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1 Introduction

Fractional derivatives and fractional integrals are very useful tools in the modeling of many complex phenomena. To
see some of the applications of fractional differential equations (FDEs) we refer the reader to [1,2,3,4]. In the book
[5], Baleanu et al. studied the recent developments in nonlinear fractional dynamics, nonlinear vibration and control. In
[6] there are some recent achievements in fractional dynamics. In [7,8,9,10,11] one can find applications of fractional
differential equations in viscoelastic materials, biology, signal processing, heat conduction and thermal systems.In [12],
Benson studied advection and dispersion of solutes in natural porous or fractured media by using fractional calculus.
For the theory of fractional calculus one can see the monographs of Kilbas et al. [13], Podlubny [14] and Samko et al.
[15]. Some recent existence results to FDEs can be found in articles [16,17,18,19,20,21,22,23]. Bhrawy et al. [24] used
spectral methods to solve various types of FDEs.
In this work, we investigate the problem







Dα
0+

(

w(s)−P(s)w(βs)

)

(t) = f (t,w(t),w(γt))), t ∈ (0,T],

w(0) = w′(0) = 0,
(1)

where 1<α ≤ 2,Dα
0+ denotes the Riemann-Liouville fractional derivative of orderα, 0< β ,γ < 1, f : J×R+×R+→R+

is continuous whereR+ := [0,∞), J := [0,T] andP : J →R+ is of classC1.
The pantograph type equations emerge in the modeling of manyproblems in sciences and engineering such as

economy, electrodynamics, control and biology [25,26,27]. Recently, Doha et. al [28] utilized a collocation method to
solve a class of FDEs of pantograph type. Balachandran et al.[29] established the existence of solutions for the
pantograph problems of the form, namely







Dα
0+

(

w(s)−h(s,w(βs))

)

(t) = f (t,w(t),w(β t))), t ∈ (0,T],

w(0) = w0,

(2)
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when 0< α,β < 1, h is a Lipschitz continuous function andf is completely continuous on a Banach spaceX. They
consider the above problem whenh= 0 with a nonlocal condition. Balachandran et al. make used ofthe Banach and the
Krasnoselskii fixed point theorems to perform the existenceof a solution for the mentioned problems.

The main purpose of this article is to discuss the existence and multiplicity of nondecreasing positive solutions to
problem (1) with 1< α ≤ 2, utilizing the fixed point theorems.

We organize the manuscript as follows. In Section 2, some basic definitions and results concerning fractional calculus
are shown. Also two required fixed point theorems are recalled in this section. In Section 3, we establish the existence and
multiplicity of solutions for problem (1). In Section 4, three examples are given to exemplify the main reported results.

2 Preliminaries

Assume−∞ < a < b < +∞, η ,α,β ∈ C and denote the real part ofz∈ C by Re(z). Theαth-order Riemann-Liouville
fractional derivative and integral are defined by

(Dα
a+ f )(t) =

1
Γ (n−α)

dn

dtn

∫ t

a

f (s)
(t − s)α−n+1ds

=
dn

dtn
(In−α

a+ f )(t), t > a, Re(α)≥ 0, (3)

and

(Iα
a+ f )(t) =

1
Γ (α)

∫ t

a

f (s)
(t − s)1−α ds, t > a, Re(α)> 0, (4)

respectively, such thatn= [Re(α)]+1 whenα 6∈ N ([x] means the integer part ofx∈ R) [13].
The following Lemma shows the semigroup property of the operatorIα

a+ and the composition relation of the operatorsIα
a+

andDβ
a+.

Lemma 1([13] ) Assume Re(α),Re(β )> 0 and f ∈C[a,b]. Then for any t∈ [a,b] we conclude that

(a)
(Iα

a+Iβ
a+ f )(t) = (Iα+β

a+ f )(t). (5)

(b)
(Dα

a+Iα
a+ f )(t) = f (t). (6)

(c)If Re(α)> Re(β ), then

(Dβ
a+Iα

a+ f )(t) = (Iα−β
a+ f )(t). (7)

(d)Suppose Re(α) 6∈N and n= [Re(α)]+1. Also assume fn−α(t) = (In−α
a+ f )(t) ∈Cn[a,b]. Then

(Iα
a+Dα

a+ f )(t) = f (t)−
n

∑
k=1

f (n−k)
n−α (a)

Γ (α − k+1)
(t −a)α−k

. (8)

We denoteCη [a,b] to be the space of functionsf defined on(a,b] fulfilling (t −a)η f (t) ∈C[a,b] with the norm

|| f ||Cη = ||(t −a)η f (t)||C.

We recall that we haveη = 0,Cη [a,b] =C[a,b]. The following lemma is about the continuity of the operator

Iα
a+ : Cη [a,b]→C[a,b].

Lemma 2([13] ) Assume Re(α) > 0 and0≤ Re(η) ≤ 1. If Re(η) ≤ Re(α), then the operator Iαa+ : Cη [a,b]→ C[a,b] is
bounded,namely

||Iα
a+ f ||C ≤ l || f ||Cη ,

l = (b−a)R(α−η) Γ (R(α))|Γ (1−R(η))|
|Γ (α)|Γ (1+R(α −η))

.
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To establish the existence of solutions for (1), we recall the following theorems.

Theorem 3([30]) Assume Y is a Banach space andP ⊂ Y is a cone in Y. LetΩ1,Ω2 be open subsets of Y with0 ∈
Ω1,Ω1 ⊂ Ω2, and suppose F: P ∩ (Ω2 \Ω1)→ P is a completely continuous map such that either

(H1)||Fw|| ≥ ||w||, w∈ P ∩∂Ω1, and||Fw|| ≤ ||w||, w∈ P ∩∂Ω2, or
(H2)||Fw|| ≤ ||w||, w∈ P ∩∂Ω1, and||Fw|| ≥ ||w||, w∈ P ∩∂Ω2.

Then F possess a fixed point inP ∩ (Ω2\Ω1).

In the sequel, we recall a fixed point theorem due to the Leggett-Williams [31].

Definition 1Assume Y is a real Banach space andP is a cone in Y. We say a mapθ : P → [0,∞) is a nonnegative
continuous concave functional onP providedθ is continuous and

θ (λv+(1−λ )w)≥ λ θ (v)+ (1−λ )θ (w),

for any v,w∈ P andλ ∈ [0,1].

Assumea,b,c> 0 are constants. We define

Pc = {w∈ P : ||w||< c}, (9)

Pc = {w∈ P : ||w|| ≤ c}, (10)

P(θ ,a,b) = {w∈ P : θ (w)≥ a, ||w|| ≤ b}. (11)

Theorem 4([31]) Assume that Y is a real Banach space,P is a cone in Y and c> 0. Let θ be a concave nonnegative
continuous functional onP with θ (w)≤ ||w|| for any w∈ Pc. Suppose F: Pc → Pc denotes a completely continuous
map. Assume that there exist constants0< a< b< d ≤ c such that

(h1){w∈ P(θ ,b,d) : θ (w)> b} 6= /0 andθ (Fw)> b for w∈ P(θ ,b,d);
(h2)||Fw||< a for ||w|| ≤ a;
(h3)θ (Fw)> b for w∈ P(θ ,b,c) with ||Fw||> d.

Thus, F admits at least three fixed point w1,w2 and w3 in Pc fulfilling

||w1||< a, b< θ (w2), a< ||w3|| with θ (w3)< b.

3 Existence of Solutions

Suppose[a,b] ⊂ R is an interval. We denote byC1[a,b] the space of continuously differentiable functions on[a,b]
equipped with the norm

||w||= ||w||C+ ||w′||C,
where||w||C := sup

t∈[a,b]
|w(t)|.

Using the Lemmas1 and2, it can be easily show thatw∈C1(J) is a solution of problem(1) iff w∈C1(J) is a solution of
the integral equation

w(t) = P(t)w(β t)+
(

Iα
0+ f (s,w(s),w(γs)

)

(t), t ∈ J. (12)

So, we study the existence of solutions for integral equation (12). We consider (12) under the following conditions.

(i)P : J → R+ is a function in the spaceC1(J) with (2+β )||P||< 1 andP′(t)≥ 0.
(ii) f : J×R+×R+ → R+ is a continuous function which is nondecreasing with respect to its variables. Moreover there

exist constantsc> b> 0 such that

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,c,c)≤ c, (13)

f (η , b
2,0)(T −η)α

Γ (α +1)
≥ b, (14)

whereη = max{0,T − 1
2}.
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Let Br ⊂C1(J) be an open ball centered at zero with radiusr and define the operatorF onC1(J) as follows:

(Fw)(t) := P(t)w(β t)+
(

Iα
0+ f (s,w(s),w(γs)

)

(t). (15)

Next, define the cone
P := {w∈C1(J) : w(t)≥ 0,w′(t)≥ 0}. (16)

By the definition (15) fixed points ofF are solutions of integral equation (12).

Lemma 5Suppose P: J → R+ is a function in the space C1(J) with P′(t) ≥ 0 and f : J×R+×R+ → R+ is continuous
and nondecreasing with respect to its variables. Then, F: P ∩ (Bc\Bb)→ P is continuous and compact.

Proof.We prove this lemma in the following steps.
1. F(P)⊂ P.
Let w∈ P. Sincef andP are nonnegative(Fw)(t) ≥ 0 and by the assumption 1< α ≤ 2, Lemmas1 and2 we have

d
dt

(

Iα
0+ f (s,w(s),w(γs)

)

(t) =
(

Iα−1
0+ f (s,w(s),w(γs)

)

(t)≥ 0, t ∈ J.

Then by the assumptionP′(t)≥ 0 we have(Fw)′(t)≥ 0. This implies thatFw∈ P.
2. F : P ∩ (Bc\Bb)→ P is continuous.
Fix ε > 0 and take arbitrarilyw,v∈ P ∩ (Bc\Bb) with ||w− v|| ≤ ε. Fort ∈ J we obtain

|(Fw)(t)− (Fv)(t)| ≤ |P(t)(w(β t)− v(β t))|

+
1

Γ (α)

∫ T

0

| f (s,w(s),w(γs))− f (s,v(s),v(γs))|
(T − s)1−α ds

≤ ||P|| ||w− v||+ ωc( f ,ε)Tα

Γ (α +1)
, (17)

where
ωc( f ,ε) = sup{| f (t,w1,v1)− f (t,w2,v2)| : t ∈ J, wi ,vi ∈ [0,c], |wi − vi| ≤ ε, i = 1,2}. (18)

Also we discover

|(Fw)′(t)− (Fv)′(t)| ≤ |P′(t)(w(β t)− v(β t))|+β |P(t)(w′(t)− v′(t))|

+
1

Γ (α −1)

∫ T

0

| f (s,w(s),w(γs))− f (s,v(s),v(γs))|
(T − s)2−α ds

≤ (1+β )||P|| ||w− v||+ ωc( f ,ε)Tα−1

Γ (α)
. (19)

Inequalities (17) and (19) yield that

||F(w)−F(v)|| ≤ (2+β )||P|| ||w− v||+
( Tα

Γ (α +1)
+

Tα−1

Γ (α)

)

ωc( f ,ε). (20)

Since f is uniformly continuous on bounded subsets ofJ×R+×R+ and lettingε → 0, we infer thatωc( f ,ε)→ 0. Thus
inequality (20) implies thatF : P ∩ (Bc\Bb)→ P is continuous.
3. F : P ∩ (Bc\Bb)→ P is compact.
Let B⊂ P ∩ (Bc\Bb) and put

M0 = sup{ f (t,w,v) : t ∈ J,w,v∈ [0,c]}.
Then for anyw∈ B we have

||Fw||= ||Fw||C+ ||(Fw)′||C ≤ (2+β )||P|| ||w||

+
1

Γ (α)

∫ T

0

| f (s,w(s),w(γs))− f (s,v(s),v(γs))|
(T − s)1−α ds

+
1

Γ (α −1)

∫ T

0

| f (s,w(s),w(γs))− f (s,v(s),v(γs))|
(T − s)2−α ds

≤ (2+β )c||P||+2
( Tα

Γ (α +1)
+

Tα−1

Γ (α)

)

M0.
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ThenF(B) is bounded. Put
M1 := sup{F(w) : w∈ B}.

Now, we prove thatF(B) is an equicontinuous subset ofP. Let t1, t2 ∈ J and t1 < t2. For anyw ∈ B, by mean value
theorem and using boundedness ofB we conclude

|(Fw)(t1)− (Fw)(t2)| ≤ |P(t1)||w(β t1)−w(β t2)|+ |P(t1)−P(t2)||w(β t2)|

+
1

Γ (α)

∫ t1

0
f (s,w(s),w(γs))

( 1
(t1− s)1−α − 1

(t2− s)1−α
)

ds

+
1

Γ (α)

∫ t2

t1

f (s,w(s),w(γs))
(t2− s)1−α ds

≤ cβ ||P|| |t1− t2|+ c|P(t1)−P(t2)|

+
M0

Γ (α +1)

(

2(t2− t1)
α + tα

1 − tα
2

)

→ 0 as t1 → t2. (21)

ThenF(B) is equicontinuous.
By using the steps 1-3 and the Arzela-Ascoli theorem, we findF : P ∩ (Bc \ Bb) → P is continuous and
compact. �

Theorem 6Under assumptions(i) and(ii), problem(1) has a nondecreasing positive solution in C1(J).

Proof.It is enough to prove that integral equation (12) has a nondecreasing positive solution inC1(J). To do this we prove
that the equationFx= x has a nonzero solution inP. Now we show thatF satisfies the following inequalities

1)||Fw|| ≤ ||w||, w∈ P ∩{w∈C1(J) : ||w||= c};
2)||Fw|| ≥ ||w||, w∈ P ∩{w∈C1(J) : ||w||= b},

where constantsb andc come from assumption (ii). Letw ∈ P ∩ {w ∈ C1(J) : ||w|| = c}. SinceFw ∈ P, and using
condition (ii), we have

||Fw||= ||Fw||C+ ||(Fw)′||C

≤ (2+β )||P|| ||w||+ 1
Γ (α)

∫ T

0

f (s,w(s),w(γs))
(T − s)1−α ds

+
1

Γ (α −1)

∫ T

0

f (s,w(s),w(γs))
(T − s)2−α ds

≤ (2+β )||P||c+ f (T,c,c)Tα

Γ (α +1)
+

f (T,c,c)Tα−1

Γ (α)

≤ c= ||w||. (22)

Then 1) it is satisfied. Now, letw∈P ∩{w∈C1(J) : ||w||= b}. Sincew∈P, b= ||w||= w(T). Putη = max{T− 1
2,0}.

Using mean value theorem for anyt ∈ [η ,T], we haveb−w(t) = w(T)−w(t)≤ b(T − t)≤ b(T −η). Thus,

b
2
≤ b(1− (T−η))≤ w(t), t ∈ [η ,T]. (23)

By assumptions (i), (ii) and inequality (23), we get

||Fw||= ||Fw||C+ ||(Fw)′||C ≥ ||Fw||C

≥ 1
Γ (α)

∫ T

η

f (s,w(s),w(γs))
(T − s)1−α ds

≥ f (η , b
2,0)(T −η)α

Γ (α +1)
≥ b= ||w||,

Then 2) it is satisfied. By Lemma5, (1) and (2), all conditions of the Theorem3 hold. ThenF has a fixed point in
P ∩ (Bc\Bb). �

In the sequel, using the Leggett-Williams fixed point theorem, we prove the existence of three nondecreasing positive
solutions to problem (1). To do this we need the following assumption:

c© 2016 NSP
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(ii)′ f : J×R+×R+ → R+ is a continuous function which is nondecreasing with respect to its variables. Moreover there
exist constantsc> b> a> 0 such that

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,c,c)≤ c, (24)

f (η , b
2,0)(T −η)α

Γ (α +1)
> b, (25)

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,a,a)< a, (26)

whereη = max{0,T − 1
2}.

Theorem 7Assume(i) and (ii)′ hold. Then problem(1) has three nondecreasing positive solutions w1,w2 and w3 such
that

||w1||< a, b< w2(T), a< ||w3|| with w3(T)< b.

Proof.Assume the operatorF and the setP are defined by (15) and (16). Using (i) and (ii), for anyw∈ Pc = {w∈ P :
||w||< c, we findFw∈ P and

||Fw||= ||Fw||C+ ||(Fw)′||C

≤ (2+β )||P|| ||w||+ 1
Γ (α)

∫ T

0

f (s,w(s),u(γs))
(T − s)1−α ds

+
1

Γ (α −1)

∫ T

0

f (s,w(s),w(γs))
(T − s)2−α ds

< (2+β )c||P||+ f (T,c,c)Tα

Γ (α +1)
+

f (T,c,c)Tα−1

Γ (α)
≤ c. (27)

ThenFw∈Pc. Similar to the proof of Lemma5, we can prove thatF : Pc →Pc is completely continuous. Now, define
the functionalθ : P → R+ as

θ (w) = w(T).

Thenθ is a nonnegative continuous concave functional onP. Considera,b,c given in assumption(ii)′. We definew(t) =
b+c

2 . Thusw ∈ Pc andc > ||w|| = θ (w) = b+c
2 > b. Therefore,{w ∈ P(θ ,b,c) : θ (w) > b} 6= /0. Let w ∈ P(θ ,b,c).

Similar to the inequity (23), we observeb
2 ≤ w(t) for t ∈ [η ,T], whereη = max{T − 1

2,0}. By assumptions(i) and(ii)′

we obtain

θ (Fw) = (Fw)(T)≥
(

Iα
0+ f (s,w(s),w(γs)

)

(T)

≥ 1
Γ (α)

∫ T

η

f (s,w(s),w(γs))
(T − s)1−α ds

≥ f (η , b
2,0)(T −η)α

Γ (α +1)
> b.

Therefore, condition(h1) of Theorem4 holds if we putd = c. Now considerw∈ P with ||w|| ≤ a. Similar to inequality
(22) and using (26) we deduce

||Fw|| ≤ (2+β )a||P||+ f (T,a,a)Tα

Γ (α +1)
+

f (T,a,a)Tα−1

Γ (α)
< a

The above inequality shows that assumption(h2) of Theorem4 holds.
Finally, we consider the assumption(h3) of Theorem4. By inequality (27) for everyw∈ P(θ ,b,c), ||Fw|| ≤ c. Now if
we considerd = c, then(h3) holds.
ConsequentlyF satisfies the hypothesis of Theorem4. Then problem (1) has three positive solutionsw1,w2 andw3 which
are nondecreasing and

||w1||< a, b< w2(T), a< ||w3|| with w3(T)< b. �

c© 2016 NSP
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4 Examples

We now give three examples to demonstrate the efficiency of our results.

Example 1We consider the fractional pantograph equation with initial conditions
{

D1.75
(

w(s)− 2s−s2

22 w( s
5)
)

(t) =
w2(t)+(t+1) ln(|w(t)w( t

2 )|+1)+w2( t
2 )+1

24 , t ∈ (0,1],
w(0) = w′(0) = 0.

(28)

Set the followings

f (t,x,y) =
x2+(t +1) ln(|xy|+1)+ y2+1

24
, P(t) =

2t − t2

22
,

T = 1, α = 1.75, β =
1
5
, γ =

1
2
.

One can easily see that f is nondecreasing with respect to itsvariables and continuous on[0,1]×R+ ×R+ and P(t)
is continuously differentiable on[0,1] with P′(t) ≥ 0. Now, we consider conditions (i) and (ii) for problem (28). By
calculation we observe that

||P||= 3
22

,

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P|| < 3,

η = max{0,T − 1
2
}= 1

2
,

(T −η)α

Γ (α +1)
>

18
100

.

For c= 1+
√

3 and b= 3
400, we find

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,c,c)< 3 f (T,c,c)≈ 2.525≤ 1+
√

3= c

f (η , b
2,0)(T −η)α

Γ (α +1)
>

18
100

f (η ,
b
2
,0)≈ 0.0077≥ 3

400
= b,

According to the above calculations, all assumptions of theTheorem7 hold. Then, the problem (28) has a nondecreasing
positive solution in the space C1[0,1].

Example 2Let us consider the fractional initial value problem
{

D1.5
(

w(s)− s+1
88 w(3s

4 )
)

(t) = f (t,w(t),w( t
3)), t ∈ (0,2],

w(0) = w′(0) = 0.
(29)

where

f (t,x,y) =















x2+tanh(xy)
10 + t+2

128, t ∈ [0,2] x∈ [0,1], y∈ [0,∞),
1+tanh(y)

10 +(x−1)3+ (t+2)x
128 , t ∈ [0,2] x∈ [1,10], y∈ [0,∞),

tanh(y)
10 + (t+2)

√
10x

128 +
√

x
10

√
10
+729, t ∈ [0,2] x∈ [10,∞), y∈ [0,∞).

Let us put

P(t) =
t +1
88

,

T = 2, α = 1.5, β =
3
4
, γ =

1
3
.

Easily, we find

||P||= 1
22

,

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P|| ≤ 4.26,

η =
3
2
,

(T −η)α

Γ (α +1)
≥ 0.26.
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For a= 1, b= 10and c= 104, we deduce

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,c,c)≤ 4.26f (T,c,c)≈ 3161.43≤ 104 = c,

f (η , b
2,0)(T −η)α

Γ (α +1)
≥ 0.26f (η ,

b
2
,0)≈ 16.70> 10= b,

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,a,a)≤ 4.26f (T,a,a)≈ 0.89< 1= a.

Then, using the Theorem7, the problem (29) has three positive solutions w1,w2 and w3 inC1[0,2]which are nondecreasing
and

||w1||< 1, 10< w2(2), 1< ||w3|| with w3(2)< 10.

Example 3Finally, we consider the fractional pantograph equation with initial conditions

{

D1.9
(

w(s)− sin( sπ
2 )

15 w( s
10)

)

(t) = (tw(t))3+ sin3(100πw(t)
14 )+ tw3( t

8), t ∈ (0, 1
2],

w(0) = w′(0) = 0.
(30)

Now, we set

f (t,x,y) = t3x3+ sin3(
100πx

14
)+ ty3

, P(t) =
sin( tπ

2 )

15
,

T =
1
2
, α = 1.9, β =

1
10

, γ =
1
8
.

Observe that f(t,x,y) is continuous and nondecreasing with respect to t, x and y on[0, 1
2]×R

+ ×R
+. Also P(t) is

continuously differentiable on[0, 1
2]with P′(t)≥ 0. To verify the hypotheses (i) and (ii) of Theorem7, we need the following

estimates:

||P||=
√

2
30

,

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P|| < 0.79,

η = max{0,T − 1
2
}= 0,

(T −η)α

Γ (α +1)
> 0.14.

For c= 0.28and b= 0.14, we observe that

(

Tα

Γ (α+1) +
Tα−1

Γ (α)

1− (2+β )||P||
)

f (T,c,c)< 0.79f (T,c,c) = 0.01372≤ c

f (η , b
2,0)(T −η)α

Γ (α +1)
> 0.14f (η ,

b
2
,0) = 0.14= b.

In view of the above calculations, all assumptions of the Theorem6 hold. Hence, the problem (30) has a nondecreasing
positive solution in the space C1[0, 1

2].

5 Conclusions

Motivated by the applications of fractional differential equations, we established the existence of solutions for theproblem
(1) including a fractional pantograph equation with initial conditions. We showed that when the nonlinear part of the
equation is positive and monotonically nondecreasing withrespect to each of its variable and satisfies some geometrical
conditions, the problem (1) has nondecreasing positive solutions.

c© 2016 NSP
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