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Abstract: A new class of lifetime distribution called complementary exponentiated BurrXII Poisson (CEBXIIP) distribution is
introduced. The distribution contain several lifetime models such as the BurrXII-zero truncated Poisson, complementary
exponentiated log-logistic Poisson, complementary log-logistic Poisson, complementary exponentiated Lomax poissson and the
Poisson-Lomax distributions. Several properties of the new distribution are investigated. Inferences are obtained via maximum
likelihood procedure. An application of the new model to a real data set is presented for illustration purposes.
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1 Introduction

In probability modeling, several authors considered different approaches of mixing distributions in order to establish
more flexible distributions, some distributions were generated by mixing two or more continuous distributions while
some others by mixing continuous and discrete probability distributions. For example, in the case of mixing two
continuous distributions, we recall the procedure of [14] for the beta generated families of distributions by mixingbeta
distribution and normal distribution, which was followed by [15] for beta-linear failure rate distribution and beta BurrXII
distribution by [16] among others. In another way [17] proposed Lindley distribution by mixing the gamma(2, θ) and the
exponential(θ) distribution, by this approach we have the gamma Lindley by[18], generalized Lindley by [19] and
pseudo Lindley by [20] among others. To read more about compounding procedures invarious approaches [21] provide
an extensive review on the compounding distributions. In this work we consider the mixing continuous and discrete
probability distributions, these families of distributions provides some flexibility in modeling data in practical
applications, most of the distributions generated by this procedure are obtained by either compounding the minimum or
maximum failure rate of the random variable distributed according to the continuous distribution under consideration,
therefore, we may have two different distributions generated from the same continuous and discrete distributions and are
not special cases of each other. For example, the exponential geometric (EG) distribution was proposed by [1] while [2]
proposed complementary exponential geometry (CEG) distribution as a complementary to the (EG) distribution, [3]
introduced the exponential Poisson (EP) distribution, [4] proposed Poisson-exponential (PE) distribution as a
complementary to the (EP) distribution. Others include thecomplementary exponentiated exponential geometric [22],
complementary Poisson-Lindley [23], Lindley-Poisson [24], Burr XII Poisson [9], Burr XII zero-truncated Poisson [6],
complementary exponentiated inverted Weibull power series [25], Complementary Burr III Poisson [26], Poisson-half
logistic [27], half logistic Poisson [28], generalized Gompertz power series [29], inverse burr negative binomial [32],
Dagum-Poisson by [34], geometric-weibull Poisson (GWP) by [36], generalized Gompertz-power series (GGPS) by
[31], bivariate Weibull-power series by [33] and generalized exponential power series distributions proposed by [30].
However, recently [5] proposed exponentiated BurrXII Poisson (Exp-BXIIP) distribution which was obtained through
the mixing of the exponentiated BurrXII and Poisson distributions by considering the minimum failure rate of
independent and identically random variables distributedexponentiated BurrXII distribution. Here, we proposed a new
lifetime distribution called the complementary exponentiated BurrXII Poisson (CEBXIIP) distribution as a
complementary to the Exp-BXIIP distribution by considering the maximum failure rate of independent and identically
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random variables distributed exponentiated BurrXII distribution. The CEBXIIP distribution exhibit decreasing and
upside-down bathtub hazard rate function. The paper is arranged as follows. In section 2 we derive the CEBXIIP
distribution and its basic properties. In section 3 we discuss the quantile function,rth moment, moment generating
function, skewness and kurtosis of the proposed distribution. In section 4, distribution of the order statistics and their
moments are derived. In section 5, estimation of the unknownparameters by the method of maximum likelihood is
presented. Real application is provided in section 6. Section 7 conclusions.

2 The CEBXIIP distribution

In this section, we briefly discuss about the BurrXII (BXII) and Exponentiated BurrXII (EBXII) distributions. Also we
obtained the pdf of the proposed model, basic properties andthe sub models of the new distribution. The exponentiated
BurrXII (EBXII) distribution is a probability model which generalized the BurrXII (BXII) distribution and it is commonly
used to work out various practical problems particularly inlifetime analysis. In this case, we consider the two parameter
BurrXII distribution with the cdf and pdf given respectively by

G(y; α, β) = 1 −
1

(1 + yα)β
, y > 0, (1)

g(y, α, β, ) =
αβ y

α−1

(1 + yα)β+1
, (2)

whereα > 0, andβ > 0 are the shape parameters. Therth moment of the BXII distribution is given by

E(Xr ) = βB
(

β −
r
α
, 1 +

r
α

)

, (3)

whereB(., .) is a beta function defined asB(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. The cdf of the exponentiated BurrXII (EBXII)

distribution is given by

G(y; α, β, θ) =
(

1 − (1 + y
α)−β

)θ
, (4)

while its corresponding pdf is

g(y; α, β, θ) = αβθ yα−1 (1 + y
α)−(β+1) (1 − (1 + y

α)−β)θ−1, (5)

whereθ > 0, α > 0 andβ > 0 are the shape parameters.
GivenZ ∈ N, letY1,Y2, · · · ,Yz , be independent and identically distributed (iid) random variables with EBXII distribution.
Let Z follow discrete random variable distributed Poisson truncated at zero with probability mass function given by

P(Z; λ) = λz ((exp(λ) − 1) z!)−1, λ > 0, z = 1, 2, 3, 4, · · · . (6)

In this case, we will consider the distribution of the maximum ofY ′
i

s, sayX = max{Yi }, i = 1, 2, 3, · · · , z. The conditional
probability density function ofX can be obtained from

f (x |z) = zg(x)[G(x)]z−1, (7)

where,G(.) andg(.) are the pdf and cdf of the EBXII distribution. The probability density function ofX is obtained as
follows.
Remark 2.1 If X = min{Yi }, we have the Exponentiated BurrXII Poisson (Exp-BXIIP) distribution proposed by [5].

See [35] for some compound class of lifetime model and poisson distribution.

Proposition 2.2 Let X = max{Yi }, where Yi ∼ EBX II (α, β, θ), then, according to ( 6) and ( 7), X is distributed according
to complementary Exponentiated BurrXII Poisson (CEBXIIP) distribution given by

f (x) =
αβλθ xα−1(1 + xα)−(β+1)

(exp(λ) − 1)
(1 − (1 + xα)−β)θ−1exp(λ(1 − (1 + xα)−β)θ ), (8)
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with parameters α > 0, β > 0, θ > 0 andλ > 0.

Proof:
By considering (6) and ( 7) the pdf of the CEBXIIP(α, β, λ, θ) can be computed by simplifying the unconditional
probability ofX

f (x) =
∞
∑

z=1

f (x |z)P(Z = z).

The cumulative distribution function of the CEBXIIP distribution is given by

F (x) =
exp(λ(1 − (1 + xα)−β)θ ) − 1

exp(λ) − 1
, (9)

the survival and hazard rate function of the CEBXIIP distribution are, respectively given by

s(x) =
exp(λ) − exp(λ(1 − (1 + xα)−β)θ )

exp(λ) − 1
(10)

and

h(x) =
αβλθ xα−1 (1 + xα)−(β+1) (1 − (1 + xα)−β)θ−1exp(λ(1 − (1 + xα)−β)θ )

exp(λ) − exp(λ(1 − (1 + xα)−β)θ )
. (11)

Theorem 2.3 The limiting distribution given by ( 9) when λ → 0+ is limλ →0+ F (x; α, β, λ, θ) = (1− (1+ xα)−β)θ, which
is the cdf of EBXII(α, β, θ).

Corollary 2.4 The probability density function and the hazard rate function of the CEBXIIP distribution can be express
in terms of the cdf and pdf of the EBXII distributions as

f (x) = ω g(x) eλG(x) and h(x) =
λg(x) eλG(x)

eλ − eλG(x)
,

respectively, where ω = λ(eλ − 1)−1. G(x) and g(x) are the cdf and pdf of the EBXII distribution given by ( 4) and ( 5)
respectively.
The shapes of the density and the hazard rate function of the CEBXIIP distribution can be analytically described as
follows. The critical points of the probability density function f (x) of the CEBXIIP distribution are the roots of the
equation:

g
′(x) + λ g2 (x) = 0, (12)

equation (12) may have more than one root, let,ϑ(x) = d2log f (x)/dx2, we have

ϑ(x) = g
′′(x) + 2λ g(x)g′(x). (13)

Suppose that,x = x0 is a root of (12), then, it corresponds to a local minimum ifϑ(x) < 0 for all x < x0 andϑ(x) > 0
for all x > x0. It gives a local maximum ifϑ(x) > 0 for all x < x0 andϑ(x) < 0 for all x > x0. And it refers to an
inflexion point if eitherϑ(x) > 0 for all x , x0 or ϑ(x) < 0 for all x , x0.

The critical points of the hazard rate functionh(x) of the CEBXIIP distribution are the roots of the equation:

g
′(x) + λ g2(x) +

λ g2(x) eλG(x)

eλ − eλG(x)
= 0, (14)

equation (14) may have more than one root. Let,ϑ∗(x) = d2log h(x)/dx2, we have

ϑ∗(x) = g
′′(x) + 2λ g(x)g′(x) +

λ g(x) eλG(x) [2g′(x) eλ − 2g′(x) eλG(x)
+ λ g2(x) eλ]

(eλ − eλG(x) )2
. (15)
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Suppose that,x = x0 is a root of (14), then,ϑ∗(x) follows similar conditions to that ofϑ(x) given by (13). Figure1 and2
shows the plots of the probability density function f(x) andhazard rate function h(x) of the complementary exponentiated
BurrXII poisson distribution (CEBXIIP) for some values of parameters respectively.
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Fig. 1: Plots of probability density function of the complementaryexponentiated BurrXII poisson distribution for differentvalues of
parameters.
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Fig. 2: Plots of hazard rate function of the complementary exponentiated BurrXII poisson distribution for different values ofparameters.

2.1 Special cases

The special cases of the CEBXIIP distribution for selected values of the parameters are as follows:

1.Whenθ = 1, we obtain BurrXII-zero truncated poisson distribution (BXIIZTP) by [6].
2.Whenβ = 1, we obtain complementary exponentiated log-logistic poissson distribution (CELLP).
3.Whenθ = 1 andβ = 1, we have, complementary log-logistic poissson distribution (CLLP).
4.Whenα = 1, we obtain complementary exponentiated Lomax poissson distribution (CELP).
5.Whenα = 1 andθ = 1, we obtain, poisson-Lomax distribution (PL) proposed by [7].
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2.2 Series expansion of CEBXIIP distribution

We demonstrate that the pdf of the CEBXIIP distribution can be written as an infinite series of EBXII distribution or BXII
distribution. Using the exponential expansion ofexp(λ(1 − (1 + xα)−β)θ ) in ( 1) and some algebraic manipulations, we
can express the pdf of the CEBXIIP as

f (x) =
∞
∑

i=0

φi g(x; α, β, θ(i + 1)), (16)

where

φi =
λi+1

(exp(λ) − 1) (i + 1)i!
(17)

and ′g(x; α, β, θ(i + 1)) is an exponentiated BurrXII distribution with parametersα, β andθ(i + 1). Also for b > 0 real
and non-integer,|ν | < 1,

(1 − ν)b−1
=

∞
∑

j=0

(−1) jΓ(b)
Γ(b − j) j!

ν j . (18)

For θ(i + 1) > 0 real and non-integers we can applying (18) in the expansion of the expression (1 − (1 + xα)−β)a(i+1)−1

in ( 16) and after some algebraic manipulations we obtain

f (x) =
∞
∑

i=0

∞
∑

j=0

̺i, j g(x; α, β( j + 1)), (19)

where

̺i, j =
(−1) j θλi+1

Γ(θ(i + 1))
(exp(λ) − 1) ( j + 1)Γ(θ(i + 1) − j)i! j!

andg(x; α, β( j + 1)) is a BurrXII distribution with parametersα andβ( j + 1).

3 Quantile and moments

The quantile function of the CEBXIIP distribution is computed directly by inverting (9) and can be used to generate a
random data with generating a random data from uniform distribution. The quantileζ (p) of the CEBXIIP distribution is
given by

ζ (p) =
*..
,
*.
,1 −

(

log (p(eλ − 1) + 1)
λ

)
1
θ +/
-
− 1

β

− 1
+//
-

1
α

, 0 < p < 1. (20)

The rth moment, moment generating function, skewness and kurtosisof a probabiliy distribution are very useful
characteristics and one of the significant measures used in studying the features of a distribution. Therth moments of the
CEBXIIP distribution can be computed using

E(Xr ) =
∫ ∞

0

xr f (x)dx, (21)

through (19) we have

E(Xr ) =
∞
∑

i=0

∞
∑

j=0

̺i, j

∫ ∞

0

xr g(α, β( j + 1))dx, (22)
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where the integral part is therth moment of BXII distribution with parameterα andβ( j + 1) by considering (3) we have,

E(Xr ) =
∞
∑

i=0

∞
∑

j=0

̺∗i, j B(β( j + 1) − r
α
, 1 +

r
α

), (23)

where

̺∗i, j =
(−1) j βθλi+1

Γ(θ(i + 1))
(exp(λ) − 1) Γ(θ(i + 1) − j)i! j!

,

andB(., .) is a complete beta function. The moment generating function of the CEBXIIP can be computed by substituting
( 23) in ( 24)

MX (t) =
∞
∑

r=0

tr

r!
E(Xr ), (24)

thus,

MX (t) =
∞
∑

r=0

∞
∑

i=0

∞
∑

j=0

ξi, j,r B((β( j + 1) − r
α
, 1 +

r
α

),

where

ξi, j,r =
(−1) j βθ λi+1

Γ(θ(i + 1)) tr

(exp(λ) − 1) Γ(θ(i + 1) − j) i! j! r!
.

The skewness (γ3) and kurtosis (γ4) of the CEBXIIP distribution are respectively obtained from

γ3 =
1

σ3

3
∑

r=0

(

3
r

)

(−1)r+1µ3−r E(Xr ) (25)

and

γ4 =
1

σ4

4
∑

r=0

(

4
r

)

(−1)r µ4−r E(Xr ) (26)

as

γ3 =

3
∑

r=0

∞
∑

i=0

∞
∑

j=0

(

3
r

)

(−1) j+r+1 βθλi+1 µ3−r
Γ(θ(i + 1))

(exp(λ) − 1) σ3Γ(θ(i + 1) − j)i! j!
B(β( j + 1) − r

α
, 1 +

r
α

) (27)

and

γ4 =

4
∑

r=0

∞
∑

i=0

∞
∑

j=0

(

4
r

)

(−1) j+r βθλi+1 µ4−r
Γ(θ(i + 1))

(exp(λ) − 1) σ4Γ(θ(i + 1) − j)i! j!
B(β( j + 1) −

r
α
, 1 +

r
α

), (28)

whereµ andσ are the mean and standard deviation of the CEBXIIP distribution. Furthermore the skewness and kurtosis
of CEBXIIP can be analyzed using the quantile function via the Bowley skewness (B) and Moores kurtosis (M). The
Bowley skewness and Moores kurtosis are defined respectively by

B =
ζ (3/4) + ζ (1/4) − 2 ζ (2/4)

ζ (3/4) − ζ (1/4)
and M =

ζ (3/8) − ζ (1/8) + ζ (7/8) − ζ (5/8)
ζ (6/8) − ζ (2/8)

,

whereζ (.) is a quantile fuction given by (20). Figure 3 show the plots of the Bowley skewness and Moores kurtosis of
CEBXIIP distribution.
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Fig. 3: Plots of B-skewness and M-kurtosis of the complementary exponentiated BurrXII poisson distribution for different values of
parameterβ.

4 Order statistics

Let X1, X2, X3, · · · , Xn be a simple random sample from CEBXIIP distribution, letX1:n ≤ X2:n ≤ · · · ≤ Xn:n, be the order
statistics obtained from this random sample, then forj = 1, 2, 3, · · · , n, the corresponding pdf, sayf j:n (x) is obtained as
follows. The pdf of thej th order statistics can be computed from

fx j :n(x; α, β, λ, θ) =
n!

( j − 1)!(n − j)!
f (x)(F (x)) j−1(1 − F (x))n−j,

where f (x) andF (x) are the pdf and cdf of the CEBXIIP distribution.

fx j :n (x; α, β, λ, θ) =
n−j
∑

l=0

n! (−1)l

( j − 1)!(n − j − l)! l!
f (x)(F (x)) j+l−1,

using the binomial expansion ofF j+l−1 we have,

fx j :n(x) =
n−j
∑

l=0

j+l−1
∑

k=0

(−1) j+k+2l−1 n! ( j + l − 1)! exp(λ k(1 − (1 + xα)−β)θ )

(exp(λ) − 1) j+l−1( j + l − k − 1)! (n − j − l)! ( j − 1)!k!l!
f (x), (29)

after some algebraic manipulations, we obtained the pdf as

fx j :n (x; α, β, λ, θ) =
n−j
∑

l=0

j+l−1
∑

k=0

τk,l f (x; α, β, λ(k + 1), θ), (30)

where

τk,l =
n!(−1) j+k+2l−1 ( j + l − 1)! (exp(λ(k + 1)) − 1)

(exp(λ) − 1) j+l( j + l − k − 1)! (n − j − l)! ( j − 1)! (k + 1) k!l!
, (31)

and f (x; α, β, λ(k + 1), θ) is the pdf of the CEBXIIP distribution with parametersα, β, λ(k + 1) andθ. Therth moment
of the j th order statistics is given by
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E(Xr
j:n) =

∫ ∞

0

xr fx j :n(x)dx (32)

E(Xr
j:n) =

n−j
∑

l=0

j+l−1
∑

k=0

τk,l

∫ ∞

0

xr f (x; α, β, λ(k + 1), θ)dx, (33)

thus, by considering (3)

E(Xr
j:n) =

n−j
∑

l=0

j+l−1
∑

k=0

∞
∑

i=0

∞
∑

w=0

τ∗k,lB(β(w + 1) − r
α
, 1 +

r
α

) (34)

where

τ∗k,l =
n!(−1) j+k+2l+w−1 β θ λi+1 (k + 1)i ( j + l − 1)!Γ(θ(i + 1))

( j + l − k − 1)! (n − j − l)! ( j − 1)! Γ(θ(i + 1) − w) i! k! l!w!
. (35)

5 Estimation and inference

In this section, we discuss the estimation of the parametersof the CEBXIIP distribution by the method of maximum
likelihood. LetX1, X2, · · · , Xn be a random sample with observation values atx1, x2, · · · , xn from CEBXIIP distribution
with parametersα, β, λ andθ. Let Θ be the vector of the parametersΘ = (α, β, λ, θ)T , then, the total log-likelihood
function is obtained as

log ℓ(Θ) = n log θ + n logα + n log β + n log λ − n log(exp(λ) − 1)

+ (α − 1)
n

∑

i=1

log xi − (β + 1)
n

∑

i=1

log(1 + xαi )

+ (θ − 1)
n

∑

i=1

log (1 − ((1 + xαi )−β)) + λ
n

∑

i=1

(1 − (1 + xαi )−β)θ .

The associate score function is given byU (Θ) = ( ∂ℓ
∂α
, ∂ℓ
∂β
, ∂ℓ
∂λ
, ∂ℓ
∂θ

)T , where

∂ℓ

∂α
=

n
α
+

n
∑

i=1

log xi − (β + 1)
n

∑

i=1

xα
i

log xi
(1 + xα

i
)
+ (θ − 1) β

n
∑

i=1

xα
i

log xi
(1 − (1 + xα

i
)−β)(1 + xα

i
)β+1

+ βλθ

n
∑

i=1

xα
i

log xi (1 − (1 + xα
i

)−β)θ−1

(1 + xα
i

)β+1
. (36)

∂ℓ

∂ β
=

n
β
−

n
∑

i=1

log(1 + xαi ) + λθ
n

∑

i=1

log(1 + xα
i

)(1 − (1 + xα
i

)−β)θ−1

(1 + xα
i

)β
+ (θ − 1)

n
∑

i=1

log (1 + xα
i

)

(1 − (1 + xα
i

)−β)(1 + xα
i

)β
. (37)

∂ℓ

∂λ
=

n
λ
− n

(1 − exp(−λ))
+

n
∑

i=1

(1 − (1 + xαi )−β)θ . (38)

∂ℓ

∂θ
=

n
θ
+

n
∑

i=1

log (1 − (1 + xαi )−β)

+ λ

n
∑

i=1

((1 − (1 + xαi )−β)θ ) log (1 − (1 + xαi )−β). (39)
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The MLEs ofΘ i.e Θ̂, can be obtained by solving the non-linear systemU (Θ) = 0, the solution of the systemU (Θ) = 0
can be obtained by using mathematical or statistical software. For the interval estimation and hypothesis tests on the

parameters, we requiredIn(Θ). The fisher information matrix is given byIn(Θ) = −
[
Iij
]4

ij=1
. For a very large sample,

the approximate of the MLEs ofΘ sayΘ̂ can be approximated asN4(0, Jn (Θ)), where theJn (Θ) = E[In(Θ)] Under the
usual condition that are fulfilled for the parameter space but not on the boundary. The asymptotic distribution of√

n(Θ̂ − Θ) is theN4(0, Jn (Θ)) whereJn (Θ) = limx →∞ n−1 In(Θ) is the unit information matrix which can be used to
construct the approximate confidence interval for each of the parameter. A100(1 − ǫ )% asymptotic confidence interval

for each parameterΘr is given by ACIr = (Θ̂r − Z ǫ
2

√

Îrr, Θ̂r + Z ǫ
2

√

Îrr ), whereIrr is the (r, r) diagonal element of
In(Θ)−1 for r = 1, 2, 3, 4 andZ ǫ

2
is the quantile (1 − ǫ

2
) of the standard normal distribution. The elements ofJn (Θ) are

given in appendix A. Besides that, we can consider the test ofthe null hypothesisH0 : θ = 1 againstH1 : θ , 1 and this
is equivalent to compare the BXIIZTP distribution with the CEBXIIP distribution and theLR statistic reduces to
w = 2[ℓ(θ̂, α̂, β̂, λ̂) − ℓ(1, α̌, β̌, λ̌)] whereΘ̂ andΘ̌ are the unrestricted and restricted MLEs ofΘ respectively. Under the
null hypothesisw is asymptotically distributed asχ2

1
. For a given levelξ the LR test rejectsH0 if w exceeds the

(1 − ξ)-quantile of theχ2
1

distribution. Theorems 5.1, 5.2, 5.3 and 5.4 established the existence and uniqueness of the
MLE, under some certain conditions when the other parameters are known.

Theorem 5.1 Let δ1(α; β, λ, θ, xi ) be the function on the right hand side of equation ( 36), where β, λ and θ are the true
values of the parameters, then, the root of δ1(α; β, λ, θ, xi ) = 0 can take one of the followings.
(1) For θ ≥ 1 and max{Xi} < 1
(2) For θ ≥ 1 and min{Xi } > 1

Theorem 5.2 Let δ2(β; α, λ, θ, xi ) be the function of the right hand side of equation ( 37) where α, λ and θ are the true
values of the parameters, then, the root of δ2(β; α, λ, θ, xi ) = 0 say β̂ can take one of the following forms.
(1) For a given λ ∈ (0, 1) and θ = 1 the root lies in the interval

(

n(
∑n

i=1 log (1 + xα
i

))−1, n(
∑n

i=1 (1 − λ) log (1 + xα
i

))−1
)

and is unique.
(2) For a given λ > 1 and θ = 1 the root lies in the interval

(

0, n(
∑n

i=1 log (1 + xα
i

))−1
)

and is unique.
(3) For θ , 1 the equation δ2(β; α, λ, θ, xi ) = 0, has at least one root.

Theorem 5.3 Let δ3(λ; α, β, θ, xi ) denote the function on the right hand side of equation ( 38), where α, β and θ are the
true values of the parameters, then, δ3(λ; α, β, θ, xi ) = 0, has at least one root for n >

∑n
i=1 (1 − (1 + xα

i
)−β)θ .

Theorem 5.4 Let δ4(θ; α, β, λ, xi ) be the function on the right hand side of the equation ( 39), where α, β and λ are the
true values of the parameters, then, the root of δ4(θ; α, β, λ, xi ) = 0 lies in the interval
( −n

(1+λ)
∑n

i=1
log(1−(1+xα

i
)−β ) ,

−n
∑n

i=1
log(1−(1+xα

i
)−β ) ).

For the proofs of theorem5.1, 5.2, 5.3 and5.4 see appendix B.

5.1 Simulation

In this subsetion, we assess the performance of the maximum likelihood estimates by conducting a simulation studies. We
generate ten thousand samples from the CEBXIIP distribution each of sample size 200, 400 and 600. The sample size (n),
actual values, estimated values and standard deviations for various values of parameters are listed in Table1 below. The
result of the simulation shows that the maximum likelihood method performed consistently and the standard deviations
of the MLEs decrease as the sample size increases.
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Table 1: MLEs and standard deviations for various values of parameter.

Sample size Actual values Estimated values Standard deviations

n α β λ θ α̂ β̂ λ̂ θ̂ sd(α) sd(β) sd(λ) sd(θ)

200 1.0 0.1 0.5 0.5 1.0789 0.1011 0.8556 0.4770 0.2821 0.03251.1390 0.1547
0.1 0.1 0.2 1.2 0.1313 0.0920 0.7577 1.0418 0.0750 0.0314 1.1092 0.2680
1.0 0.2 1.0 1.0 1.0530 0.2016 1.1073 1.0339 0.3477 0.0885 1.5863 0.5219
1.2 0.8 0.3 0.5 1.1874 0.8108 0.3204 0.5592 0.3599 0.6101 0.8193 0.4125
1.2 0.2 1.2 0.5 1.0094 0.2713 0.8981 0.6961 0.2903 0.0978 1.3413 0.2830
1.3 0.3 1.3 0.4 1.2379 0.3896 1.3115 0.6002 0.3553 0.3788 1.1770 2.4320
0.2 0.2 1.0 1.2 0.2331 0.2013 1.2317 1.2032 0.1121 0.0884 1.3247 0.4514
1.9 0.2 0.2 0.9 1.7115 0.2525 0.3254 0.9999 0.4621 0.0706 0.8735 0.2407
1.2 0.2 1.2 0.5 1.0094 0.2713 0.8981 0.6961 0.2903 0.0978 1.3413 0.2823
0.6 0.9 1.0 0.4 0.6157 1.1164 1.3219 0.4664 0.2481 0.6929 1.1225 0.2806
1.2 1.3 0.4 0.5 1.2398 1.3082 0.5622 0.5216 0.3953 0.5317 1.0449 0.1975
0.5 0.6 0.9 0.3 0.5552 0.8700 1.1614 0.4099 0.3098 0.5487 0.9617 0.2589
3.0 4.0 1.0 2.8 3.3120 3.7373 0.8468 1.9631 0.7774 0.8136 1.0693 1.1281
2.5 2.0 1.5 1.1 2.8455 2.0391 1.6470 1.3136 1.2772 0.9040 1.3536 1.1053

400 1.0 0.1 0.5 0.5 1.0578 0.0993 0.7511 0.4799 0.2236 0.02320.9223 0.1307
0.1 0.1 0.2 1.2 0.1154 0.0948 0.5584 1.0487 0.0388 0.0214 0.8733 0.2047
1.0 0.2 1.0 1.0 1.0429 0.1984 1.1261 1.0090 0.2766 0.0577 1.3323 0.3298
1.2 0.8 0.3 0.5 1.1977 0.7434 0.2600 0.5060 0.2811 0.5058 0.6792 0.2280
1.2 0.2 1.2 0.5 1.0442 0.2522 0.9020 0.6542 0.2618 0.0706 1.1099 0.2378
1.3 0.3 1.3 0.4 1.2654 0.3362 1.2834 0.4715 0.2640 0.1684 0.8598 1.2717
0.2 0.2 1.0 1.2 0.2222 0.1972 1.2281 1.1789 0.0781 0.0638 1.2626 0.3964
1.9 0.2 0.2 0.9 1.6554 0.2536 0.1894 1.0207 0.3622 0.0600 0.6042 0.1908
1.2 0.2 1.2 0.5 1.0442 0.2522 0.9020 0.6542 0.2618 0.0706 1.1099 0.2378
0.6 0.9 1.0 0.4 0.6254 1.0185 1.1931 0.4254 0.2233 0.6190 0.9377 0.2044
1.2 1.3 0.4 0.5 1.2200 1.2912 0.4857 0.5131 0.3116 0.4851 0.9056 0.1348
0.5 0.6 0.9 0.3 0.5844 0.7675 1.0467 0.3764 0.3087 0.3806 0.6899 0.1857
3.0 4.0 1.0 2.0 3.2392 3.7629 0.8420 1.9291 0.6014 0.7494 0.9690 0.6878
2.5 2.0 1.5 1.1 2.7681 2.8843 1.6530 1.1668 1.0061 0.7884 1.2332 0.6449

600 1.0 0.1 0.5 0.5 1.0443 0.0993 0.6709 0.4862 0.1976 0.01970.7662 0.1178
0.1 0.1 0.2 1.2 0.1089 0.0970 0.4334 1.0517 0.0263 0.0162 0.6788 0.1655
1.0 0.2 1.0 1.0 1.0371 0.1986 1.1144 1.0044 0.2562 0.0410 1.2070 0.3034
1.2 0.8 0.3 0.5 1.1999 0.6445 0.1807 0.4910 0.2296 0.4250 0.5413 0.1840
1.2 0.2 1.2 0.5 1.0657 0.2431 0.9164 0.6317 0.2452 0.0622 0.9618 0.2192
1.3 0.3 1.3 0.4 1.2714 0.3226 1.2851 0.4339 0.2140 0.0809 0.7068 0.1338
0.2 0.2 1.0 1.2 0.2205 0.1970 1.2331 1.1678 0.0738 0.0607 1.1858 0.3740
1.9 0.2 0.2 0.9 1.6271 0.2553 0.1397 1.0317 0.3158 0.0561 0.4917 0.1715
1.2 0.2 1.2 0.5 1.0692 0.2416 0.9325 0.6268 0.2419 0.0612 0.9648 0.2169
0.6 0.9 1.0 0.4 0.6418 0.9414 1.0903 0.4008 0.2148 0.5903 0.8267 0.1851
1.2 1.3 0.4 0.5 1.2100 1.2820 0.4360 0.5147 0.2723 0.4634 0.8125 0.1159
0.5 0.6 0.9 0.3 0.5850 0.8727 0.9765 0.3646 0.2930 0.3072 0.5106 0.1669
3.0 4.0 1.0 2.0 3.2190 3.7673 0.8136 1.9281 0.5493 0.7255 0.8855 0.5999
2.5 2.0 1.5 1.1 2.7458 1.9858 1.6036 1.1268 0.8957 0.7422 1.1059 0.5100
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6 Applications

In this section, we provide an application of the CEBXIIP to areal data set for illustrative purpose and compare its fit
with some other existing models based on the Akaike information criterion (AIC), Bayesian information criteria (BIC)
and Kolmogorov Smirnov (KS) test statistic. The distribution with the smallest value of these measures fit the data better
than the other distributions. The competing models includes the Generalize BurrXII-poisson (GBXIIP) by [8], BurrXII
zero truncated poisson (BXIIZTP) by [6], BurrXII- poisson (BXIIP) by [9], BurrXII (BXII) by [ 10] and the exponenciated
BurrXII (EBXII) distributions. The data set were revealed in [11,12] and recently studied by [13]. It is the observe time
to failure of Kevlar 49/Epoxy strands tested at various stress level: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05,
0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35,
0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80,
0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33,
1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14,
2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89. The results of the data set are summarized as follows. For the LR test,
we testH0 : θ = 1 againstH1 : θ , 1 i.e we compare the CEBXIIP distribution with the BXIIZTP distribution. We
obtainw = 5.40(p − value = 0.020) > 3.842 = χ2

1
(at 0.05), hence, in this case CEBXIIP distribution is superior than

the BXIIZTP distribution. Table2 provides the MLEs and the log likelihoodℓ(Θ) which we obtained usingnmlinb in
R-software. Table 3 shows the numerical vales of the AIC, BIC, KS and p-value of the competing distributions.

Table 2: Maximum likelihood estimates (MLEs) andℓ(Θ) for the data set
Model α β λ θ a ℓ(Θ)

CEBXIIP(α, β, λ, θ) 2.8447 0.6553 1.6097 0.2236 - -103.50
GBXIIP(α, β, λ, a) 2.3411 0.6829 4.98e-7 - 0.3902 -105.99
BXIIZTP(α, β, λ) 0.9856 2.3856 1.7333 - - -106.20
BXIIP(α, β, λ) 1.1737 1.6327 1.98e-8 - - -108.55
EBXII(α, β, θ) 0.3215 2.7890 - 0.5385 - -105.86
BXII( α, β) 1.1736 1.6327 - - - -108.55

Table 3: AIC, BIC and KS and its p-value for the data set
Model AIC BIC K-S p-value

CEBXIIP(α, β, λ, θ) 214.99 225.45 0.0851 0.4579
GBXIIP(α, β, λ, a) 219.97 230.43 0.1269 0.0772
BXIIZTP(α, β, λ) 218.40 226.25 0.1058 0.2080
BXIIP(α, β, λ) 223.10 230.94 0.1349 0.0506
EBXII(α, β, θ) 217.72 225.57 0.1251 0.0849
BXII( α, β) 223.10 230.94 0.1353 0.0494

Table 3 shows that the CEBXIIP has the least value of the AIC, BIC and K-S, thus, CEBXIIP fit the data better than
the other models. Figure4 below illustrate the fitted pdfs and cdfs of the competing distribution for the given data set.
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Fig. 4: Fitted pdfs and cdf for the data set.

7 Conclusion

We introduce and study a new four parameter lifetime distribution called the complementary exponentiated BurrXII
Poisson distribution (CEBXIIP). We provide several mathematical properties of the CEBXIIP distribution which includes
the Shape characteristic of its pdf and hazard function. We also present an explicit expressions of therth moment, moment
generating function, skewness, kurtosis, the density of the order statistics and therth moment of the order statistics.
Estimation of the four unknown parameters by maximum likelihood is considered and the observed Fisher information
matrix is obtained. The existence and uniqueness of the MLEsof CEBXIIP are studied under some certain conditions.
An application of the CEBXIIP distribution to a real data is demonstrated to express the usefulness of the proposed
distribution.
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Appendix A

the elements ofJ(Θ)

I11 = −
n

α2
− (β + 1)

n
∑

i=1

xα
i

(log xi )2

ui
+ (β + 1)

n
∑

i=1

x2α
i

(log xi )2

ui

+ (θ − 1) β
n

∑

i=1

xα
i

(log xi )2

(1 − u−β
i

)uβ+1

i

− (θ − 1)(β + 1) β
n

∑

i=1

x2α
i

(log xi )2

(1 − u−β
i

)uβ+2

i

− (θ − 1) β2
n

∑

i=1

x2α
i

(log xi )2

(1 − u−β
i

)2 u2(β+1)
i

+ θ βλ

n
∑

i=1

xα
i

(log xi )2 (1 − u−β
i

)θ−1

uβ
i

+ θ(θ − 1) β2λ

n
∑

i=1

x2α
i

(log xi )2(1 − u−β
i

)θ−2

u2β+1
i

− θ β2λ

n
∑

i=1

x2α
i

(log xi )2(1 − u−β
i

)θ−1

uβ+1
i

,
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I22 = −
n

β2
− (θ − 1)

n
∑

i=1

(log ui )2

(1 − u−β
i

)2 u2β
i

− (θ − 1)
n

∑

i=1

(log ui )2

(1 − u−β
i

)2 uβ
i

+ θ(θ − 1)λ
n

∑

i=1

(log ui )2 (1 − u−β
i

)θ−2

u2β

i

+ θλ

n
∑

i=1

(log ui )2 (1 − u−β
i

)θ−1

uβ
i

,

I33 = −
n

λ2
+

n exp (−λ)

(1 − exp(−λ))2
,

I44 = −
n

θ2
+ λ

n
∑

i=1

(1 − u−β
i

)θ (log(1 − u−β
i

))2,

I12 = −β
n

∑

i=1

xα
i

log xi
ui

+ (θ − 1)
n

∑

i=1

xα
i

(log xi )2

(1 − u−β
i

) uβ+1

i

− (θ − 1) β
n

∑

i=1

xα
i

log xi log ui

(1 − u−β
i

)2 u2β+1

i

− (θ − 1) β
n

∑

i=1

xα
i

log xi log ui

(1 − u−β
i

) uβ+1

i

+ θλ

n
∑

i=1

xα
i

log xi (1 − u−β
i

)θ−1

uβ
i

+ θ(θ − 1) βλ
n

∑

i=1

xα
i

log xi log ui, (1 − u−β
i

)θ−2

u2β
i

− θ βλ
n

∑

i=1

xα
i

log xi log ui (1 − u−β
i

)θ−1

uβ
i

,

I13 = θ β

n
∑

i=1

xα
i

log xi (1 − u−β
i

)θ−1

uβ
i

,

I14 = β

n
∑

i=1

xα
i

log xi

(1 − u−β
i

) uβ+1

i

+ βλ

n
∑

i=1

xα
i

log xi (1 − u−β
i

)θ−1

uβ
i

+ θ βλ

n
∑

i=1

xα
i

log xi (log (1 − u−β
i

)) (1 − u−β
i

)θ−1

uβ
i

,

I23 = θ

n
∑

i=1

(1 − u−β
i

)θ−1 log ui

uβ
i

,

I24 =

n
∑

i=1

log ui

(1 − u−β
i

) uβ
i

+ λ

n
∑

i=1

(1 − u−β
i

)θ−1 log ui

uβ
i

+ θλ

n
∑

i=1

log ui (log (1 − u−β
i

)) (1 − u−β
i

)θ−1

uβ
i

,

I34 =

n
∑

i=1

(1 − u−β
i

)θ log(1 − u−β
i

),

whereui = (1 + xα
i

).

Appendix B

Proof of theorem 5.1 :
Thelimα →0 δ1(α; β, λ, θ, xi ) = ∞, and
for θ ≥ 1, limα →∞ δ1(α; β, λ, θ, xi ) = θ

∑n
xi<1log xi − β

∑n
xi>1log xi .

To show thatδ1 < 0 asα → ∞, we consider this cases.
(a) If Max{Xi} < 1, then,limα →∞ δ1(α; β, λ, θ, xi ) = a

∑n
xi<1log xi < 0.

(b) If Min{Xi } > 1, then,limα →∞ δ1(α; β, λ, θ, xi ) = −β
∑n

xi>1log xi < 0.

(c) If Min{Xi } > 1 andMax{Xi } < 1, then,limα →∞ δ1 (α; β, λ, θ, xi ) = a
∑n

xi<1
log xi − β

∑n
xi>1

log xi < 0. Thus,δ1 < 0

in all the cases, if and only ifxi , 1, for somei = 1, 2, 3, · · · , n. Sinceδ1 is contineous function which decreases
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monotonically from positive to negetive values, therefore, there exist at least one root forδ1(α; β, λ, θ, xi ) = 0.

Proof of theorem 5.2:
For θ = 1

Let q2(β; α, λ, θ, xi ) = λ
∑n

i=1

log (1+xα
i

)
(1+xα

i
)β . It is clear that q2(β; α, λ, θ, xi ) is strictly decreasing inβ, and

limβ →∞ q2(β; α, λ, θ, xi ) = 0. It follows that,

δ2(β; α, λ, θ, xi ) >
n
β
−

n
∑

i=1

log (1 + xαi ) + lim
β →∞

λ

n
∑

i=1

log (1 + xα
i

)

(1 + xα
i

)β
=

n
β
−

n
∑

i=1

log (1 + xαi ).

andδ2(β; α, λ, θ, xi ) > 0 whenβ < n(
∑n

i=1 log (1 + xα
i

))−1. On the other hand,
limβ →0 δ2(β; α, λ, θ, xi ) = λ

∑n
i=1 log (1 + xα

i
) so that,

δ2(β; α, λ, θ, xi ) <
n
β
−

n
∑

i=1

log (1 + xαi ) + lim
β →0
λ

n
∑

i=1

log (1 + xα
i

)

(1 + xα
i

)β
=

n
β
− (1 − λ)

n
∑

i=1

log (1 + xαi )

Hence,δ2(β; α, λ, θ, xi ) < 0 provided thatβ > n(
∑n

i=1 (1 − λ) log (1 + xα
i

))−1.

(1) Forλ ∈ (0, 1), there is at least one root ofδ2(β; α, λ, θ, xi ) = 0 in the interval
(

n(
∑n

i=1 log (1 + xα
i

))−1, n(
∑n

i=1 (1 − λ) log (1 + xα
i

))−1
)

.
To prove that, the root is unique, it is enough to show that, the first derivative ofδ2 ( ′

2
) is negetive.

δ′2 = −
n

β2
− λ

n
∑

i=1

(log (1 + xα
i

))2

(1 + xα
i

)β
. (40)

Its clear thatδ′
2
< 0, hence,δ2 is strictly decreasing inβ.

(2) Forλ > 1, there is at least one root of ofδ2(β; α, λ, θ, xi ) = 0 in the interval
(

0, n(
∑n

i=1 log (1 + xα
i

))−1
)

.Where (40) prove the uniqueness.
(3) Forθ , 1

limβ →0 δ2 = ∞, then, we show thatlimβ →∞ δ2 < 0.
limβ →∞ δ2 = −

∑n
i=1 log(1 + xα

i
) < 0, thereforeδ2 is contineous monotone function which decreases from positive

to negetive values, thus,δ2(β; α, λ, θ, xi ) = 0 has at least one root.

Proof of theorem 5.3:
limλ →0 δ3 = ∞, therefore, we show thatlimλ →∞ δ3 < 0.
limλ →∞ δ3 = −n +

∑n
i=1 (1 − (1 + xα

i
)−β)θ , therefore,δ3 < 0 if n >

∑n
i=1 (1 − (1 + xα

i
)−β)θ ,

thus, δ3 is a contineous function which decreases monotonically from positive to negetive values, hence,
δ3(λ; α, β, θ, xi ) = 0 has at least one root.

Proof of theorem 5.4:
Let q4 = λ

∑n
i=1(1 − (1 + xα

i
)−β)θ log(1 − (1 + xα

i
)−β), q4 is strictly decreasing inθ, andlimθ →0 q4 = λ

∑n
i=1 log(1 −

(1 + xα
i

)−β), we have,
δ4 >

n
θ
+

∑n
i=1 log(1 − (1 + xα

i
)−β) + limθ →0 q4 =

n
θ
+ (1 + λ)

∑n
i=1 log(1 − (1 + xα

i
)−β), thus,δ4 > 0 when

θ > −n
(1+λ)

∑n
i=1

log(1−(1+xα
i

)−β ) . On the other hand,limθ →∞ q4 = 0, so,

δ4 <
n
θ
+

∑n
i=1 log(1 − (1 + xα

i
)−β) + limθ →∞ q4 =

n
θ
+

∑n
i=1 log(1 − (1 + xα

i
)−β), thus, δ4 < 0 whenever

θ < −n
∑n

i=1
log(1−(1+xα

i
)−β ) , hence, the root of δ4(θ; α, β, λ, xi ) = 0 lies in the interval

( −n
(1+λ)

∑n
i=1

log(1−(1+xα
i

)−β ) ,
−n

∑n
i=1

log(1−(1+xα
i

)−β ) ).
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