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We look at two well known examples of interacting systems relating to condensed
matter in which we put the strong interacting parameters. At high quark chemical
potentials and low temperatures we study the entropy arising from the excitation in the
BCS model of superconductivity and the Bose-Einstein condensation (BEC) of colored
quark pairs. We compare it with the ground state entropy for a system consisting of
two colored quarks. In the BCS model we found that the entropy strongly depends
on the energy gap. Both for the very small values of the momenta as well as those
much greater than the characterizing Fermi momentum pf , the ground state entropy is
dominant. For the BEC case we suggest a phenomenological model to build up colored
bosonic quark pairs. Here the entropy entirely depends upon the short ranged repulsive
interactions between the quark pairs and vanishes for large momenta.
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1 Introduction

At high quark chemical potentials and low temperatures the hadronic matter has
been conjectured to dissolve into degenerate fermionic quarks. The matter of very cold
dense quarks might exist in the interior of compact stellar objects. Due to the difficulties
of performing lattice simulations with high chemical potentials, it is still not possible
to simulate the physics of these phases by using the lattice QCD. Non-perturbative
analysis at finite baryon density has been recently carried out on the lattice by using the
Nambu-Jona-Lasinio model [1]. The degenerate quarks near to the Fermi surfaces are
generally expected to interact according to quantum chromodynamics so that they can
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build up Cooper pairs. There are various mechanisms by which these quark pairs appear
to be condensed, which depend on their total momenta. For example the Bardeen-Cooper-
Schrieffer theory of superconductivity, which is often referred to as just BCS [2, 3], can be
applied to the quarks in pairs with identical opposite momenta. Similarly, an extension of
which is often called LOFF [4, 5] is applied to the pairs of quarks with different momenta.
Far away from the Fermi surfaces the quarks are blocked according to the Pauli principle.
Therefore, they behave like free particles. In the present work we are interested only in
the physics near to the Fermi surfaces where the quarks are attractively interacting. If we
take into account the colors as the effective degrees of freedom while we keep all the other
quantum numbers relating to simple symmetrical forms, the attractive interaction clearly
leads to a breaking of the color gauge symmetry and therefore, the Cooper pairs get color
superconducting. This structure are analogous to SU(2)c baryons which are symmetric
bosons of two colors. In the nuclear matter BCS pairings and BEC have been studied some
years ago [6, 7].

In this work we shall apply our previous calculations for the ground state en-
tropy [8–10] on these states of quarks under such extreme conditions. We shall compare
the entropy arising from the excitations with that characterizing the ground state of
colored quark pairs. Here obviously we are dealing with a large number of quark pairs.
The other difference between this work and [8–10] places in the nature of couplings
between the quarks. With the quantum entropy we mean the entropy arising from quantum
fluctuations. The latter, which differs from the thermal fluctuations, can also exists at zero
temperature. Hereafter we refer to quantum entropy as ground state entropy and vice versa
whenever unambiguous. For the BCS condensate we can directly apply the models given
in [8, 9]. But we simply consider the differences between the nature of quark-pairs and
their interactions at the Fermi level in BCS and the structure and mixing of quarks in the
colorless confined hadronic singlet and octet states. For mixed states consisting of two
colored quarks, the quantum entropy is expected to be T independent and equal ln 4 [8–10].

Furthermore, since we have bosonic states consisting of quark pairs we can study a par-
ticular case of Bose-Einstein condensation. This condensate entirely does not depend upon
the Fermi level. However, it represents a stimulating tool for the understanding the extrane-
ous condensates like BCS and LOFF, for instance. Moreover, it is a rich phenomenological
example since we know the physics of BEC much better relative to the physics of the con-
densates at such high quark chemical potential and very low temperature. Here we shall not
discuss the possible transition from color superconductivity of BCS at low density to BEC
of Cooper pairs at high density. In these two phases we individually calculate the entropy
arising from the excitation for different momenta and compare it with that for the ground
state. The transition from BCS to BEC has been discussed in many works [6, 7, 11].
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Figure 2.1: Configuration of our phenomenological model for the Bose-Einstein condensation
of coupling two colors as quark-pairs. Within the de Broglie wavelength the enclosed system
is colorless. The colored q q pairs are coherently distributed. Different quark colors are
represented by different solid circles and the pairs by ovals.

In the present work we shall use the usual statistical properties for the interacting
many-particle Fermi and Bose gases with very short-ranged interactions [12]. In this
case one can utilize the second quantized formalism to rewrite down the effects of the
interaction by means of the canonical Bogoliubov transformation as a new gas with the
same statistical properties but with correspondingly modified energy spectrum.

This article is organized as follows: The next section develops the model for SU(2)c of
symmetric bosons of two colors. In the two following sections we present, respectively, the
formulation for the Bose-Einstein condensation and the BCS model of superconductivity.
The next section is devoted to the presentation of the results followed by the discussion.
Finally in the last section we state the conclusions.

2 Model for SU(2)c

The SU(2) color structure has been investigated for finite baryon number in a very
special model involving the group characters [13]. The thermodynamics of SU(2) gauge
theory with staggered fermions has been studied at finite baryon density and zero tempera-
ture in the strong coupling limit [14]. A special property of the group structure of SU(2)

is that the action remains real, meanwhile the basic group structure for SU(3) is complex.
Analogous to SU(2)c symmetric colored bosons we suggest a phenomenological model
for the Bose-Einstein condensation in a system consisting of tightly bound quark-pairs em-
bedded within non-degenerate fermions. We take the scale of the order of the de Broglie
wavelength λ2 = h2/(2πmT ). After having been accepted that the degenerate quarks
build up subsystems of atom-like pairs, we assume that the pairs are coherently distributed.
Between each of the two pairs there is a short-ranged repulsive interaction characterized by
the interaction strength U0 which is usually given in units of energy volume. Each quark
is assumed to be coupled with its counterpart by a strongly attractive force mediated by
a kind of soft gluonic matter that in nature might differ from the usual epoxy matter [15]
which supposed to hold the quarks in the confined hadronic states. In the ground state of
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the system an arbitrary number of identical quark pairs is allowed to occupy the same state.
This homogeneous system in turn can be considered as a large number of individual and
inseparable but still distinguishable subsystems, so that for binary interacting systems the
canonical measure would be the entropy arising from the interaction. In other words for
this bosonic subsystems we can estimate the entropy from the reduced density matrix as
done in [8, 9, 16]. This configuration might be illustrated as in Fig. 2.1. For the case where
on this condensate an external potential is applied, the system becomes inhomogeneous.
Nevertheless, we are still able to consider it as consisting of individual, inseparable and
distinguishable subsystems. For this model we suppose that all quark pairs are located
within the de Broglie scale and the quarks exhibit coherent. Therefore, each of them can
be considered to be correlated with all others. And the correlations which are included into
the quantum fluctuations are short as well as large ranged, so that they do not depend on
the distance. For the simplicity we can only consider light quarks with binary correlations.
Clearly the inclusion of many-body interactions between the quark pairs leads to modifica-
tion of both ground and excited states and therefore their thermodynamics. In order to deal
with this problem, we can apply the Hartree-Fock approximations in the second quantiza-
tion formalism. The first is very familiar in the atomic physics, meanwhile the second is
basically utilizing the many-body quantum field theory. The quark pairs are coupled with
each other but their couplings in nature differ from those in the confined mesonic states.
Nevertheless, their constituents are also supposed to be asymptotically free. Now we apply
the Bose-Einstein statistics over these coupled states of two colors and symmetric flavor.

3 Formulation for Entanglement in Bose-Einstein condensation

We look at the problem of entanglement in an interacting Bose gas consisting of pairs of
light quarks by using the second quantization formalism [17]. The quarks effective degrees
of freedom considered in this work are just the colors. The flavors and other quantum
numbers are kept identical for both light quarks. For creation and annihilation operators,
Ψ̂†, Ψ̂ and effective interaction, U0 the Hamiltonian for interacting Bose gas can be written
as

H =

∫
dr Ψ̂†

[
− ~2

2m
∇2Ψ̂ + V Ψ̂ +

U0

2
Ψ̂†Ψ̂Ψ̂

]
(3.1)

=
∑
p

ϵ0pa
†
pap +

U0

2V

∑
p1,p2,q

a†p1+qa
†
p2−q ap2ap1 (3.2)

Ψ̂ = Ψ + δΨ̂ gives the quantum fluctuations whereas Ψ is the single particle wavefunc-
tion. The first term in Eq. 3.1 represents the non-interacting part of the Hamiltonian. In
Eq. 3.2 the Hamiltonian of the degenerate and nearly ideal Bose gas the operators are given
in momentum space. Simultaneously, we have inserted two bosonic creation and annihi-
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Figure 3.2: The difference between the ground state entropy, ln 4, and the entropy Sent
BEC of

the excitation in BEC is given as a function of momentum p and for different values of the
effective interaction, U0. For p → 0, Sent

BEC reaches its maximum value and it decreases
with increasing p. For large p the ground state entropy is dominant. For small U0, Sent

BEC

vanishes and the entropy is just given by the ground state value ln 4.

lation operators, a†p and ap, respectively for the usual spatially dependent operators in the
previous equation. U0 is the interaction strength from the collision of two particles with
momenta, p1 and p2, which produce two new particles with momenta, p1 + q and p2 − q,
respectively. Here we have assumed that the interaction does not depend on the momen-
tum change q [18]. With the Bogoliubov canonical transformations we get a Hamiltonian
of non-interacting system. The latter is solvable and therefore we can estimate its eigen-
values. The second quantized operators in p direction, a, a† and in p direction, b, b† are
commutative, so that we can replace a with b in H , which remains invariant. In doing the
Bogoliubov transformations, we introduce two variables, α and β, where

α = u(p)a+ v(p)b† (3.3)

β = u(p)b+ v(p)a† (3.4)

and the p-dependent variables u(p) and v(p) are just the coefficients, which will be de-
fined in Eq. 3.8, 3.9. α and β, and their counterparts in −p direction are the opera-
tors, which create and destroy the elementary excitations (quasi-particles). We choose
the phases of real u(p) and v(p) so that the interacting parts in H are entirely removed.
In doing this, we diagonalize H and therefore we can set ap = u(p)α− v(p)α†

−p and
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a−p = u(p)α−p − v(p)α†
p.

H =
N2U0

2V
+
∑
p ̸=0

ϵ0pα
†
pαp −

1

2

∑
p ̸=0

(
ϵ0p − n0U0 − ϵ(p)

)
(3.5)

ϵ0p is the single-particle energy and ϵ(p) will be given in Eq. 3.11. As given in [17] the
ground state in such entangled collection of decoupled Boson pairs in p and −p directions
is given as

|ψ0 > = g
∏
p ̸=0

1

u(p)

∞∑
i=0

(
−v(p)
u(p)

)i

|n−p = i;np = i > (3.6)

and the entropy from the excitation of two bosons with equal and oppositely directed mo-
menta p is given by

Sent
BEC = g

∑
p̸=0


ln
(

u(p)
v(p)

)2
(

u(p)
v(p)

)2
− 1

− ln

(
1−

(
v(p)

u(p)

)2
) (3.7)

where g is the degeneracy factor and the two coefficients of the Bogoliubov canonical
transformation are defined as

u(p) =

[
1

2

(
ζ(p)

ϵ(p)
+ 1

)]1/2
(3.8)

v(p) =

[
1

2

(
ζ(p)

ϵ(p)
− 1

)]1/2
(3.9)

From Eq. 3.8, 3.9, we get u(p)2 − v(p)2 = 1 which assures that the energy over the space
of the amplitudes for unoccupation u and occupation v is minimum.

Alternatively, we can obtain these results, if we directly diagonalize the Hartree-Fock
Hamiltonian together with the self-consistency equation of the order parameter ∆. For the
interacting Bose gas of quark-pairs with particle density n = N0/V0 > 0, we apply the
following definitions:

ζ(p) = ϵ0(p) + nU0 (3.10)

ϵ(p) =
(
ϵ0(p)

2 + 2ϵ0(p)nU0

)1/2
(3.11)

ϵ0(p) = (p2 +m2)1/2 - as given above - is the energy of single-particle excitation and m
is the reduced mass of the quark-pair. The validity of above definitions in Eq. 3.10, 3.11 is
guaranteed by nU0 ≥ ϵ0(p). After plugging into Eq. 3.7 we find that

Sent
BEC(p) = g

∑
p ̸=0

{
ζ(p)− ϵ(q)

2 ϵ(p)
ln

(
ζ(p) + ϵ(p)

ζ(p)− ϵ(p)

)

+ ln

(
ζ(p) + ϵ(p)

2 ϵ(p)

)}
(3.12)



Entanglement in Condensates involving Strong Interactions 245

the sum of the excitation entropy for each boson pair with the momentum p.

3.1 Ground state entropy of colored quark-pairs

In the limit of low temperature T and small distances R between the two static quarks,
the free energy for the q q system is presently being studied in SU(3) pure gauge theory on
the lattice [19]. By taking the colors Nc as the effective degrees of freedom, the quantum
entropy in the ground state of a system consisting of two colored quarks is given as [8–10]

Sqq = lnN2
c = ln 4 (3.13)

This value is clearly temperature independent. Moreover, we should mention that for
T = [0,m] it is all-dominant against the thermal entropy and as discussed in [8–10], for
this reason it is used to be abstracted away for high temperatures. But if we look at a system
of massive quarks [20, 21], the region of temperatures where the ground state entropy re-
mains significant will be correspondingly large. The effects of the quark mass on the color
superconductivity [22] and on the stability of hybrid stars [23] are recently reported. Thus
we think that the ground state entropy is an essential physical observation in understanding
the compact stellar objects and the coled quark matter with very high chemical potential.

To compare this constant value with the entropy arising from the excitation in the BEC
condensate, we define

SBEC(p) = Sqq − Sent
BEC(p) = ln 4− Sent

BEC(p) (3.14)

The results are given in Fig. 3.2. Sent
BEC(p) is maximum when p → 0, i.e. m >> p in

ϵ0p and correspondingly, u(p) ∼ v(p). For high momenta, Sent
BEC(p) → 0, and u(p) → 1

meanwhile v(p) → 0. But as we will see, this behavior is further strongly depending on
the interaction strength, U0.

For U0 → 0, the entropy Sent
BEC(p) → 0. Thus for constant momentum the controlling

parameter over Sent
BEC is the U0 which is defined as the interaction strength in the units of

energy volume. For the non-interacting BEC of an ideal gas consisting the coupled quark
pairs Sent

BEC = 0. Clearly in this case the excitation entropy, Sent
BEC , is a phenomenon which

does not depend on the Fermi surface.

4 Formulation for Entanglement in the BCS Model

As introduced in section 1 the overlap between BCS theory and the phenomenon of
BEC will not be taken directly into consideration in this work. For the entropy in the
paired phase we look at the ground state entropy which arises from the correlations in
order to determine the full extent of the entanglement of the ground state. The expectation
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Figure 4.3: The difference between ln 4 (quantum entropy for a system of two colored quarks)
and the entropy Sent

BCS which arises from the excitation is given for different momenta p and
couplings G. We note that Sent

BCS strongly depends on the momentum space and the energy
gap. At the Fermi level pf (vertical line), Sent

BCS reaches a maximum value, ln 4. This is
valid for all couplings and the correspondingly energy gaps. Obviously, for small couplings
it vanishes both below as well above pf .

is that the extent of the entanglement is determined by the mixing as we have determined
in [8–10] and the excitations in the ground state of BCS, which analogously arises from
the electron-phonon interaction. As a theoretical replacement for this coupling we have
the octet structure which couples through the gluons to the particular colors. This is true
for all the gluons building colored pairs except for the coupling generated from the Gell-
Mann matrix λ8. In the second quantized formalism the interactions can be related to
the entanglement [17]. We use the description of superconductors [18, 24], which can be
treated in a similar way to the interaction causing a Bose-Einstein condensation of the
Cooper pairs. For finite couplings nonzero bound state energies exist. There is another
basic feature of BCS which involves oppositely directed momenta and spins above and
below the Fermi level. As we have discussed in the previous section, we carry out the
Bogoliubov canonical transformation for the field amplitudes deoccupation and occupation
of the states, respectively,

u(p) =

[
1

2

(
1 +

ζ(p)

ϵ(p)

)]1/2
, (4.1)

v(p) =

[
1

2

(
1− ζ(p)

ϵ(p)

)]1/2
, (4.2)
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and therefore, u(p)2 + v(p)2 = 1. We find by taking into account the proper statistics

Sent
BCS(p) = g

∑
p̸=0


ln
(

u(p)
v(p)

)2
(

u(p)
v(p)

)2
+ 1

+ ln

(
1 +

(
v(p)

u(p)

)2
) (4.3)

where

ζ(p) = ϵ0(p)− µ, (4.4)

ϵ(p) =
(
ζ(p)2 +∆2

)1/2
(4.5)

and µ is the quark chemical potential. We call to mind that the change of the minus signs
in Eq. 3.7 to the plus signs here arises on account of the Fermi statistics in the present case.

This dispersion relation is to be modified by the existence of coherent effects (pairings)
at T = 0. ϵ(p) is equivalent to the Bogoliubov quasiparticle energy, which according to µ
characterizes the minimum of the energy gap. ∆ is an interval in which no eigenenergies
are allowed in the one-particle energy spectrum. It is usually called the energy gap and
plays the role of order parameter.

Sent
BCS(p) = g

∑
p ̸=0

{
ϵ(p)− ζ(p)

2 ϵ(p)
ln

(
ϵ(p) + ζ(p)

ϵ(p)− ζ(p)

)
ln

(
ϵ(p) + ζ(p)

2ϵ(p)

)}
(4.6)

In Eq. 3.12, 4.6 we can replace
∑

p ̸=0 by V/(2π2)
∫
p2 dp and set the degeneracy factor

g = 2.
Eq. 4.6 gives the sum of the entanglement entropy of BCS pairs with momenta ]0, p].

In order to evaluate this entropy arsing from the entanglement in the ground state, we
must know more about the system. In the BCS limit, we set the chemical potential
µ ≡ ϵf = (π2 n2/3 +m2)1/2, the Fermi level at vanishing temperature. The gap in the
spectrum of single-particle excitation which controls the sign of chemical potential, µ, can
be found by solving the following integral equation [18, 25]:

1 =
3U0V

2π2

∫ ∞

0

p2dp

[
ϵ(p)− ζ(p)

ϵ(p)ζ(p)

]
. (4.7)

We note that ζ(p) is the kinetic energy from the Fermi level and clearly depends upon
the chemical potential. Therefore, for the excitation energy in the ground state ∆ can be
parametrized as follows:

∆ = ϵf

(
2

e

)7/3

exp

(
−1

4 G

)
(4.8)

where ϵf is the Fermi energy, which per definition at T = 0 is equivalent to the ground state
quark chemical potential µf . G is the coupling strength, which represents the controlling
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parameter in the BCS model. For vanishing G we have ∆ = 0 and then Sent
BCS = 0. As in

Eq. 3.14 we define

SBCS(p) = ln 4− Sent
BCS(p) (4.9)

This entropy difference is given in Fig. 4.3 for different couplings and momenta. So far
we can conclude that the part of the entanglement entropy is entirely arising from the
interactions/excitations between the quark pairs with opposite momenta at the surface of
Fermi sea. We can also conclude that at the Fermi surface the maximum excitation entropy
equals to the entropy for the mixing of two colored quarks (quantum entropy). The latter is
T and p independent and all-dominant for T = [0,m].

5 Results and discussion

In Fig. 3.2 the difference between the entropy of the excitation in BEC of two colored
bosonic quark-pairs (Eq. 3.12), which are characterized by the phenomenological model
given in section 2, and the ground state entropy (Eq. 3.13) is depicted in dependence upon
the momenta p and for different interaction lengths U0. Here Eq. 3.12 is numerically
solved for equal successive momentum intervals p. We note that Sent

BEC starts from a
maximum value at p → 0 and decays with increasing p. For large p it radically vanishes
indicating no contribution to the entropy from the excitation, since for large momentum
the scaling exceeds the de Broglie wavelength and therefore the correlation between the
bosonic quark pairs entirely disappears. We also notice how the entropy difference depends
on the interaction strength U0. Larger U0, smaller is the difference at p → 0 and slower is
the increasing towards the asymptotic value, ln 4. For U0 → 0, we have from Eq. 3.12 that
Sent
BEC → 0. Thus we can conclude that the interaction strength U0 fully determines the

properties of the Sent
BEC as the entropy arising from the entanglement. Therefore, it can be

taken as the controlling parameter. On the other hand, the asymptotically vanishing value
of Sent

BEC in the condensate of quark pairs disappears for large momenta since there is no
remaining interaction between the quark pairs.

The BCS calculations are given in Fig. 4.3. The difference between the ground state
entropy that arises from the entanglement in the BCS (Eq. 4.6) is depicted as a function of
momenta p for different values of the coupling G. We should notice again that Sent

BCS is
highly structured. There are two regions where Sent

BCS vanishes: one is well below while the
other is well above the Fermi momentum pf , which is shown as the entropy difference from
the ground state value ln 4. The peak, which is located around the Fermi surface, is shown
by the sharp dip. When the value for Sent

BCS starts to move above its vanishing value for
the momenta higher in the Fermi sea. Near the Fermi surface the excitation entropy rapidly
increases. This behavior reflects the appearance of correlations between the quarks below
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and their counterparts above pf . The asymptotic value is again just ln 4, the value of the
quantum entropy for the mixing in a system of two colored quarks (Eq. 3.13). As discussed
above this behavior strongly depends on the coupling G and thereby on the gap parameter
∆. Nevertheless, the general structure remains much the same over many values. For larger
∆, the values of Sent

BCS get larger even at quite small and rather large p. Thus the asymptotic
region will be moved towards much larger momenta. Nevertheless, the maximum value of
Sent
BCS at pf does not itself depend on G. Therefore, this value characterizes the excitation

at the Fermi surface. The entropy of excitation at pf is the same as the value ln 4 of the
mixing of the paired colored quarks at T = 0, which is the size of the dip. Therefore,
we can accordingly conclude that the condensate of BCS pairings can be a measure of
the density of pair states around the Fermi surfaces. Thus in this model we would expect
that as soon the gluonic interactions reach the Debye cutoff momenta that then Sent

BCS also
vanishes as does the excitation entropy.

The quark pairs in this BCS model are characterized by asymmetric color degrees of
freedom and equal opposite momenta and spins. All the other degrees of freedom are
kept identical. One quark is located just below the Fermi level, while its counterpart is
found just above it. The coupling G and therefore the energy gap ∆ are likewise model
dependent [26]. Hence we are left with parameterizing these quantities. Eq. 4.8 gives the
parametrization of ∆ in relation to G for symmetric flavors, momenta and spins and asym-
metric colors. This relationship signifies that for vanishing G, ∆ → 0. With increasing G
the energy gap ∆ increases too. ∆ can be illustrated as region around the Fermi level, in
which Sent

BCS is finite. Only those quarks whose momenta fit into this region are considered.
In other words large ∆ leads to large correlations with correspondingly large excitations
between the quark pairs around pf . Therefore, there are more pairs which are contributing
to the value of Sent

BCS . Vanishing values of ∆, on the other hand, lead to an absence of inter-
acting quarks at the Fermi surface. Hence, the theoretical system of deconfined free quarks
at these high quark chemical potentials and low temperatures can properly be considered as
a closed pure state without any mixing structure [8–10]. This kind of system has according
to Nernst’s heat theorem zero entropy in the low temperature limit.

Another worthwhile result appearing in this figure is the shift of the asymptotically
zero value of Sent

BCS towards higher momenta for larger G. This situation happens because
the larger values of ∆ lead to inclusion a larger number of quarks deep within the Fermi
surfaces and simultaneously more quarks with momenta greater than pf . Then for much
larger ∆ we can freely move to higher momenta. Therefore, we notice for these cases
that the region of nonzero values of the excitation entropy Sent

BCS becomes correspondingly
wider.
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6 Conclusion

An important consideration in relation to this work is the existence of the excitations at
T = 0. The only quark interactions allowed at T = 0 are those of degenerate fermions near
the Fermi surface. Besides this we should consider the mixing of colored quarks. A purely
formal clarification explains the excitations as a result of the Bogoliubov canonical trans-
formation taking the interacting Hamiltonian with pairs of oppositely directly momenta for
the ground state operators into a simple sum over all finite momenta of the quasi-particle
number operators with a modified energy spectrum containing various pieces of the inter-
actions. These excitations arise in color space in much the same way that the spin waves
appear in the similar operators for atomic physics. Clearly these excitations are not so sim-
ply represented in the SU(3)c space in the actual colorless ground state of the hadrons,
which has a singlet representation. However, the octet states are mostly those involving
only two colors in the Gell-Mann matrices – except for λ8. Thus by taking linear combi-
nations of λ3 and λ8 we may write down nine matrices for three pairs of SU(2) color pair
states which have been constructed from the octet states. Each pair may be treated analo-
gously to the spin waves. All three together could be imagined to be waves propagating in
three perpendicular directions, which are clearly not independent of each other. However,
over very short distances a large range of momenta could be accommodated, which within
these values of momenta the oppositely directed pair of constituents are present.

Finally, we conclude by noting that the effects of the inter-particle interaction for both
the Bose-Einstein condensate and the BCS superconductor causes the entanglement. This
fact is characterized by the finite momentum contributions to the condensation process
which offer the Bogoliubov canonical transformation results in the excitation spectra. It
is the coefficients of this transformation that appear in the quantum entropy density of
entanglement. Thus we have noted that for both the composite Bose-Einstein condensate
and the superconductor with its Cooper pairing structure the entanglement arises from the
interaction between the oppositely directed momenta of the constituent particles. For the
parameters we used here the maximum entropy for the excitations in the two condensates
is compatible with the value for the mixing of two quarks at zero temperature. Therefore,
the entropy arising from the excitations in the condensates BCS and BEC, S ≤ ln 4,
depend upon the momentum space.
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