
Math. Sci. Lett.5, No. 3, 297-302 (2016) 297

Mathematical Sciences Letters
An International Journal

http://dx.doi.org/10.18576/msl/050312

Exact Solutions of the Cubic Nonlinear Schr ödinger
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Abstract: In this paper, the nonlinear Schrödinger (NLS) equation with cubic nonlinearity will be studied. The reduced differential
transform method (RDTM) will be used to obtain approximate analytical solutions for this equation. The proposed technique, which
does not require linearization, discretization or perturbation, gives the solution in the form of convergent power series with elegantly
computed components. Therefore, the solution procedure ofthe RDTM is simpler than other traditional methods. This method can
successfully be applied to a large class of problems.
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1 Introduction

A considerable amount of research work has been
devoted for the study of nonlinear Schrödinger (NLS)
equations with a variety of nonlinearities [1-5]. The NLS
equation describes numerous nonlinear physical
phenomena in the field of nonlinear science such as
optical solitons in optical fibres, solitons in the mean-field
theory of Bose-Einstein condensates, rogue waves in the
nonlinear oceanography, etc. One of the NLS equation
with trapping potential, Gross-Pitaevskii equation attracts
extreme interests recently. This equation describing the
dynamics of Bose-Einstein Condensate at extremely low
temperature. More details are presented [6-8].
Many powerful methods, numerical and analytical, have
been presented to solve NLS equations like the inverse
scattering method [9, 10], Lax pairs [11], Backlund
transformation, Hirota bilinear forms [12], Adomian
decomposition method (ADM) [13, 14], homotopy
perturbation method (HPM) [15-17], the variational
iteration method (VIM) [18, 19], differential transform
method (DTM) [20-22], and homotopy analysis method
(HAM) [23], first integral method [24, 25] and some
others.
The reduced differential transform method (RDTM) was

first proposed by Keskin [26] to look for exact solutions
of PDEs. In recent years, Keskin and Oturanc [27-29]
developed the reduced differential transform method
(RDTM) for the fractional differential equations and
showed that RDTM is the easily useable semi analytical
method and gives the exact solution for both the linear
and nonlinear differential equations. The solution
obtained by the reduced differential transform method is
an infinite power series for initial value problems, which
can be, in turn, expressed in closed form, the exact
solution. Recently, this useful method is widely used in
many papers such as in [30-36] and the reference therein.
In this paper, we consider the nonlinear Schrödinger
equation with a cubic nonlinearity, with the following
initial condition

i
∂u(X, t)

∂t
= −

1

2
∇2u+ Vd(X)u+ βd|u|

2u,

X ∈ Rd, t ≥ 0, i2 = −1, u(X, 0) = f(X)X ∈ Rd.

Whereu(X, t) is a complex function,Vd(X) is the
trapping potential andβd is a constants [37].
The aim of this paper is to obtain the exact solution of this
equation by using the RDTM and it is shown that the
computational size of this method is small compared with
those of ADM, HPM, VIM and DTM.
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The paper is arranged as follows. In Section 2, we
describe briefly the reduced differential transform method
(RDTM). In Section 3, we apply this method to the cubic
nonlinear Schrödinger (CNLS) equations. In Section 4,
some conclusions are given.

2 Analysis of the Method

Consider a function of two variablesu(x, t) and suppose
that it can be represented as a product of two
single-variable functions, i.e.,u(x, t) = f(x)g(t). Based
on the properties of one dimensional differential
transform, the functionu(x, t) can be represented as
follows:

u(x, t) =

( ∞
∑

i=0

F (i)xi

)( ∞
∑

j=0

G(j)tj
)

=

∞
∑

k=0

Uk(x)t
k,

(1)
whereUk(x) is calledt-dimensional spectrum function of
u(x, t). The basic definitions of RDTM are introduced as
follows [26-29]:

Definition 2.1. If function u(x, t) is analytic and
differentiated continuously with respect to timet and
spacex in the domain of interest, then let

Uk(x) =
1

k!

[

∂k

∂tk
u(x, t)

]

t=0

, (2)

where thet-dimensional spectrum functionUk(x) is the
transformed function. In this paper, the lowercaseu(x, t)
represents the original function, while the uppercase
Uk(x) stands for the transformed function.

Definition 2.2. The differential inverse transform of
Uk(x) is defined as follows:

u(x, t) =

∞
∑

k=0

Uk(x)t
k. (3)

Then, combining Eqs. (2) and (3) we write

u(x, t) =

∞
∑

k=0

1

k!

[

∂k

∂tk
u(x, t)

]

t=0

tk, (4)

from the above definitions, it can be found that the concept
of the RDTM is derived from the power series expansion.
To illustrate the basic concepts of the RDTM, consider the
following nonlinear partial differential equation written in
an operator form

Lu(x, t) +Ru(x, t) +Nu(x, t) = g(x, t), (5)

with initial condition

u(x, 0) = f(x), (6)

whereL = ∂
∂t

, R is a linear operator which has partial
derivatives,Nu(x, t) is a nonlinear operator andg(x, t) is
an inhomogeneous term.
According to the RDTM, we can construct the following
iteration formula:

(k + 1)Uk+1(x) = Gk(x)−RUk(x)−NUk(x), (7)

whereUk(x), RUk(x), NUk(x) andGk(x) are the
transformations of the functionsLu(x, t), Ru(x, t),
Nu(x, t) andg(x, t) respectively.
From initial condition (6), we write

U0(x) = f(x). (8)

Substituting (8) into (7) and by straightforward iterative
calculation, we get the followingUk(x) values. Then, the
inverse transformation of the set of values{Uk(x)}

n
k=0

gives then-terms approximation solution as follows:

ũn(x, t) =

n
∑

k=0

Uk(x)t
k. (9)

Therefore, the exact solution of the problem is given by

u(x, t) = lim
n→∞

ũn(x, t). (10)

The fundamental mathematical operations performed by
RDTM can be readily obtained and are listed in Table 1.

3 Applications

In this section, we illustrate the RDTM for solving the
cubic nonlinear Schrödinger equations.
Example 1: We first consider the following
one-dimensional Schrödinger equation

i
∂u(x, t)

∂t
= −

1

2

∂2u

∂x2
+ (cos2x)u+ |u|2u, t ≥ 0, (11)

subject to the initial condition

u(x, 0) = sinx. (12)

According to the RDTM and Table 1, the differential
transform of Eq. (11) reads

(k + 1)Uk+1(x) =
1

2
i
∂2

∂x2
Uk(x) − i(cos2x)Uk(x) + N(Uk(x)), (13)

where thet-dimensional spectrum functionsUk(x) is the
transformed function.N(Uk(x)) is the transformed form
of the nonlinear terms.
From initial condition (12), we write

U0(x) = sinx. (14)
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Table 1.Reduced differential transformation
Functional Form Transformed Form

u(x, t) Uk(x) =
1
k!
[ ∂

k

∂tk
u(x, t)]t=0

w(x, t) = u(x, t)± v(x, t) Wk(x) = Uk(x)± Vk(x)

w(x, t) = αu(x, t) Wk(x) = αUk(x) (α is a constant)

w(x, t) = xmtn Wk(x) = xmδ(k − n), δ(k) =

{

1, k = 0
0, k 6= 0

w(x, t) = xmtnu(x, t) Wk(x) = xmUk−n(x)

w(x, t) = u(x, t)v(x, t) Wk(x) =
∑

k

r=0 Vr(x)Uk−r(x) =
∑

k

r=0 Ur(x)Vk−r(x)

w(x, t) = ∂
r

∂tr
u(x, t) Wk(x) = (k + 1) . . . (k + r)Uk+r(x) =

(k+r)!
k!

Uk+r(x)

w(x, t) = ∂

∂x
u(x, t) Wk(x) =

∂

∂x
Uk(x)

Substituting Eq. (14) into Eq. (13) and by straightforward
iterative steps, we can obtain

U1(x) = −
3i

2
sinx,

U2(x) =
(− 3i

2 )
2

2!
sinx,

U3(x) =
(− 3i

2 )
3

3!
sinx, · · ·

and so on, in the same manner, the rest of components can
be obtained by using MAPLE software. Taking the inverse
transformation of the set of values{Uk(x)}

n
k=0 givesn-

terms approximation solutions as follows:

ũn(x, t) =

∞
∑

k=0

Uk(x)t
k

= U0(x) + U1(x)t+ U2(x)t
2 + U3(x)t

3 + ...

= (1−
3it

2
+

(− 3it
2 )2

2!
+

(− 3it
2 )3

3!
+ ...)sinx.

Therefore, the exact solution of the problem is readily
obtained as follows:

u(x, t) = e−
3it
2 sinx. (15)

Example 2: We next consider the following
two-dimensional Schrödinger equation

i
∂u(X, t)

∂t
= −

1

2
(
∂2u

∂x2
+

∂2u

∂y2
) + V (X)u+ |u|2u, (16)

whereX = (x, y) ∈ [0, 2π] × [0, 2π] andV (X) = 1 −
sin2xsin2y,
with initial conditions

u(X, 0) = sinxsiny. (17)

According to the RDTM and Table 1, the differential
transform of Eq. (16) reads

(k + 1)Uk+1(X) =
1

2
i(

∂2

∂x2

+
∂2

∂y2
)Uk(X)− iV (X)Uk(X) +N(Uk(X)), (18)

where thet-dimensional spectrum functionsUk(X) is the
transformed function.N(Uk(X)) is the transformed form
of the nonlinear terms.
From initial conditions (17), we write

U0(X) = sinxsiny. (19)

Substituting Eq. (19) into Eq. (18) and by straightforward
iterative steps, we can obtain

U1(X) = −2isinxsiny,

U2(X) =
(−2i)2

2!
sinxsiny,

U3(X) =
(−2i)3

3!
sinxsiny, · · ·

and so on, in the same manner, the rest of components can
be obtained by using MAPLE software. Taking the inverse
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transformation of the set of values{Uk(X)}nk=0 givesn-
terms approximation solutions as follows:

ũn(X, t) =

∞
∑

k=0

Uk(X)tk

= U0(X) + U1(X)t+ U2(X)t2 + U3(X)t3 + ...

= (1 − 2it+
(−2it)2

2!
+

(−2it)3

3!
+ ...)sinxsiny.

Therefore, the exact solution of the problem is readily
obtained as follows:

u(x, y, t) = e−2itsinxsiny. (20)

Example 3: We finally consider the following
three-dimensional Schrödinger equation

i
∂u(X, t)

∂t
= −

1

2
(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) + V (X)u+ |u|2u,(21)

whereX = (x, y, z) ∈ [0, 2π] × [0, 2π] × [0, 2π] and
V (X) = 1− sin2xsin2ysin2z,
with initial conditions

u(X, 0) = sinxsinysinz. (22)

According to the RDTM and Table 1, the differential
transform of Eq. (21) reads

(k + 1)Uk+1(X)

=
1

2
i(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)Uk(X) − iV (X)Uk(X) + N(Uk(X)),

(23)

where thet-dimensional spectrum functionsUk(X) is the
transformed function.N(Uk(X)) is the transformed form
of the nonlinear terms.
From initial conditions (22), we write

U0(X) = sinxsinysinz. (24)

Substituting Eq. (24) into Eq. (23) and by straightforward
iterative steps, we can obtain

U1(X) = −
5i

2
sinxsinysinz,

U2(X) =
(−5i

2 )2

2!
sinxsinysinz,

U3(X) =
(−5i

2 )3

3!
sinxsinysinz, · · ·

and so on, in the same manner, the rest of components
can be obtained by using MAPLE software. Taking the
inverse transformation of the set of values{Uk(X)}nk=0
givesn-terms approximation solutions as follows:

ũn(X, t) =

∞
∑

k=0

Uk(X)tk

= U0(X) + U1(X)t+ U2(X)t2 + U3(X)t3 + ...

= (1 −
5it

2
t+

(−5it
2 )2

2!

+
(−5it

2 )3

3!
+ ...)sinxsinysinz.

Therefore, the exact solution of the problem is readily
obtained as follows:

u(x, y, z, t) = e
−5it

2 sinxsinysinz. (25)

Comparing our results with the solutions obtained by
HPM and DTM [15, 20], we can see that the results are
the same.

4 Conclusion

In this work, we obtained exact solutions of nonlinear
Schrödinger equations with cubic nonlinearity by using
the reduced differential transform method. The results
indicate the efficiency and reliability of the method and
furthermore the comparison of the methods with other
analytical methods available in the literature shows that
although the results of these methods are the same,
RDTM is much easier, more convenient and efficient than
them and is a powerful mathematical tool for handling
linear and nonlinear PDEs.
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