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Abstract: Since modern continuum mechanics is mainly characterigéldostrong influence of microstructure, Fractional Camtim
Mechanics has been a promising research field, satisfyittgéogerimental and theoretical demands. The geometryedir#tctional
differential is corrected and the geometry of the tangeatsep of a manifold is clarified providing the bases of the imgsEractional
Differential Geometry. The Fractional Vector Calculusasisited along with the basic field theorems of Green, StakesGauss. New
concepts of the differential forms, such as fractional gnail divergence and rotation are introduced. Applicatbthe Fractional
Vector Calculus to Continuum Mechanics is presented. Tlaetlemal right and left Cauchy-Green deformation tensois Green
(Lagrange) and Euler-Almanssi strain tensors are exfibitee change of volume and the surface due to deformatiorfiemation
change) of a deformable body are also discussed. Fractsresls tensors are also introduced. Further the Fract@oalinuum
Mechanics principles yielding the fractional continuitydamotion equations are also derived.

Keywords: Fractional derivative, fractional deformation tensoracfional deformation strain, fractional differentiatiace, fractional
continuity equation.

1 Introduction

The mechanics researchers have been motivated by the nieadhizehavior of disordered (non-homogeneous) materials
with microstructure. Porous materials, Vardoulakis etlalVa et al 2] , colloidal aggregates, Wyss et &][ ceramics,
etc, are materials with microstructure that exert strorilyuémce in their deformation. Major factors in determinihg t
material deformation are microcracks, voids, materialsgsaetc. The non-homogeneity of the heterogeneous material
has been tackled by various homogenization theories Bakl&alPanasenko]. Nevertheless, these materials require
the lifting of the basic local action axiom of Continuum Medlics, Truesdelld], Truesdell et al.§]. As defined by Noll

[7] simple materials satisfy the three fundamental axioms:

(a) The principle of determinism.

(b) The principle of local action.

(c) The principle of material frame-indifference.

Truesdell p] points out in his classic continuum mechanics book. Theanaif body-points at a finite distance from a
point x in some shape may be disregarded in calculating tlessstat X. Material microstructure, inhomogeneities,
microcracks etc., are some of the various important fadtwas affect the material deformation with non-local action
These factors are not considered in the simple materialauiation. Various theories have been proposed just to
introduce a long distance action in the deformation of théenias. One direction considers Taylor's expansion of the
strain tensor in the neighborhood of a point, taking in coasition one or two most important terms. Hence gradient
strain theories have appeared in non-linear form, Tougiingdnd in linear deformation, Mindling). Eringen [LO] has
also proposed a theory dealing with micropolar elastiditindlin introduced a more simple version of linear gradient
theories and an even simpler model has been presented hytidifal] with his GRADELA model. In these theories,
the authors introduced intrinsic material lengths thatoaggany the higher order derivatives of the strain. Many
problems have been solved employing those theories cangesize effects, lifting of various singularities, porous
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materials, Aifantis 11,12,13], Askes & Aifantis [L4], mechanics of microbeams, microplates and microsheets,
Lazopoulos 15,16]. Another non-local approach was introduced by Kunitv,18] Lazopoulos 9] introduced
fractional derivatives of the strain in the strain energysity function in an attempt to introduce non-locality ireth
elastic response of materials. Fractional calculus wad bgenany researchers, not only in the field of Mechanics but
mainly in Physics and especially in Quantum Mechanics, t@ldp the idea of introducing non-locality through. In fact
the history of fractional calculus is dated since 17th cantBarticle physics, electromagnetics, mechanics of nadse
Hydrodynamics, fluid flow, rheology, viscoelasticity, ai#tj electrochemistry and corrosion, chemical physics @amges
fields where fractional calculus has been introduced. Fnaat calculus in material deformations has been adopted in
solving various types of problems. First we may consider dbéormation problems with non-smooth strain field.
Secondly heterogeneous material deformations may alstulieed. Furthermore, time fractional derivative is proved

be more suitable in viscoelastic deformations, since éksiic deformations with retarded memory materials may al
be discussed. The non-local strain effects of deformatimblpms are concerned by the last type of those problems.
There are many studies considering fractional elastiditgoty, introducing fractional strain, Drapaca et a0
Carpinteri et al. 21,22], Di Paola et al. 23], Atanackovic et al. 24], Agrawal [25], Sumelka R6]. Baleanu and his
co-workers P7,28,29 has presented along list of publications concerning weriapplications of Fractional Calculus in
Physics, in control theory in solving differential equatsoand numerical solutions. In addition Taras@®,B1] has
presented a Fractional Vector Fields theory combiningtélac Feder 32] and fractional calculus. Lazopoulo33,34]

has clarified the geometry of the fractional differentiaduking in fractional tangent spaces of the manifolds quite
different from the conventional ones. Hence the Fracti@itiérential Geometry has been established, indisperedabl

the development of Fractional Mechanics. It is evident thatdefinition of the stress and the strain is greatly affbbte

the tangent spaces. Hence the fractional stress tensortharfdactional strain tensors are quite different from the
conventional ones. The linear strain tensors are alsoitedisThose basic concepts are important for establishing
Fractional Continuum Mechanics. In the present work, kovaal Vector Calculus is revisited, since the fractional
differential of a function is not linearly dependent upom tiifferential of the variables. Furthermore, the fracsibn
derivative of a variable with respect to itself is differérdm one. The Fractional Vector Calculus is revisited al@riii

the basic field theorems of Green, Stokes and Gauss. Apphcaf the Fractional Vector Calculus to Continuum
Mechanics is presented. The revision in the right and leftadBg-Green deformation tensors and Green (Lagrange) and
Euler-Almanssi strain tensors are exhibited. The changeohfme and the surface due to deformation (change of
configuration) of a deformable body is also discussed. [Euttthe revisited Fractional Continuum Mechanics prinaple
yielding the fractional continuity and motion equations afso discussed.

2 Basic Properties of Fractional Calculus

Fractional Calculus were introduced by Leibniz, who padrdat, in his letters to I'Hospital in 1695 and Wallis in 17 25e
possibility of defining the derivativ%r)‘@—g whenn = % Lately fractional calculus has become a branch of pure ema#tics

with many applications in Physics and Engineering, Tar§36)81], Baleanu et al.35], Golmankhaneh et al3f]. There
exist many definitions of fractional derivatives with sormivantages of the one over the others. Nevertheless they all
share one common property. They are not local, contraryda@timventional ones. Details concerning the properties of
fractional derivatives may be found in Kilbas et @9], Podlubny B7], Samko et al. 3§]. Starting from Cauchy formula

for the n-fold integral of a primitive functiori(x)

X

allf (x) = rll)‘/(x—s)“*lf(s)ds x>0,neN (1)
a
and
b
LD F (X )" f(s)ds x>0,neN 2)
we define the left and right fractional integral of fas:
1 [ (s
S
12f (x) = / ds 3)
alx () I—(a) ) (X_s)lfa
111
s
127 (x) = / ds (@)
X'b ( ) I—(a) J (S_X)lfa
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In Egs.(3,4) we assume that is the order of fractional irsisgrith 0O< a <1, considering (x) = (x—1)! with I" (a)
Eulers Gamma function. Thus the left and right Riemann-Lilbei(R-L) derivatives are defined by:

D00 = o (a2 1) ®
and
a d 1-a
DR = — 5 (o1 F(x). ©

Nevertheless the fact that the R-L derivatives of a congtaare not zero, imposed the need for Jumarie derivative
that is more friendly in the description of physical systeaithough it is more restrictive. In fact Caputo derivasieee
defined by:

VNI S ¢
anf(X) - /—(1_ a) Z (X—S)ads (7)
and .
AT (y) 1 f'(s)
XDbf(X) - _I—(l_ a) ! (S—X)ads (8)

Evaluating Caputo derivatives for functions of the type

f(x)=(x—a)" or f(x)=(b—x)"

we get:
riv+1 _
CD3(x—a)¥ = _aqVv-ao
a X(X a) r(_a+v+1) (X a) (9)
and for the corresponding right Caputo derivative:
riv+1) _
CDa _ v — _ v C{. 1
Likewise, Caputo derivatives are zero for constant fumstio
“Dic=0. (11)

3 The Fractional Tangent Plane of a Surface

It is reminded that the n-fold integral of the primitive fuion f(x), Eq.(1), is

M (x) = /X f(s) (ds)” (12)

that is real for any positive or negative increment ds. Pagsis the fractional integral

(1) = [ 1(5)(d9° (13

simply the integem is substituted by the fractional number . Nevertheless, that substitution is not at all
straightforward. The major difference between passinmfis.(11) to Eq.(12) is that althougdtls)" is real for negative
values of dgls (ds)? is complex. Therefore, the fractional integral, Eq.(18)a0t compact for any increment ds. Hence
the integral of Eq.(13) is misleading. In other words, thigéedéntial that is necessary for the existence of the fometi
integral, Eq.(13), is wrong. Therefore, a new fractiondfledential that is real and valid for positive and negatiaues
of the incrementisshould be established. It is reminded that the a-Fractidiffarential of a functionf (x) is defined by,

[29:
d?f (x) = 5D f (x)(dx)2. (14)
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Itis evident that the fractional differential defined by @d}) is valid for positive incrementalx, whereas for negative
ones that differential might be complex. Hence considéidgnghe moment that the incremenhxis positive, and recalling
that5D2x # 1, the a-fractional differential of the variabtes:

d® = §DEX(dx)?. (15)
Hence,
cDaf(x)
a __a—X a.
d?f(x) = TDQX dx. (16)

It is evident thatd®f (x) is a non-linear function oflx, although it is a linear function od®x. That fact suggests
the consideration of the fractional tangent space that wpqae. Now, the definition of fractional differential, Etgj,
is imposed either for positive or negative variable diffeif@lsd”x. In addition the proposed L-fractional (in honour of
Leibniz) derivative;D2f (x) is defined by,

d?f (x) = LDaf (x)dx (17)
with the Leibniz L-fractional derivative,
<D2f (x)
Lnha _a“x
DS (x) = Dix (18)

Hence only Leibniz derivative has any geometrical of phgisiceaning. In addition, Eg. 3, is deceiving and the correct
form of Eq. (3) should be substituted by,

X

_a\l-a
00 118 =2 (0L 100) = g irgy | o arasDE (90 (19

a

It should be pointed out that the correct forms are definedHerfractional differential by Eq.(17), the Leibniz
derivative, Eq.(18) and the fractional integral by Eq.(18) the other forms are misleading. Configuring the frantib
differential along with the first fractional differentiapace (fractional tangent space), the functjos f(x) has been
drawn in Fig.1, with the corresponding first differentiaasp at a point x according to Addas definition, Eq.(14).

fx )N

Fig. 1: The non-linear differential of (x)

The tangent space , according to Addé][definition, Eq. (14), is configured by the nonlinear cudff (x) versus
dx. Nevertheless, there are some questions concerning thectgicture of the configuration, Fig. 1, concerning the
fractional differential presented by Add4(. Indeed,

(a)The tangent space should be linear. There is not cordeiv@ason for the nonlinear tangent spaces.
(b)The differential should be configured for positive andjaté/e incrementsix. However, the tangent spaces, in the
present case, do not exist for negative incremenmts
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(c)The axisd? f (x), in Fig.1, presents the fractional differential of the ftian f(x), however the axis dx denotes the
conventional differential of the variable x. It is evidetitat both axes along x anéi(x) should correspond to
differentials of the same order.

Therefore, the tangent space (first differential spacejulshbe configured in the coordinate system with axes

(dx, d?f (x)) Hence, the fractional differential, defined by Eq. (17),asfigured in the plané&d?x, d?f (x)) as a line,
as it is shown in Fig.

Af(xy)

Fig. 2: The virtual tangent space of the f(x) at the point xg

Itis evident that the differential space is not tangentlfim¢onventional sense) to the functiorxgtbut intersects the
figurey = f(x) at least at one point. This space, we introduce, is the tangent space, that istegpda any point x.
Likewise, we may consider in addition to the Fractional tmgspace, the normal at any point. The normal is
perpendicular to the line of the fractional tangent. Heneeare able to establish Fractional Differential Geometry of
curves and surfaces with the Fractional Field Theory. Itvislent that whena = 1, the tangent spaces we propose,
coincide with the conventional tangent spaces. Let us densi manifold with point#(u,v) defined by the vectors

M (u,v) = x(u,V) (20)
with
X=x(uv), UWwSusu, vi<v<vy, =123 (21)
The infinitesimal distance between two points P and Q on thafold M is defined by,

cDIx cpayx
da _a-u da a~u da ] 22
X *Deu u+ DIV V. (22)

In fact for the surface
7= UV, (23)

(see, Fig. 3, Fig. 4 )show the surface defined by Eq.(23) wstfractional tangent plane (space) at the péint) =
(0.5,0.5) for two fractional dimensiongy = 1 (the conventional case) amd= 0.3. It is clear that the fractional tangent
plane is different from the conventional ofe = 1).

4 Fractional Vector Calculus

For Cartesian coordinates, fractional generalizatiortek@tlivergence or gradient operators are defined by:

¢ pa
0@ (x) = grad@ f(x) = 0¥ (x) 0 = @2 T X g _ Lpag(x)e, (24)

C a .
wDL Xi
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Fig. 4: The tangent planes for various values of the fractional dsiea

wheref,D# are Caputo fractional derivatives of order and the sub lirammng no contraction. Hence, the gradient of
the vector x is

O@x = |
with | denoting the identity matrix.
Consequently for a vector field
F(X1,%2,%3) = €1F1(X1, X2, X3) + €2F2(X1, X2, X3) + €3F3(X1, X2, X3), (25)

whereF; (X1, X2, X3) are absolutely integrable, the circulation is defined by:

CF) = (oI ® F) = / (AL F) = ol @ (F1d%) + wl @ (Fod%p) + ol @1 (Fadx3). (26)
L

It should be pointed out that line, surface and volume fomal integrals are different from the one, two or three
dimensional fractional integrals of the function respedij, since the fractional derivatives of the variablesdifferent
from one. Furthermore, the divergence of a ve€t¢x) is defined by:

0@ . F(x) = divi@F(x) = 2’?5# = wDRF(X), 27)
wY Kk
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where the sub-line denotes no contraction.
Likewise, the fractional curl Fcurl(a)F (x)) of a vector F is defined by,

(a) wDRFn LHa
curl'F =g gmn = 8 8mne,PmFn- (28)

(o a
&DfXm

The flux in common vector calculus is defined by
o, (F) = (I, F) :/ (Frdxdxs + Fadxsdx; + Fdxqde).
S

Since
dS = e1dxpdxs + exdXxzdx; + esdx dx;

a fractional flux of the vector F expressed in Cartesian doatds across surface S is a fractional surface integral of
the field with:

O (F) = (uld.F) = & [ (Frdsed®xa + Fod s + Fad g% . (29)
S
A fractional volume integral of a triple fractional intedcf a scalar fieldf = f (X, %o, x3) is defined by:
wVéa)[f] = w|£(2a) [Xl,Xz,Xg]f(Xl,Xz,Xg) = E,f) // f(Xl,Xz,Xg) daxldaXZdaX3. (30)
Q

It should be pointed out that the triple fractional integeahot a volume integral, since the fractional derivative of
a variable with respect to itself is different from one. Serthis a clear distinction between the simple, double oletrip
integrals and the line, surface and volume integrals resede

5 Fractional Vector Field Theorems

(a)Fractional Green formula.

Green theorem relates a line integral around a simple cloged dB and a double integral over the plane region
B with boundarydB. With positively oriented boundary , the conventional Gréleeorem for a vector fiele =
Fie1 + e is expressed by:

/(Fldxl—H:dez)://(ﬁ(Fl)—d( 2) ) dxdro. (31)
B

0X2 0X1
B
Recalling that:

d® = (dxq, d%%;) = (2D, [xa] (dxa)", aD5 [Xe] (d%2)%)

and substituting into conventional Green theorem Eq.(F.yet:

(a) (@
Da C Da (Fz)
F1d%x; + F2d%xp) // | d%x%; dx
av/v( MR CDa g)D)E(ll(Xl)) T

(32)

—

G

~w /(t)Dgz(Fl) - bDil(Fz))d“xld"xz,
W
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(b)Fractional Stokes formula:

Restricting in the consideration of a simple surface W, if demote its boundary byW and if F is a vector field
defined on W, then the conventional Stokes Theorem assaits th

fF-dL :#curlF-dS.
w w

In Cartesian coordinates it yields,

[ (i + Fade + P
oW

n dx2_0x3 dxpdxs+ 0x3
//( )) (0(F1>

e1F1(X1, X2, X3) + €Fo(X1, X2, X3) + €3F3(X1, X2, X3).

whereF (x1,%2,X3) =
In this case the fractional curl operation is defined by:

D3, F

(33)

) o (4F2 - 25

0x1 %1 ox )dxldxz, (34)

curl§ (F) = @ &mng,D5,, (Fn) /6,05, (X)) dmk=€1 | o3
OJDXZX

c nHa
_ wDX3 F2
&D%Xs

Lo (DR ED5R D3R SDLR 5
EDi%s  5DiX EDix D3

= &1 (@D%,Fs — 6%, F2) + €2 (D%, F1 — oD, Fs) + &5 (4D, F2 — D%, Fa)

Therefore, transforming the conventional Stokes theorgathe fractional form we get:
C D)E(lBFZ

CDa

&) [ (Fad®a+ Fad e+ Fad ) = ) [

w [ (Fd®x +Fd%% + Fdxg) = CD§2X2 © D2 xe
CDa Fl CDaF3 CDaFZ
wW=X3 _(;J X1 da da W= Xy _

+<2,D§(‘3X3 ) X3 X1+(

wbx D% X
=& [ {(GogR-

+ (D%, F1— 5,Dg F3) d¥x3d"xy + (5,D% F2 — D%, F1) d¥x1d %o } .

) daXZdaX::,

C Da Fl
W%~ ) g9, dx
z,D;ng) v

oD%, F2) d¥xd 3 (36)

(c)Fractional Gauss formula
For the conventional fields theory, [Et= e1F; + e,F, + e3F3. be a continuously differentiable real-valued function in
a domain W with boundargW .Then the conventional divergence Gauss theorem is exqutess

//F-dS:///dideV. 37)
oW W
Since
S = €10 xpd x5 + €50 X3dx; + €3d%%,d Xy, (38)
whered?x; i=1,2,3 is expressed by Eq.(15),
d OV = d%;d%%,d% x3. (39)
Furthermore, see Eq.(27),
C Da
divi@F(x) = Lk kEk( )aKm_ L DER(X). (40)
% DpXm
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The Fractional Gauss divergence theorem becomes:

gg>/ .:.d<a>szgg>// div@Fd@y. (41)
oW w

Remember that the differentidF S=n?d?S, wheren? is the unit normal of the fractional tangent space as it has
been defined in section 3.

6 Fractional Deformation Geometry

Assuming the description in the Euclidean space, we consiidereference configuration B with the bounda®y of

a body displaced to its current configuration b with the baupdb, see Truesdelld], Ogden B1]. The points in the
reference placement B, defining the material points, arerdbesl by X, whereas the set of the displaced points y describ
the current configuration b with the boundaty . The coordinate system in B is denotedXyy while the corresponding
to the current configuration B are reflectedytoln the present description both systems have the samediréations
with base vectorsa , § whether the reference concerns the current or the initiatt@ssed) configuration. The motion
of a reference poinX is described by the function:

y=¥(Xt). (42)
The conventional gradient of the deformation is defined by:
_0¥(X1) 0¥
F(W,t) = —ax O Fa = a—an ® €. (43)
Therefore the differential line element in the current plaent is described by:
dy = FdX ordy, = FadXa (44)
with its inverse form
_ oW-1(y,t) o, oyt
Flyt)=——2"ZorFa = —2A e ®e. 45
(y,t) dy iA dy, A (45)

Nevertheless, the main difference between the commonlaalend the fractional ones is given by the differential
form. In the fractional calculus the differentidffy given by Eq.(44) in the conventional case takes the form,

dy =F (dX)°, (46)
where
o a a L a a a
F=Fhj :nyzangYiZDx(X+u)=DxX+Dxu (47)
and
(dX) = (dXa)”en. (48)
Applying Eq.(17) the vectofdX ) may be expressed by the fractional differenti&k, since
-1
@7 =1 (2- )X a X dwen— (Bex) o (49)
with
u Xf~1 0 0
(OX)*=r@2-a)| o x¢t o |. (50)
* 0o o0 x¢t
Substituting for{dX)¢ into Eq.(46) that is a nonlinear function of dX we get the tiela
-1
d%y =F (5xx) Ld9X. (51)
(@© 2016 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

94 NS 2 K. A. Lazopoulos, A. K. Lazopoulos: Fractional vector cdimuand...

That is a linear function of the fractional different@ X. Likewise, the fractional differential®y may be expressed
in the current placement by,

a
d% = (Oyy) - (dy)” (52)
with
" 1 y1 @ o0 0
Oy=———| 0 yt 2 0o |. 53

Considering the reference state B and its current stateebinfmitesimal linear lengths dS and ds of and in the
conventional differential geometry, are defined respettitay

dS = dXadXa = dX - dX and(ds)? = dy; -dy; = dy - dy. (54)
However, in fractional differential geometry the infinitesl lengthsd® Sandd®Sare defined as

d3s? =d9XT .d9X andd®s? = d?y - d%. (55)

7 Fractional Strain Tensors

In classical formulation the strain tensors were definedic@ning the difference of the square of the infinitesimaglas
before and after deformation. In fact:

d? —dS =dx"-dx—dXxT-dX =dXT-(C—1)dX, (56)

whereC =FTF is the right Cauchy-Green deformation tensor. It is poirdatithat the identity tensor indicates the
Cauchy- Green deformation tensor for the reference planerfRarthermore

d—dS=dx" - (1-B 1)dx, (57)
whereB = FFT is the left Cauchy-Green deformation tensor. That forniiteis useful in conventional deformation

analysis, sinc®! may be expressed with respect to current placement cotedirla the case of fractional deformation
analysis

(d%9)2 — (d99)% = (d9X)T - (C —Ix)dX (58)

a
with | the fractional identity matrix expressed by
X

1—
U S | SV PR
) 2
x Te=a] o o xpe
and the right Cauchy-Green fractional deformation tensor,
a a a “NT /g a -1
c=(F(DxX) ) (F(Dxx) ) (59)
and
(d79)% ~ (d*S)% = (d)" - (1 - (B) H)d?. (60)
where,
a a a -1\ /a «a -1\ T
Bz(F(DxX) )(F(DXX) ) (61)
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is the left Cauchy-Green fractional deformation tensdkeliise, the fractional non-linear fractional Green-Laga
a
strain tensoE may be defined as

d9s—d9S N }das- d3s—dvS.d’S

a
§~ dis T2 das.dis 62)
Recalling Egs.(58), Eq.(62) becomes,
o] a
E =N-EN, (63)
whereN is the unit vector of the considered fiber in the referencegsteent, with
a 1 a
EZE(C—I). (64)

Recalling that the current placemegt=X+u , where u denotes the displacement vector, the fractional
Green-Lagrange deformation tensor becomes

a

1 a a a a a a a
E = 2 | (0xX) ™ (Ox)T 4+ Dt (B X) ™+ (Bx X) 7T+ (Oxw) T Dxu- (Ox X) 72 (65)

Itis pointed out thaéx is diagonal, hence

a a
OX =X, (66)
X X
Proceeding to define the corresponding Euler-Almansirsteaisor we define the strain by:
d9s—d’S 1d%s-d%—d“S.-d?s
= — — 7
én das 2 dds.das 67

Recalling Eq.(60), we derive the fractional strain tensgderred to the current placement, i.e. Euler-Almansi strai
tensor,

a 1 a\ —1
Azi(l—(B) ) (68)
with the strain

gn=n" -Aan, (69)
wheren is the unit vector along the deformed fiber, correspondirthédN unit vector along the reference placement
fiber . It is evident that in the conventional case with- 1 the fractional Euler Almansi strain tens&rreduces to the
conventional strain tenséx. It should be pointed out that the fractional stretc)((xlexjopting the right Cauchy-Green strain
tensorg: are defined by:
a
- (70)

ds
as the ratio of the measures of the final infinitesimal leng#r the corresponding length of the fractional differeintia

d9X vector withd?S* = (d9X - dax)%. In fact the stretche,g are defined by:

a 2 T a
(/\) =N'"-CN, (71)
whereN = N,ea is the unit vector directed along the material reference:.fibgrthermore for

a2
1 _(9ds :nT.(g)‘lm (72)

2
<)\“> ds

wheren the unit vector along the deformed fiber.
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8 Polar Decomposition of the Deformation Gradient

It is well known that every matrix may be decomposed in a pebdfi an orthogonal and a symmetric positive tensor.
Applying the property to the deformation gradient we get

a a a
where R is orthogon@ = R~T and U and V are symmetric positiyed =UT and V=VT). Therefore, we have

a a 2 a a 2
C= (U) andB = <V> . (74)

a a a a
Moreover, the eigenvalues ofandV are the same, but the eigenvecttawsf U andV of \/ are related byoé —RU.In
a a
factV is directed along a principal direction (eigenvector) & gitrain tensoy with U been the eigenvector &f. In other
words, principal directions refer to the vectors: uiea andV = Vaea.

9 Deformation of Volume and Surface

Consider three non-coplanar line elemetftX (Y, d?X (@, d*X (3 at the pointX in B so that:

i (5x)

with d?y' the corresponding fractional differential vectors in thierent placement. Further, the volumi¥ is derived
by

1
dox® (75)

dVv =doXD. (d*X@ A dIX ), (76)
Alternatively
dV = det(d*X d*x@ d9x3) (77)
in whichdX @ denotes a column vector (i=1,2,3). The corresponding veldwin the deformed configuration is
dv=det(d®y™,d%? d%y®) (78)
and
a a -3 a a -3
dv= det(F)det(DxX> dv= Jdet(DXX> av (79)
since
5= (detf) anddV = dX ) .49 X pdo X3 (80)

Consider, further, an infinitesimal vector element of matesurface dS in the neighborhood of the point X in B
with d®S = Nd@Sthe surface vector corresponding to the normal veltdfurthermored® X is an arbitrary fiber cutting
the edged?S such thatd®X - d“S > 0. The volume of the cylinder with bag¥’S and generatord”X has volume
dV =d9X-d9S. If d*x andd“s are the deformed configurationsdff X andd“S respectively, withd9s = nd?s, where
n is the normal vector to the deformed surface, the volumerdihé reference placement corresponds to the volume
dv=d9x-d%sin the current configuration so that:

-3
dv=dTy.d%s— 3det(ﬁxx) doX - dIs. 81)

- a a 71 -
Sincedy =F (DXX) d?X, we obtain

a -T a o -3
(DXX) FTd“X-d“S=Jdet<DxX> dX-d’s (82)
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removing the arbitrard®X . Therefore

a

a o -3
d9s=] det(DxX>

)T <5xx) ds (83)
and

a

a a -3
nd?s= Jdet| OxX

F)T (Exx> NdS. (84)

The relation between the area elements corresponding ¢éoerafe and current configurations is the well known
Nansons formula for the fractional deformations. It is evitithat the correspondence lies betwd®8 andd“?s

10 Examples of Deformations

(a)Homogeneous deformations
The most general homogeneous deformation of the body B fi®neference configuration is expressed by:

X =AX. (85)
Hence,
a 0% 2%x
F = E - Aan

Recalling that the Caputo’s fractional derivatives aresgiby:

rv+1)

Cpat _ 4\V — _ o\v-a
Drt—2a) I'(—(H—v+1)(t 3)
and
re .o
cna _ a
DX = I‘(2—a)x (86)
the fractional deformation gradient is defined by
02 r
_)a( Ay % X (2) Aikd(jle_a- (87)

OX2 I(2—-a)
Hence, we have

Aq 1le Aq 2X% Aq3X 1-a

a r2
F= I_(Z(—) ) A21in aAsz%- aA23X37a . (88)
A31X aA32X aA33X§'_a
Furthermore, we have
u rQ Xf® 0o o
szm 0 X3 2 0 (89)
X =3 o 0 x=2

thus we conclude that
a o -1\ ' a/a -1 a a/a -1 a/f/a -1\
C=|F <|:|xx> F <|:|)(X) andB=F <|:|)(X) F <|:|)(X) . (90)
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Specializing the homogeneous deformations with the exawfdimple shear we discuss the deformation

X1 = X1+ yXo,
X2 = Xa, (91)
X3 = X3.
Hence the deformation gradient:
1- 1-
4 a r@) XAy 0
F=0Ox= m 0 Xz_a 0 . (92)
X Te=al g o xa

Therefore, the Cauchy-Green deformation tens%)mdg become:

a a/a -1 Ta o -1 1 y 0
C= F(DXX) F(Dxx) =ly(¥*+1)0 (93)
0O 0 1
and
a a/fa 1/a /a -1\ 7 1+V2 y 0
B=F<Dxx> F(DXX> =| y 10]|. (94)
0 01
The Green (Langrange) Fractional strain tensor is:
a 1a 0 y/20
E=3(C—1)=|y/2y°/20 (95)
0O 0O

and the Euler-Almansi strain tensor is given by

0 y/2 0
. (96)

Kzéa—é>%:[wz—fmo
0 0 O

It would seem strange that the results are exactly the sartieases of the conventional elasticity. However, there
is mathematical explanation for the homogeneous defoomatiJust taking into consideration the definition of the
fractional derivative and differential, the differentfal a linear function of the form

f (x) = Ax (97)
the fractional differential is given by
d?f (x) = Adx. (98)

The fractional differential of the function has almost tlene form as the conventional one. Nevertheless, for the
nonlinear function,

f(x)=x" (99)
The fractional differential
dof (x) = SDIx* - (SDIx) 1dx (100)
is equal to
rée)r2-a)
a I S S a
dof (x) = FE_a) x3d%x (101)

with coefficient depending upon the -fractional dimension. That makes the difference in nombgeneous
deformations discussed in the next section.
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(b)The non-homogeneous deformations The non-homogededaisnation is defined by the equations,

X1 = Xq +yX3,
X2 = Xa, (102)
X3 = X3.

Therefore, the deformation gradient is given by

r2 yi-a,, (5 i
4 a F(Z—)or)xl : Vr(5(—a)xz : 0
F=[x= 0 L I : (103)
0 0 re x1-a
re-—a)’3

Taking into consideration Egs.(75, 76) we get the fracti@eauchy-Green deformation tensors expressed by

24y (2—a)X3

a a/a -1 Ta a -1 1 r5-a) 5 0
C=|F (Dxx> = (Dxx) — | 24yr (2-a)X3 14 576/2T (2—a)*X$ 0 (104)
r(-a) r(s—a)?
0 0
and
576/2 (2-a)X$ 24yr (2—a)X§
2 ala /0 /a T |1+ F-a)? F5=a) 0
B=F (DXX> F (DXX> = 24yT (2-a)X3 1 ol- (105)
r(5—a)
0 1
Hence, Green-Lagrange strain tensor is expressed by
12yl (2—a)X3
A 0 ~Trea . 9
E = |17 (2-a)X 2882 (2-a)°X$ 0 (106)
r(5-a) r(s—a)?
0 0
and Euler-Almansi strain tensor is defined as
12yl (2—a)x3
. 0 5w - O
A= |1y (2-a)3 288°T (2-a)>8 ol- (107)
r(5-a) r(-a)?
0 0 0

It is evident that the strain tensor strongly depends upefirdctional dimensioa for the present non-homogeneous
deformation.

11 The Infinitesimal Deformations

Since there has been introduced, in the literature, as quitkent to consider fractional strain tensors, in infinitesd

deformations, by simply substituting the common derivagito fractional ones, it would be wise to study whether that

idea is valid or not. Unfortunately it is proven a mistakea¢tional strain with simple substitution of derivativesedo

not have any physical meaning. Considering the fractiomak@-Lagrange strain tensor, Eq.(65), where u is the small
a

displacement vector witju| < 1 and|Ox u| < 1, we restrict into the linear deformation analysis, anditifi@itesimal

(linear) fractional Euler-Lagrange strain teniéabecomes
n
a 1 a T a T a a 1
|'E:§ (DxX) -(DxU) —I—DxU-(DxX) . (108)
n
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Further recalling that the current placemgnt X + u where u is the displacement vector the fractional left Csich
a
Green deformation tens@® becomes

a a a a a a a a a
B=1+4(OxX) T (Oxu)" +Oxu-(Ox X) 1+ Oxu- (Ox X)"1(Ox X)"T - (Oxu)". (109)

Considering the infinitesimal deformations, the fractideti Cauchy-Green strain tensor reduces to

a a a a a
B=1+(OxX) T-(Oxu)" +Oxu-(OxX)™? (110)
and the infinitesimal fractional Euler-Almansi strain tensecomes:
a 1 a\ —1 1 @ a a a
A=2(1=(B) )= 5((0xX) T+ (Ox )T+ Oxu- (Ox X) ). (111)
lin 2 2
Both fractional strain tensors Eqs.(107,110) coincidenfinitesimal deformation analysis, however they do not
coincide with the widely used strain definition in the fractal mechanics literature.

12 Fractional Stresses

Pointing out that the fractional tangent space of a surfasedifferent orientation of the conventional one, the foawl
normal vectom? does not coincide with the conventional normal vector n. d¢ewe should expect the stresses and
consequently the stress tensor to differ from the conveationes not only in the values.df' P is a contact force acting
on the deformed aredf'a = n?d?a lying on the fractional tangent plane whafeis the unit outer normal to the element
of aread”a then thea-fractional stress vector is defined by

dop
t9= | —_—. 112
dagTL od%a (112)

However, thex-fractional stress vector does not have any connectiontiitltonventional one
. P
t= lim —. (113)
Since the conventional tangent plane has different orfiemtérom the -fractional tangent plane and the correspagdi
normal vectors too. Following similar procedures as theveational ones we may establish Cauchy fundamental theorem
see TruesdelH].
If t%(-,nY) is a continuous function of the transplacement vector ygtigana-fractional Cauchy stress tensor field

T = [09]. (114)

13 The Balance Principles

Almost all balance principles are based upon Reynoldsp@hsheorem. Hence the modification of that theorem, just to
conform to fractional analysis is presented. The conveatiReynolds transport theorem is expressed by:

" / AdV = / dV+ / AVndS (115)

For a vector fieldA applied upon regiodW/ with boundarydW andv,, is the normal velocity of the boundadyV.

(a)Material derivatives of volume, surface and line ingdgyr
For any scalar, vector or tensor property that may be reptegdy:

/ R (xt)d (116)
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where V is the volume of the current placement in the coneeaticalculus. The material time derivativeRjf(x,t)
is expressed by
dRj JRj ORj] ORj
— =}V - 3
dt ot z?xJ ot
Recalling that we consider constant material points, dutime derivation. Nevertheless, in fractional calculing, t

fractional order for space is different from the fractioneder for time, the material time derivative is given, foyan
tensor fieldR;, by:

v-O,P;. (117)

LDtﬁ —Lofp: P (gglgpl’j) (galfxo ('5Dt’3xm) Oxms (118)

where, the symbad denotes the partial Leibnitz derivative correspondindto
Since the fractional velocity is expressed by,

= (59¢%) (EDF xm) &m. (119)
The material derivative, into the context of fractionaladls, is expressed by
a
5DF () =508 () +v-Tx (). (120)
Hence, the acceleration is defined by
_cpnBy, _caB a
a=Div=g0"v+v-Oxv. (121)

Furthermore the material time derivativeRf(t) is expressed in conventional analysis by:

—t P (t dt/P (x)d (122)

where b is the current placement of the region. It is well knakat
(dV) = JdV, and the Eq.(121) yields:

k * a
dt/P (x,t)dV = / P02 E]dv (123)

Recalling the material derivative operator Eq.(116), E2R) yields,

d IPI(xt)  I(UpP (x.t
aV/P,j(x,t)dvzb/[ Ja(tx ) 4 (Upa)‘(ix v, (124)

Yielding Reynolds Transport theorem:

5 [Rixav = / #dw ! V[P (x.1)]dS. (125)

Expressing Reynolds Transport Theorem in fractional forpet:

(a)
(a)
LDt < / P* X, t daV) / (L)dtBPl’Jk(X’t) daV""w/Vp[PﬁJj (X’t)]dasp7 (126)
\%
S

whered?V andd“Sare the infinitesimal fractional volume and surface, respely.
The volume integral of the material time derivativeRyf(t) may also be expressed by:
(a)
Lpf( / P (x,1)dV) = / (S0P P (x,t)+div [vR;]) doV. (127)
\
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(b)The balance of mass
The conventional balance of mass, expressing the masgyatsa is expressed by:

% /pdV —o0. (128)
W

In the fractional form it is given by:

(@)
gDFw/pd“v —0, (129)
W

Wherethﬁ is the total time derivative.
Recalling the fractional Reynolds Transport Theorem, we ge

(@) (@)
LD, / pdoV =, / (Y0P p(x,t)+div¥ [vp]) V. (130)
\Y \Y

Since Eq. (129) is valid for any volume V, the continuity etiomis:

sl p+divivp] =0,

where,div?® has already been defined by Eq.(27). That is the continuitgion expressed in fractional form.
(c)ltis reminded that the conventional balance of lineanmantum is expressed in continuum mechanics by:

LoP p + divA[vp] = 0, (131)

wherevis the velocityt (" is the traction on the boundary and b is the body force pemnaits. Likewise that principle
in fractional form is expressed by:

(a) (a)
°Df., / pvd@V =, / [ob+ divA(T)] d@V, (132)
Q Q
Hence the equation of linear motion, expressing the balaflbeear momentum is defined by,

div3[T9] + pb— pV =0. (133)

It should be pointed out thdiv® has already been defined by Eq.(27) and is different fromdhgentional definition
of the divergence. Following similar steps as in the corneerat case, the balance of rotational momentum yields the
symmetry of Cauchy stress tensor.

(d)Balance of rotational momentum principle
Following similar procedure as in the conventional casenves end up to the symmetry property of the fractional
stress tensor, i.e.

T =(THT. (134)

14 Conclusion

Correcting, in the present work, the geometric icon of tlaetional differential, the fractional tangent spaces Haeen
established. The basic concepts of kinematics were stuidieestablishing the Fractional Continuum Mechanics
principles. The various concepts of deformation and swathe conventional Continuum Mechanics were modified, just
to conform to the fractional differential law that is a honeogous non-linear function of the variable differentiahc®
Continuum Mechanics is based upon the differential condkat peculiarity introduces some important differended t
make the simple transferring of the concepts and ideas frmconventional classical Continuum Mechanics to the
Fractional Continuum Mechanics impossible. There is a fieetthe modification of the deformation and strain concepts
that inevitably yield different transformation laws. Fugt, the, commonly used in the literature, linear fractictiain
should be revised. The present analysis may be useful feingoupdated problems in Mechanics and especially for
lately proposed theories such as peridynamic theoryn§i[#2], Lazopoulos & Lazopoulos3].
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