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Abstract: In many real applications in survival analysis, estimatidrihe distribution function and hence the survival funitis
common in practice, where the problem of estimating a smeb#pe-constrained distribution function has recentlgived some
attention. In this article an interesting proposition idttan the assumption that the distribution function of taadom variable (failure
time) is a concave function. Where the concavity of the ifigtion function is discussed in the presence of covariatesidering
interval censoring model. It is shown that concavity of tistribution function is well defined under the proposed aiton.
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1 Introduction However, assume thafl,T,,...,T, be independent
random event times with unknown distribution function
In many situations in survival analysis, one may F € (0,), hereF(T) = 0 means that the event of interest
interested in the distribution of times to event data whichwill never occur at all. Note thef (T) = 0 equivalent to
might be used to extract the distribution of event time S(T) = 1 sinceF(T) = 1— S(T). In interval censoring,
variable based on the incomplete or censored data setthe set of event times is not observed and instead of that,
Elaborations on models incorporate censoringwe only have finitely m inspection points
mechanisms can be found in the literature (See, &4. [ 0<T1 < T2 < .. < Tm < o,i =1,...,n, and each unit
for models that incorporating these typical mechanismsnspected at each of the assigned inspection points and
which prevent time event times from being observeddetermining if the interested event occurred at that point
directly). However, one of the most common censoringor not. More formally, the observed information is:
models in survival analysis is right censoring, where the
observed information is whether the event time occursXij = 1{7ij—1 < Ti <71}, forl<j<(m+1), where
before an observed censoring point (exact failure time), oo = 0 andt; iy 1) =
we observe the censoring time point given the ) ) o
information that the exact failure time occurred beyond aUnder various censoring models, one of the main interests
censoring time. However, right censoring is very commoni$ estimation of the_ distribution function Whlch might bg
in several different applications such as cancer clinicalobtained parametrically or nonparametrically. Where in
trials, where survival function and hence the distribution Parametric approach it is assumed that the distribution of
function can be obtained through different techniquessurvival data is known and some common distributions
such as Nelson-Aalen and Kap'an_Meier estimators_can be used to represent this function such as Weibull and
Another well-known censoring model in survival analysis Gompertz  functions. On the other hand, the
is interval censoring, where, the event time is not exactlynonparametric approach is also common in practice,

observed, and the only observed information is that itWhere, the non-parametric estimation of the survival
belongs to an available intervall(p, 10,13]). function is mostly concerned with detecting the trend in

the data set without strong parametric assumptions on its
form ([4,5]). However, some techniques is suited to
estimate the survival function and hence the distribution
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function under various censoring models such aseffect of covariates on the proposed procedure, where in

Kaplan-Meier estimator which is suitable for right such situation the Cox model can be used as a result of

censoring case and Turnbull estimator which is suited forthe direct combination between hazard and survival

interval censoring caseq]). functions. Where for a given covariates vector
Z = (z1,2,...,Z,) then the hazard function (t) can be

Another way of constructing adaptive tools to obtain the defined as follows:

nonparametric maximum likelihood estimator of the

distribution function is well-understood with respect to At) = fim PE<T <t+dy/T>t)

the distribution function computation as well as its dt—0 dt

asymptotic properties, where this function can be P LT <t+4dt)

obtained by deriving the convex minorant of a suitable - J{%W

function depending on the data s, {]). £(t)

Furthermore, Inference under shape constraints has been S(t) @)

considered for recent activities. Where in survival
analysis researchers have paid more attention on th
estimation of a smooth distribution function under
constraints that this function satisfies certain qualiaati T

properties, such as concavity and monotonicityqon certain A1) = Ao (t/Z)expB 2) (2)
subsets of its domaind] considered three nonparametric
estimators of the distribution function based
mixed-case interval censored data when the covariates a|p
excluded from the data set, they assumed that th

he Cox hazard model given the covariates ve@ds
efined as

where),(t) is the baseline hazard function afd is the
arameters vector. Thus, based on the expressions in
)and(2) then the survival function can be defined as

distrbition function of event times is concave or unimodal f(t) d

and they proposed some algorithms for the computation At) = SO ~ 1098

of the derived estimators. Furthermor&Z] proposed two ;

methods to find shape-constrained density estimates, S(t):exp(—/ /\(x)dx)

where these methods can be used for univariate or 0

higher-dimensional kernel density estimation with shape _ t T

constraints. So, this approach is appealing for a main _exp(—./o Ao(x/Z)exHp Z)dx)

reason which is that extraction of alternative T

nonparametric estimators of the distribution function is - exp(—/\o(t/Z)equ Z)) ®)

typically require such properties J). However, this

article gives an overview for one of the most important WhereA,(t/Z) is the baseline cumulative hazard function.
shape constraints which is concavity of the distribution . , L

function estimator in case of interval censored data when! N€ cumulative baseline hazard function is need to be
some covariates are available. In section 2 the likelihood®Stimated using a reasonable technique such as Breslow

function in case of interval censoring with covariates is :O Socsheeék tk?:dTazwgpga esrtcl)rQi?r:g;?c;n Rticeg;?mggs the
constructed and in section 3, it will be shown that the ProP Y P

concave maximum likelihood estimators are well deﬁneolbaseline hazard function which is most attractive since it
. ) . may produce more accurate and smooth estimation of the
in the interval censoring model.

underlined function and hence, this technique will be
employed in this article as it will shown in the sequel.
- . Thus, the log-likelihood function when the survival
2 The Likelihood Function function is replaced by the expression in equati®ncan

. . be written as follows:
In interval censoring model and for a group of data set

consists ofn observations then, the exact failure time is |(g) — n |og[exp(—/\o(|i)eX|¢iBTZ))—
not fully observed and the only known information is that i;

it belongs to an observed interval such that , T

Ti € [li,ri],Vi = 1,...,n, wherel; andr; are the left and eXp(—As (ri)expB Z))} “)
right endpoints of the observed interval respectively.

Therefore, the general form of the likelihood function for . .

interval censoring model is given as follows: 2.1 Taylor Approximation

o The Taylor series, which is more general case of the Magciauri

L(F)= I_!L[F(ri) —F(1i)] series is mainly used for approximation functions. Howetrés
= technique is proposed to estimate the cumulative baseline
However, since the covariates involved in the analysishazard function even though several specifications for this
then, a link function might be employed to investigate the function are common, such as in the parametric settings some

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett5, No. 1, 1-6 (2017) ivww.naturalspublishing.com/Journals.asp NS = 3

well known distributions can be used such as Weibull fumctio the Hessian matrix should be constructed and investigate th
On the other hand, alternative semi-parametric approactbea negative semi-definite property of this matrix. Thus, lét
used considering that the baseline hazard function to bedenotes the Hessian matrix of the log likelihood functiosdsh
piecewise constant which leads to the iterative convex ramo  on an(n+ m) parameters which is defined as follows:

(ICM) technique proposed byl f]]. But this approach has a main

2 2 2, 2, 2 2,
drawback which is that it may produce the baseline hazard g_Blz 53"13'32 63015'6.1 33‘715'& 53"13')\1 ﬁﬂﬁdlx\m
function as a step function and hence not continudzjs,Thus, dzll 2l 2 2 2l 2
and to overcome the drawbacks of some of the proposed 0B0B1  9BZ ' O0P0By B0, 0BdA T 9B0An
techniques for baseline hazard function, the Taylor
approximation will employed and the likelihood ratio teahde
used as a model selection tool to obtain the optimal order for

i , . ' 32 32 9 9 32 32
Taylor series. However, let's consider the Taylor serieshef 0Bu0B: 0B0B:  OBE  OPadA, B0 | OBdAm
baseline hazard function witiﬁh order as H=| 4 2 2 2 2 7
a ) 022 GA0AL T GA0Am OAOBL 9A9B; T OA.0Pn
Ao(t/o) =5 —”:tm (5) I I C . . I ..
o m! MOA,  0AZ A0An OMOBL 0A20B; 3A10B,
where ¢ is the Taylor series parameters vector such that
Q= (/\07A17"'7/\q)'

okl A oA 32 A _ ...
In order to ensureA,(t/@) > O, the log-hazard function is OAmdAe OAmdh A OAndPr 0AnOP, IAn0n
considered such that

9 Am . . o .
Iog(x\o(t/q))) = z —Itm (6) Evaluation the Hessian matrix in its general form is not
m=o M applicable since the number of covariates unspecified, so to

Then, the cumulative baseline hazard function can be defised 2avoid this problem and to investigate the negative semntefi
property of the Hessian matrix, a nice trick can be used wisich

t ) S
As(t/) = / Ao(y/@)dy basically depends on the Taylor _approxmatlon theorem_dbat
0 be used to re-formalize the functions based on the gradients

t q
:/0 exp( > ;—Tym)dy (7)  Theorem 1(Taylor Theorem).
m=0 " Let f:[xy] — R, .. "1 be continuous orix,y] and
Therefore, the baseline cumulative hazard function at ¢fie | suppose " exists on(x,y). Then there existse (x,y) such that
and right endpoints of the observed intervals can be defined

respectively as follows: f(c) = f(x)+ Of(x)(c—x) + O f (X)M 4o+
l q A —
i/) = Am ) g T o
Aoli/ @) /o exD(éo m! ym) y O 1)f(X)W 9
Alr1/0) = /Ol'i exp( % %ym)d)g Vi=1l..n (8 which is equivalent to
m=o '
Likelihood ratio test: F(x+8) = F(x)+ OF ()3 + %sz(x)62+0(|\ 53 (10)

The likelihood ratio principle can be used in order to obtaést
order of this Taylor approximation. Where this technique ba  whered is real number an@®(|| & ||)2 is the error term.

employed by fitting the log likelihood function consideringly

one parametefi.e. 6 = A,) as well as the covariates vectBr When f(x) is scalar function with parameters vector
and denote the fitted value &s= maxl(B, 6)]. Then, the log X = (B1,...,Bn, Ao, A1, .., Am) With length w = n-+m, then the
likelihood function can be fitted again based on two Taylor first derivativeJf (x) is a 1x w matrix, which can be viewed as
parametergi.e. 8 = (A,,A1)) and the covariates vectg® and an w-dimensional vector-valued function of the-dimensional
denote this new fitted value by = max| ([;7(9)]. Then if  vectorx. For _the se_cor!d derivatiszf(x), we can take the
—2x (lp—11) < X311 4 for df =1 and a typical value of the ~Mmatrix of partial derivatives of the functlonﬁf(x).. We could
significance levelr such as M5 then the Taylor approximation  Write it asCi% f (x) for the moment. Note that?f (x) is anw x @
can be hold based on one parameter only. This procedure can gBatrix which represertti such that

repeated consequently based on one more variable in each H_ sz(x)

iteration and so on until the optimal order obtained. o

Now the main task is to verify the negative semi definite prope
for this matrix based on the defined parameters vector

3 Concavity of the Distribution Function
Definition 1.The square matrix N is negative semi-definitézi€

To investigate the concavity of the distribution function 0", then ZNZ < 0. If the inequality is strict for all z£ 0, then
estimator based on the log likelihood function giver{4), then N is negative definite.
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Based on Taylor theorem and for the parameters vegttiren
the log likelihood function given in(4) can be expressed as
follows:

5+35TDZ|

5 (x8+0(] 5 ))°

I(x+3) =1(x)+ 0l (x) (11)

where (2l (x) is the Hessian matrix and by definitiqd) this

matrix is negative semi definite iBTHS < 0, vo € 09,

Therefore, it is sufficient to considérl (x) and follow to show
that: 5 021 (x)d < 0.

The log likelihood function is:
X) :iIog[ex;i—/\o(li)exp(ﬁTZ))—exq—/\o(ri)eXF(BTZ))]

where—A,(lj) and —A(r;) are the cumulative baseline hazard
function at the left and right endpoints of the observedrirais
which can be estimated using Taylor approximation given in
equation(8) and for simplicity these values will replaced by
and R; respectively. Therefore, the log-likelihood function can
be written as:

x>:.ilog[exp(—LiexqﬁTz»—exp(—F«exr(ﬁTZ”] (12)

The two components of the log-likelihood function can be
simplified based on the following power series for exporanti
function such that:

1

l(ax)2+3,(ax)3+ (@) 4.

2
1
=L+ax+ 5 (@)?+0(| a)®

expax) = 1+ax+

Therefore, the expressioexp( — Liexp(BTZ)),Vi =12..n

can be rewritten as follows: exp(—L) | 1— L(B7Z) — -2
exp(—Lexp(NZ))—exp[— (1+B7Z+ (BT )2+
O(IBI)g)}
—exp(—L)exp[ LpTze B2E)
O(IBI)g]
=expg—L) [1_|_(;3Tz)_%z)2

T7\2
+3(-eTz-HEENY o |)3>}
13)

2
Note that} (-LBTZ - ﬂ converges toj <L2(BTZ)2)

and hence equatiofil) can be written as:

L(B'2)?
T+
~LBTZZ'B+0(81))] (14

exp( - Lexp(ﬁTZ)) —exp-L) [1— L(BTZ) -
1.2
Pia
and in the same mannexp( - Riexp(BTZ)),Vi can be written
as follows:

ex~RexiB2)) = exH—R) [1-R(BTZ) -
JR-RBTZZ'B+0(I5)%)]  1s)

However the log likelihood function can be written as folkw

RETZ?

= _ilog KeXF(—Li) —Liexg(—Li)B" 2+

SR 2 LTz B o 5 ) )
(exp(—a)—aexp(—mﬁu

B R (R R)BTZ zTB+0<|6|>>}

- 'ilog {ex;i—Li) —exp—R)+ (RieXK—Ri)—

Liexe L)) 872+ 3 (L7~ Lijext L)~

(RR-R)exp-R))B72Z"p+0(| 5 |>3>}

An attractive property of rewriting the logarithm express is
that for any positive random variab&eand for any small value
0 € O then

5 52
log(a+0) =log(a) +Iog<1+ 5) =log(a) + )

+O(l81)°  (16)

Based on this propertyy, and considering that
a=exfgd—L) —exg—R) which is greater thazero since the
hazard function is an increasing function, then
log-likelihood function can be rewritten as follows

the

n

-3
+Iog[1+(

(

[Iog(exr(—u)—exn—m)

Rexp—Ri) —
exp(—Li) —

(L2 —Lj)exp L)

exp— L)

Liexp(—Li)
xR JP'Z
— (R?—R)exp—R)
exp(—Ri)

1
2

a2

ol o I)ﬂ
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Let

a=-expg—L)—exp—R)
_ Rexg—R)—Lexp—L)
exp—L) —exp—R)
(L2 - L)exg—L) — (R —R)exp—R)
exp—L) —exp—R)

then the log likelihood function is:

C=

2
Note that(biBTZ—i— %QBTZZTB) converges taqbi3TZ)2 and
hence based on the property(itb) and after simplification this
function can be written as:

5 [log(a) + 07z + 2ai(8T22B") ~ 67BTZZ6" +

l(X):i;

[log(a) +10g(1+ 6872 + 26872278 +0(| 5 )°)]

o(l| 5 )?]

= 5 [logta) +B"Z+ 5 (6~ )BT ZZ"B+0(1 3|

7

Comparing the log likelihood function given ifl9) with the
general expression given in Theorem 1, then it is easy t@@oti
that

0l (x) = _ibiz

D?(x) = Z(ci —b?)zZ"

whereD?l(x) is the Hessian matrix and to verify the negative
semi-definite property of this matrix it is sufficient to shehat
s, (c —b?) < 0 or the equivalent inequality_ ; (b? — ¢;) >
ovi=1..n.

Lemma 1.For any two real numbers such thak L < R, and for
~ Rexg—R)—Lexp—L)
" expg—L)—exg-R)
(L2—L)exg—L) — (R2 —R)exp—R)
exp—L) —exp—R)

C=

Then B > c,VL,Re O

proof:
Let A = R— L which is greater than zero. Then
~ Rexg-4)-L
T 1-exp-A)
o (L2—L)— (RR—R)exg—A)
1—exp—4)

and it follows for 1- ex{—A) > 0 thatb? > cis equivalent to:

<Rexp§—A) - L)Z > <1— exp(—A)) <(|_2 —L)-
(RZ—R)exp(—A))

and hence it can be easily conclude that

Rexg—24) + L+ (R2 C2ARHLZ L R)exp(—A) >0
Rexf—24)+L+A%exp—A) — (L+R)expg—4) >0
Lexf—24) +L — 2Lexpg(—A) +Aexp(—24) + A%exf—A)

—Aexg—A) >0
2
L<1— exp(—A)) +Aexpg—A) (A +exp—A4) - 1) )

The first term of the inequality is always positive and it is
sufficient to show that the other term is also positive. Tfoese
assume that:

f(A)=A+exgf—A)-1

whereA is a random variable O then
df

da

Thus, the functionf (A) is always positive for alA sinceA e
O+, and thereforze

L<1— exp(—A)) +Aexp(—A) (A +exp—A) - 1) is positive
for all L andR.

=l-exgf-4)=0=A=0

4 Conclusion

In this article, the concavity of the distribution functiavhen
covariates involved in the analysis using interval cemgpri
model has been investigated using some well known
mathematical techniques especially Taylor approximatibich

is considered to represent the baseline hazard functisedan
the results shown in this article we can consider estimaibrs
survival function under the shape constraint that the idigtion
function of event times is concave or unimodal.
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