

Proof.Let f be aϕ-convex function, then

f

(

2a+eiϕ(b−a)
2

)

≤
1
2

[

f (a+ teiϕ(b−a))+ f (a+(1− t)eiϕ(b−a))
]

.

q-integrating above inequality with respect tot on [0,1],
we have

f

(

2a+ teiϕ(b−a)
2

)

≤
1

eiϕ(b−a)

a+eiϕ (b−a)
∫

a

f (x)dqx. (8)

Since f is ϕ-convex function, then,∀ t ∈ [0,1], we have

f (a+ teiϕ(b−a))≤ (1− t) f (a)+ t f (b).

q-integrating above inequality with respect tot on [0,1],
we have

1
eiϕ(b−a)

a+eiϕ (b−a)
∫

a

f (x)dqx≤
q f(a)+ f (b)

2
. (9)

Combining (8) and (9) completes the proof.⊓⊔

Remark.If q → 1, then, Theorem 3 reduces to Theorem
2.1 [13]. If q→ 1 andϕ = 0, then, Theorem 3 reduces to
classical Hermite-Hadamard inequality.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


4 M. A. Noor et al.: Quantum integral inequalities via...

Theorem 4.Let f,g : Iϕ → R be integrable andϕ-convex
functions, then, for0< q< 1, we have

2 f

(

2a+eiϕ(b−a)
2

)

g

(

2a+eiϕ(b−a)
2

)

−
1
2
[K1M(a,b)+K2N(a,b)]

≤
1

eiϕ(b−a)

a+eiϕ (b−a)
∫

a

f (x)g(x)dqx,

where

K1 =
q2

(1+q)(1+q+q3)
,

K2 =
1+2q+q3

(1+q)(1+q+q2)
,

M(a,b) = f (a)g(a)+ f (b)g(b),

and
N(a,b) = f (a)g(b)+ f (b)g(a).

Proof.Since f andg beϕ-convex functions, then

f

(

2a+eiϕ(b−a)
2

)

g

(

2a+eiϕ(b−a)
2

)

= f

(

a+ teiϕ(b−a)+a+(1− t)eiϕ(b−a)
2

)

×g

(

a+ teiϕ(b−a)+a+1− teiϕ (b−a)
2

)

≤
1
4

[{

f (a+ teiϕ(b−a))+ f (a+(1− t)eiϕ(b−a))
}

{

g(a+ teiϕ(b−a))+g(a+(1− t)eiϕ(b−a))
}]

≤
1
4

[{

f (a+ teiϕ(b−a))g(a+ teiϕ(b−a))

+ f (a+(1− t)eiϕ(b−a))g(a+(1− t)eiϕ(b−a))
}

+
{

2t(1− t)M(a,b)+ (t2+(1− t)2)N(a,b)
}]

.

q-integrating both sides of above inequality with respect to
t on [0,1], we have

2 f

(

2a+eiϕ(b−a)
2

)

g

(

2a+eiϕ(b−a)
2

)

−
2q2M(a,b)+ (1+2q+q3)N(a,b)

2(1+q)(1+q+q2)

≤
1

eiϕ(b−a)

a+eiϕ (b−a)
∫

a

f (x)g(x)dqx.

This completes the proof.⊓⊔

Theorem 5.Let f,g : Iϕ → H be integrable andϕ-convex
function, then, for0< q< 1, we have

1
eiϕ(b−a)

a+eiϕ (b−a)
∫

a

f (x)g(x)dqx

≤ P1 f (a)g(a)+P2
[

q(1+q2) f (b)g(b)+q2N(a,b)
]

,

where

P1 =
1

1+q+q2,

P2 =
1

(1+q)(1+q+q2)
,

and
N(a,b) = f (a)g(b)+ f (b)g(a).

Proof.Since f andg areϕ-convex functions, then

f (a+ teiϕ(b−a))≤ (1− t) f (a)+ t f (b), (10)

and

g(a+ teiϕ(b−a))≤ (1− t)g(a)+ tg(b). (11)

Multiplying (10) and (11), we have

f (a+ teiϕ(b−a))g(a+ teiϕ(b−a))

≤ (1− t)2 f (a)g(a)+ t(1− t) f (a)g(b)

+t(1− t) f (b)g(a)+ t2 f (b)g(b).

q-integrating both sides of above inequality with respect to
t on [0,1], we have

1
∫

0

f (a+ teiϕ(b−a))g(a+ teiϕ(b−a))dqt

≤ f (a)g(a)

1
∫

0

(1− t)2dqt + f (a)g(b)

1
∫

0

t(1− t)dqt

+ f (b)g(a)

1
∫

0

t(1− t)dqt + f (b)g(b)

1
∫

0

t2dqt.

This implies

1
eiϕ(b−a)

a+teiϕ (b−a)
∫

a

f (x)g(x)dqx

≤ P1 f (a)g(a)+P2
[

q(1+q2) f (b)g(b)+q2N(a,b)
]

.

This completes the proof.⊓⊔

We now give an auxiliary result which will be helpful in
obtaining our next results.

Lemma 3. Let f : Iϕ → H be a continuous function and
0< q< 1. If Dq f is an integrable function on I0

ϕ , then

Ω f (a,b;q;ϕ)

=
qeiϕ(b−a)

1+q

1
∫

0

(1− (1+q)t)Dq f (a+ teiϕ(b−a))dqt,

where

Ω f (a,b;q;ϕ) =
1

eiϕ (b−a)

a+eiϕ (b−a)
∫

a

f (x)dqx

−
q f(a)+ f (a+eiϕ(b−a))

1+q
.
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Proof.The proof is left on interested readers.⊓⊔

Theorem 6.Let f : Iϕ → R be a q-differentiable function
on I◦ϕ with Dq be continuous and integrable on Iϕ where
0< q< 1. If |Dq f | is ϕ-convex function, then
∣

∣Ω f (a,b;q;ϕ)
∣

∣

≤Ψϕ(a,b;q)
[

(1+3q2+2q3)|Dq f (a)|

+(1+4q+q2)|Dq f (b)|
]

,

where

Ψϕ(a,b;q) =
q2eiϕ (b−a)

(1+q)2(1+q+q2)
.

Proof. Using Lemma 3, property of modulus and the fact
that|Dq f | is ϕ-convex function, then
∣

∣Ω f (a,b;q;ϕ)
∣

∣

=

∣

∣

∣

∣

∣

∣

qeiϕ(b−a)
1+q

1
∫

0

(1− (1+q)t)Dq f (a+ teiϕ(b−a))dqt

∣

∣

∣

∣

∣

∣

≤
qeiϕ(b−a)

1+q



|Dq f (a)|

1
∫

0

|1− (1+q)t|(1− t)dqt

+|Dq f (b)|

1
∫

0

|1− (1+q)t|tdqt





=
q2eiϕ(b−a)

(1+q)4(1+q+q2)

×
[

(1+3q2+2q3)|Dq f (a)|+(1+4q+q2)|Dq f (b)|
]

.

This completes the proof.⊓⊔

Theorem 7.Let f : Iϕ → R be a q-differentiable function
on I◦ϕ with Dq be continuous and integrable on Iϕ where
0 < q < 1. If |Dq f |r is ϕ-convex function, where r≥ 1,
then
∣

∣Ω f (a,b;q;ϕ)
∣

∣

≤Θϕ(a,b;q)

×

[

(1+3q2+2q3)|Dq f (a)|r +(1+4q+q2)|Dq f (b)|r

(1+q+q2)(2+q+q3)

]

1
r

,

where

Θϕ(a,b;q) =
q2(2+q+q2)eiϕ(b−a)

(1+q)4 .

Proof. Using Lemma 3, property of modulus, Holder’s
inequality and the fact that|Dq f |r is ϕ-convex function,
then
∣

∣Ω f (a,b;q;ϕ)
∣

∣

=

∣

∣

∣

∣

∣

∣

qeiϕ(b−a)
1+q

1
∫

0

(1− (1+q)t)Dq f (a+ teiϕ(b−a))dqt

∣

∣

∣

∣

∣

∣

≤





1
∫

0

|1− (1+q)t|dqt





1− 1
r

×





1
∫

0

|1− (1+q)t|[(1− t)|Dqf (a)|r + tDq f (b)|r ]dqt





1
r

=

(

q(2+q+q3)

(1+q)3

)1− 1
r

×

(

q
(1+q)3(1+q+q2)

[

(1+3q2+2q3)|Dq f (a)|r

+(1+4q+q2)|Dq f (b)|r
]

) 1
r

.

This completes the proof.⊓⊔

Now, we derive someq-analogues of Iyengar type
inequalities.

Theorem 8.Let f : Iϕ → R be a q-differentiable function
on I◦ϕ with Dq be continuous and integrable on Iϕ where
0< q< 1. If |Dq f |r is quasiϕ-convex function where r≥
1, then
∣

∣Ω f (a,b;q;ϕ)
∣

∣

≤
q2eiϕ(b−a)(2+q+q3)

(1+q)4 (sup{|Dq f (a)|r , |Dq f (b)|r})
1
r .

Proof. Using Lemma 3, property of modulus, Holder’s
inequality and the fact that|Dq f |r is quasi ϕ-convex
function, we have
∣

∣Ω f (a,b;q;ϕ)
∣

∣

=

∣

∣

∣

∣

∣

∣

qteiϕ(b−a)
1+q

1
∫

0

(1− (1+q)t)aDq f (a+ teiϕ(b−a))0dqt

∣

∣

∣

∣

∣

∣

≤
qeiϕ(b−a)

1+q





1
∫

0

|1− (1+q)t|dqt





1− 1
r

×





1
∫

0

|1− (1+q)t||aDq f (a+ teiϕ(b−a))|r0dqt





1
r

=
q2eiϕ(b−a)(2+q+q3)

(1+q)4 (sup{|Dq f (a)|r , |Dq f (b)|r})
1
r .

This completes the proof.⊓⊔

Theorem 9.Under the conditions of Theorem 8, if r= 1,
then, we have
∣

∣Ω f (a,b;q;ϕ)
∣

∣

≤
q2eiϕ(b−a)(2+q+q3)

(1+q)4 (sup{|Dq f (a)|, |Dq f (b)|}) .
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