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1 Introduction [6] and presented some common coupled coincidence
fixed point results of integral type contractive mappings

The study of common fixed points of mappings which in setting of generalized metric spaces. We recommend

satisfies certain contractive conditions has been studiedome other references for reader s&6,21]. Also we

by numerous researchers due to its valuable applicationgive suitable examples that support our results.

in Mathematics as well as in other sciences. To carried

out a survey in metric as well for cone metric spaces of a

common fixed point theory, we refer the readert@[3,

4,8,9,10,11,12,15,17,18. In 2006 Mustafa and Sims 2 Preliminaries

[1€], introduced the concept of G-metric space and . o i i

presented some fixed point theorems in G-metric spaceWe needs the following definitions and results in this

The concept of a coupled coincidence point of mappingPaPer.

was introduced by V. Lakshmikantharh, 14], they also  Definition 2.1/16] Let Y be a non-empty set and

studied some fixed point theorems in partially orderedG : Y x Y x Y — R" is a function that satisfies the

metric spaces. In 2010 Shatana®{] gave the proof of following conditions:

coupled coincidence fixed point theorems in generalized G1) G(a,b,c) =0ifa=b=c,

metric spaces. In 2013 Feng and Yur,[presented a (G2) G(a,a,b) > Oforalla,beY with a# b,

common coupled fixed point theorem in generalized(G3) G(a,a,b) < G(a,b,c), for alla,b,ceY with c£b

metric space and give some applications to integral(G4) G(a,b,c) = G(a,c,b) = G(b,c,a) = ..., symmetry

equations. Moreover, In 2002, Brancia] presented the in all variables,

notion of integral type contractive mappings in complete (G5) G(a,b,c) < G(a,s,s) + G(s,b,c) for all

metric spaces and study the existence of fixed points foa,b,c,sc Y.

mappings which is defined on complete metric spaceThen the function G is called a generalized metric and the

satisfies integral type contraction. Also F. Khojasteh et al pair (Y, G) is called a G-metric space.

[13], introduced the idea of integral type con'traction in Example 2.216] LetY = {x,y}. Define G on < Y x Y by

cone metric spaces and proved some fixed point theorems

in such spaces. In this paper we used the idea of Branciari G(x,x,X) = G(y,Y,y) = 0,G(x,x,y) = 1,G(x,y,y) = 2
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and extend G to XY x Y by using the symmetry in the
variables. Then it is clear th&lY, G) is a G-metric space.

Definition 2.3[16] Let (Y, G) be a G-metric space an@,)
a sequence of points of Y. A pointa’ is said to be the
limit of the sequencéa,), if liMmnm-+oG(a,an,am) = 0
and we say that the sequen@g) is G-convergent to a.

Proposition 1[16] Let (Y,G) be a G-metric space. Then
the following are equivalent:

(1) (an) is G-convergentto a.

(2) G(an,an,a) -+ 0as n— +oo.

(3) G(an,a,a) — 0as n— +o.

(4) G(an,am,a) —» 0as nm— +oo,

Definition 2.4[15] Let (Y,G) be a G-metric space. A
sequencéay) is called G-Cauchy if for every > 0O, there
is ke N such that Gan,am, &) < ¢, for all n,m, > k;
that is Gan,am,a) — 0as nm,| — +oo.

Proposition 2[16] Let (Y,G) be a G-metric space. Then
the following are equivalent:

(1) The sequencgy) is G-Cauchy.

(2) For every € > 0O, there is ke N such that
G(an, am,am) < &, foralln,m > k.

Definition 2.5[(16] A G-metric space(Y,G) is called
G-complete if every G-Cauchy sequence (MWG) is
G-convergentinY,G).

Definition 2.6[5] An element(a,b) € Y xY is called a
coupled coincidence point of the mappings¥x Y — Y
andg:Y — Y if F(a,b) = ga and Kb,a) = gb.

Definition 2.7[14] let Y be a non-empty set. Then we say

that the mappings FEY xY —Y and g:Y — Y are
commutative if gfa,b) = F(ga,gb).

Definition 2.8[14] An elementa,b) € Y x Y is called a
coupled fixed point of mappingF xY — Y if F(a,b) =
aand Fb,a) =b.

Proposition 3[16] Let (Y,G) be a G-metric space. Then
forany ab,c,ec Y, it follows that

(i) if G(a,b,c) =0, thena=b =c;

(ii) G(a,b,c) < G(a,ab) + G(a,a,c);

(iii ) G(a,b,b) < 2G(b,a,a);

(iv) G(a,b,c) < G(a,e.c) +G(e,b,0);

(v) G(a,b,c) < £(G(a,b,e) + G(a,e,c) + G(eb,c));

(vi) G(a,b,c) < G(a,ee) + G(b,ee) + G(c,ee).

Proposition 4[16] Let (Y,G) be a G-metric space. Then
the function Ga, b, c) is jointly continuous in all three of
its variables.

Proposition 516 Let (Y,G) and (Y/,G') be G-metric
spaces, then the mapping Y — Y’ is G-continuous at a
point ae Y if and only if it is G-sequentially continuous
at a; that is, whenevefa,} is G-convergent to &f (an))

is G-convergent to ().

In 2002, Branciari in6] introduced a general contractive
condition of integral type as follows.

Theorem 2.96] Let(Y,d) be a complete metric spaaec
(0,1),and f: Y — Y is amapping such that for allx€ Y,

A(F(0.(y)) d(xy)
/ ot)dt< a / o(t)dt
0 0

where ¢ : [0,+0) — [0,4) is nonnegative and
Lebesgue-integrable mapping which is summatile.,
with finite integral) on each compact subset [, +)
such that for eacke > 0, 5 @(t)dt > 0, then f has a
unique fixed point a Y, such that for each x Y,
limpe f(x) = a.

In this manuscript we use the above idea of Branc@lri |
and presented our results in generalized metric spaces.

3 Main Results

In this section we will prove some common coupled fixed
point results in generalized metric space by using integral
type contractive mappings. We will start our work by the
following lemma.

Lemmallet (Y,G) be a G-metric space. Suppose
Hi,Ho,H3: Y XY — Y and h: Y — Y be four mappings
such that

*G(H1(a,b),Hz2(p,q),Hs(r,c))
/ p(t)dt <

0
G(hahp,hr) G(hb,hg,hc)
a /0 o)t + ar /0 o (t)dt

G(hahphp) G(hb,hg,hq)
N a3/0 o (t)dt+ a4/0 o (t)dt

G(hahrhr) G(hb,hc.he)
+ a5/0 o (t)dt + as/o o (t)dt
G(hrhaha) G(hchb,hb)
+ a7/0 o (t)dt + Gg/o omdt  (3.1)

for all a,b,c,p,q,r €Y, wherea; > 0,i =1,2,...,8 with

ap + o + a3 + ag + a7 + ag < 1 and
¢ : [0,4+0) — [0,+) is a Lebesgue integrable mapping
which is summable, non-negative and such that for each
€ >0, [§¢(t)dt > 0. Assume thata,b) is a common
coupled coincidence point of the mappings pii, h),
(Hz,h) and (Hs, h). Then

Hi(a,b) = Hx(a,b) = Hs(a,b) = ha=hb=Hi(b,a) =
HZ(ba a) = H3(ba a)'

Proof. Since(a, b) is a common coupled coincidence point
of the mappings paifHi, h), (Hz,h) and(Hs, h), we have
ha=Hi(a,b) = Hy(a,b) = H3(a,b) andhb=Hj(b,a) =
Ha(b,a) = Hz(b,a). Supposéra# hb. Then by 8.1), we
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get
G(hahb,hb) G(H1(a,b),Hz(b,a),H3(b,a))
/ ¢(t)dt—/ o (t)dt
0
hahbhb G(hbhaha)
/ (t)dt + az / o (t)dt
0
hahbhb G(hbhaha)
+a / (t)dt+ a4/ o(t)dt
0

G(hbhb, hb G(hahaha)
t)dt + a6 / o (t)dt
0

G(hbhaha) G(hahb,hb)
" a7/0 o (t)dt+ a8/0 o (t)dt

(hahbhb)
_ (a1+a3+a8)/0 o (t)dt
(hbhaha)
+ (0t st a7)/o o (t)dt.
Also by (3.1), we have
G(hb,haha) G(H1(b,a),H2(a,b),Hz(a,b))
L ewa= [ (t)c
(hb, haha G(hahb,hb)
/ (t)dt + az / o (t)dt
0
(hb, haha G(hahb,hb)
+a / (t)dt+ a4/ o(t)dt
0

hahaha G(hbhbhb)
(t)dt + ag / o (t)dt
0

(hahb,hb) G(hb,haha)
" a7/0 o (t)dt+ a8/0 o (t)dt

ha)

(hbhah
= (01+03+Gg)/0 ¢ (t)dt

\ /\

(ha,hbhb)
+ (0t st a7)/0 o (t)dt.

Therefore

-G(hahbhb) -G(hbhaha)
/0 ¢(t)dt+/0 o)t

< (a1+a2+ag+a4+ay+ag)
/~(G(hahb.hb)+G(hb.haha))
0

Since 0< a; + a2+ az+ g+ o7+ ag < 1, we get
~G(hahb,hb) ~G(hb,ha,ha) ~G(hahb,hb) ~G(hb,ha,ha)

/ ¢(t)dt+/ ¢(t)dt</ ¢(t)dt+/ s,
0 0 0 0

which is contradiction. Sha= hb, hence

Hi(a,b) = Ha(a,b) = Ha(a,b) = ha=hb=Hy (b,a) =
Hz(b, a) = H3(b, a).

such that

G(Hy1(ab),H2(p.g).Ha(r,c))
/ p(t)dt <
0

G(hahp,hr) G(hb,hg,hc)
o /O o(t)dt + a» /O o(t)dt

G(hahphp) G(hb,hg,hqg)
+ 03/0 o(t)dt + a4/0 o (t)dt

G(hahr,hr) G(hb,hc,hc)
+ 05/0 o (t)dt + ae/o o (t)dt

G(hr,haha) G(hc,hb,hb)
+ a7/0 (t)dt+ a8/0 p(dt  (3.2)

for all a,b,c,p,q,r €Y, wherea; > 0,i =1,2,...,8 with
o1+ ap + a3 + ag + 2as + 206 + a7 + ag < 1 and

¢ : [0,4+0) — [0,+) is a Lebesgue integrable mapping
which is summable, non-negative and such that for each
€ >0, [fot)dt > 0. Assume that HHy,Hz and h
satisfies the following conditions:

(i)

H1i(Y xY) C h(Y),Ha(Y xY) C h(Y),Hs(Y xY) C h(Y);

(it) h(Y) is G-complete;

(ii ) h is G-continuous and continuous with 2, Hs.

Then there exist a unique & Y such that
ha=Hi(a,a) = Hx(a,a) = Hz(a,a) = a.

Proof. Let ag,bp € Y. Since Hi(Y x Y) C h(Y),
H2(Y xY) C h(Y), Hz(Y xY) C h(Y), we can choose
ai, ap,ag, by, by, bs € Y such that
hay; = Hi(ag,bo),hby = Hi(bg,a),har =
Ha(ag,by),hb, = Hay(by,a),has = Hz(ap,bp) and
hb; = Hz(by,a2). Combining this process, we can
construct two sequencés, } and{bn} in'Y such that

hagn = Hs(agn-1,03n-1),
hbzn = H3(b3n_1, 30— 1) n=123,...,

hagn, 1 = Hi(asn,ban), hbzni1 = Hi(bsn,azn),
n=123...,

hagn2 = Hz(azn+1, bant1),

hbzp,2 = H2(b3n+1,33n+1) n=123,....

If hagn = haghi1, then ha = Hi(ab), where
a:aSnab:b3n-

If hag,.1 = hagyi2, then ha = Hy(a,b), where
a = agn+1, b= b3n+l-

If hag,.2 = hag,.3, then ha = Hsz(a,b), where
a= agn+2, b= b3n+2-

Also, If hbz, = hbgy;1, then hb = Hi(b,a), where
b= b3n7a: azn-

If hbgni1 = hbgnip, then hb = Hy(b,a), where

Theorem 3.1et (Y,G) be a G-metric space. Suppose b= bzy;1,a=asn;1.

Hi,Ho,Hs: Y xY —Y and h:Y — Y be four mappings
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If hbgyi2 = hbgyrs, then hb = Hsz(b,a), where

b= bani2,a=agn2.

Without loss of generality, we may assume that

ha, # hay, 1 andhb, # hby 1, foralln=0,1,2,. ...

By (3.2, we have

G(hagn,hagn 1,hagn 2)
/ bl
0

G(H3(asn—1:b3n—1),H2(asn,b3n),Hz(a3n+1,03n11))
/ 6(t)dt
0

G(hagn,hagn+1,hagn-1)

<a | o (1)t
0
G(hban,hban - 1,hbgn_1)

+az /0 (t)dt
G(hagn,hagn+1,hagn 1)

+ a3 /0 (t)dt
G(hban,hban - 1.hbgn. 1)

+ o /0 o(t)dt
G(hagn-1,hagn_1,hagn_1)

+ as /0 o (t)dt
G(hban+1.hban_1.hbgn_1)

+ a6 /0 o (t)dt
G(hagn_1,hagn,hagn)

+ a7 /0 6 (t)dt
G(hbSn—lahbSnwhb3n>

+ag /0 o (t)dt

(t)dt

G(hbbgy_1,hban, hibgn 1)
+ (o2+as+ ae+ag)/o ¢ (t)dt

G(hagn1,hagn,hagn 1)
< (01—1—034— 05+G7)/
0

Which implies that

/'G(hﬂsn«ha3n+1«ha3n+2)
0

/G(ha3n—1>ha3n=h33n+1>

p(t)dt< (a1 +0az+as+az) ¢(t)dt

0

"G(hbgp_1.hbgn.hbzn, 1)
+(a2+a4+a6+a8)/0 o (t)dt. (33)

Similarly, we can get

¢ (t)dt

"G(hbgn-1,hbzn,hbgn 1)
< (0’1+013+0’5+017)/0 ¢ (t)dt

/‘G(hbsn-,hbsnﬂyhbsnﬂ)
0

G(hagn_1,hagn,hagn1)
/ ¢ (t)dt. (3.4)

+ (02+as+ag+ag) 0

Combining 8.3) and @.4), we get

é(t)dt

/G<h33n-,ha3n+1ah33n+2)
0

‘G<hb3n-,hb3n+17hb3n+2)
+ /O o(t)dt (3.5)

<(3a)

Next, we can show that

/’[G(hasn—l-,hasn-,h33n+1)+G(hmn—lahmnahmmrl)] Jdt

0

é(t)dt

/G<h33n—17h33n7h33n+1)
0

"G(hbgn-1,hbzn,hbgn 1)
“ b

[G(hasnfz-,hasnflyha@ﬂ+G(hmn727hmnflyhb3n>]

é(t)dt.(3.6)

o
and

-G(hag,_2.hagy_1.hagn)
/ n n n t)dt
0

G(hbgp_2,hbgn_1.hbgn)
/
0

<
It follows from (3.5), (3.6) and @.7) that for alln € N,
we have

#(t)dt (3.7

/‘[G(ha3n—3*ha3n—2-ha3n—1)+G(hb3n—3*hb3n—2-hb3n—1)]

d(t)dt.
0

G(han,han1,han 2) G(hbn,hby y 1,hby 2)
JA omat+ | o0

8 [G(han-1,han.han1)+G(hbn_1,hbn,hbn 1))
<(3a) A p(t)ct
i=

k/[G(han—Lhan7han+1)+G(hbn—1yhb17hbn+l)]
0

t)dt

5 [1G(han 2.hay 100+ Glhby o,y 1)
<k /0 o (t)dt

- lGiha hayhz)+ Gihbo by i)
<K /0 p(t)dt,

(3.8)
where k = 58 & € [0,1). From (G3), we have
G(han,han1,han2) < G(han,hayg,haqn2)  and
G(hbn, hbn; 1,hbhi2) < G(hby, by, 1,hbny2).  Hence,
from (G3) and 8.8), we get

G(han,han1,han; 1) G(hbn,hby y1,hbn 1)
A omat+ | o0

G(hbn,hbyy1,hbn 2)
< / o(t)dt

¢ (t)dt+
/[G<hao7ha1,haz>+e<hbo,hb17hbzn

/G(h3n7han+1»h3n+2)
0

<K é(t)dt. (3.9)
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Therefore, for alln,m e N,n < m, by (G5) and 8.9), we
have

G(hhagp,hhagn1,H2(a,b))
/ o (t)dt
0

G(ha ham han) G(hby by, hti)
/O ¢(t)dt+/o o (t)dt

G(Hy (hagn,hbgn),Hz(a,b),Hz(hagn—1.hbzn—1))
/ p(v)t
0

(G(han.han 1.han 1) +G(hbn,hbn.1,hbn 1))
< / )dt G(hhagn,hahhag,_1)
0 <m / ¢ (t)dt
[G(ham-1,ham,ham)+G(hbm_1,hbm,hbm)] 0
NI / ¢ (t)dt G(hhhbgp,hb.hhigz_1)
0 + / o (t)dt
< (KK k™ O o
/[G(hBO,haLhaz)+G(hbo7hb17hb2)]¢(t) it + a3 / s a)qb(t)dt
0
0
G(hhhn,hb,hb)
N [G(haghay hag)+G(hbp,hby,hby)]
<l p(t)dt +a Pt
- 0
G(hahhag,1,hhagn 1)
(3100 a5/ T s ()t
Thus G(hb,hhbz,_1,hhbzn_1)
+ Qe /O ¢ (t)dt
G(han,ham,ham)
/ ¢ (t)dt — 0 asn,m— . G(hhagn_1,hhagn,hhagn)
0 s /O o (t)dt
Which implies that G(hhhbgy_1,hhbsn, hibsn)
P + ag /O o (t)dlt.

G(hay, ham,ham) — 0 and G(hby, hbm, higyn) — 0 asn,m— oo,

) ) Lettingn — o, and using 8.11), alsoG is continuous, we
Thus,{ha,} and{hby,} are all G-Cauchy imY. SincehY get

is G-complete, we gethan} and {hbn} are converges to  G(ha ha,H,(a, b)) = 0.
some a < hY and b € hY, respectively. Sinceh is  Henceha= H,(a,b). By the same way, we can show that
G-continuous, we havéhha,} is G-convergentthaand pp — Hp(b,a). Also we may show that
{hhhb,} is G-convergenttdb. i.e., ha = Hi(ab),hb = Hi(b,a),ha = Hs(ab) and
hb = Hs(b,a). Therefore,(a,b) is a common coupled
hha, —-ha and hhh—hb as n— . (3.11) coincidence point of the paits,h),(Hz,h) and (Hs,h).
By Lemmal, we get
Also, ash commutes witiH;,H, andHs, we have

ha= Hj(a,b) = Hz(a,b) = H3(a,b)

hhasn = hHs(aan1,ban1) = Ha(hag 1, hban_1), = Hj(b,a) = Hy(b,a) = Hz(b,a) =hb. (3.12)

Since the sequencdéag,_1}, {hbs,} and {hag, 1} are

hhbzn = hHg(bgn-1,a30-1) = Hz(hbgn-1, hagn-1), the subsequences of the sequerte,}, so all are
G-convergent ta. By the same process, we may show
hhagnt1 = hH1(azn, ban) = Hi(hagn, hban), that {hbzn_1}, {hbs,} and {hag,1} are converges tb.

From condition 8.2), we have

hhbsn 1 = hHy (bgn, agn) = H1(hbn, hagn), G(hagn haha) G(Hy(ab) Ha(a.b) H(asn 1.0 1))
/ pdt= [ o0t

hhagn; 2 = hHa(azn+1,b3n+1) = Ha(hagn 1, hbany ),

G(hahahas, 1) G(hbhbhbs 1)
o <a pdt+a | p(t)dt
Glranany clbrbny
hhbgn 2 = hHz(b3n 1, 8an+1) = Ha(hban 1, hagn 1) * ag/o o) t+a4/0 ot
G(hahag 1.han1) G(hb by 1.hban1)
+ 015/0 o (t)dt + 016/0 o (t)dt
G(ha_1.haha) G(hbs, 1,hbhb)
Thus, from 8.2), we have + 07/0 ¢(t)dt+as/0 ¢ (t)dt.
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Lettingn — o, also asG is continuous, we get

~G(a,haha) -G(hahaa)
/O o(t)dt < (orl+or7)/o o(t)dt

-G(hb,hb,b)
Hoz+ag) [T ot

G(haaa) .G(hbb.b)
+ 015/0 o(t)dt + 016/0 o (t)dt.

Further, we can show that

(b,hb.hb)
/O o (t)dt < (ar + a7)
G(hbhbyb) G(hahaa)
/O o (t)dt + (a2+ag)/0 o(t)dt

-G(hbb,b) G(haaa)
¥ 015/0 o (t)dt+ 016/0 o(t)dt

By using Propositior(iii), we have
G(a,haha)
/ o (t)dt
0

G(b,hb.hb)
+/O ¢(t)dt < (o1+az+ a7+ as)

/[G(hahaa)+G(hb7hb,b)]
0

¢ (t)dt

[G(ha,a,a)+G(hb,b,b)]
+ (a5+ae)/o 6(t)dt

< (a1+ a2+ 205+ 206+ a7+ ag)
/[G(hahaa)+G(hb,hb,b)]
0

Since 0< ap+ 02+ 03+ a4+ 205+ 206+ a7+ ag < 1,
so the last inequality happens onlyGfa, ha ha) = 0 and
G(b,hb,hb) = 0. Hencea = haandb = hb. From (3.12,
we havea = ha= hb= b, thus, we get

ha=Hi(a,a) = Hy(a,a) = Hz(a,a) = a.

For unigueness, legpby € Y with assumption thapy # a
such that

Po = hpo = H1(po, Po) = H2(pPo, Po) = Ha(po, Po)-

Once again using the conditior8.9) and Proposition
5(iii), we have

G(Po,Po-a) G(H1(PoPo).H2(po. Po).H3(2.a))
[ ewar= | o)t

Since 0< a; +ax+ a3+ 04+ 205+ 205+ a7+ 0g < 1,
we get

G(po.Po.a) G(po,po,a)
/O o(t)dt < /O o (t)dt,

which gives a contradiction. Thusl;, Hz, H3 andh have
a unique common fixed point.

Corollary 3.2Let (Y,G) be a G-metric space. Let
Hi,Hz,H3:Y xY =Y and h:Y — Y be mappings such
that

G(Hy(ab),Hz(p.a).Hs(r.c))
/ p(vat
0

(hahp.hr) (hb,hg,hc)
= 0'1/ ¢(t)dt+ az/ ¢ (t)dt (3.13)
0 0

for all a,b,c,p,q,r €Y, where a> 0,i = 1,2, and
a;+ 0 < 1. Also ¢ : [0,+) — [0,+) is a Lebesgue
integrable mapping which is summable, non-negative and
such that for eache > 0, [§ ¢(t)dt > 0. Assume that
Hj,H2,Hs and h satisfies the following conditions:

(i)

H1(Y xY) C h(Y),H2(Y xY) C h(Y),Hs(Y xY) C h(Y);

(i) h(Y) is G-complete;

(i ) his G-continuous and continuous with #iz, Hs.
Then there exists a unique & Y such
ha=Hi(a,a) = Hy(a,a) = Hz(a,a) = a.

that

Example 3.35uppose ¥= [0,1]. Define G:Y xY xY —
R* by
G(a,b,c) =
for all a,b,c € Y. Then(Y,G) is a complete G-metric
space. Define a map

Hl,Hz,H3 YxY—=Y

by

la—b|+|b—c|+|c—4a

a+b
8

for all a,b € Y. Also, define hY — Y by ha= § and
¢(t) =5 forsomete Y. Then HY x Y) C hY.

Thus the condition of Corollarg.2 holds, in fact,

Hi(a,b) = Hz(a,b) = Hz(a,b) =

(hpo,hpo, ha G(hpg,hpo,ha) G
(Hi(ab),Hz(p.a),Hs(r.c)) St
< / dt+az/0 o (t)dt [ s (S
(hpo.hpo, hPo G(hpo,hpo,hipo) . .
1 ;G(hahphr) 1 [G(hbhghc)
+a / dt+a. / t)dt _ =z - .
o(t)dt+as | o(t) 4/0 ¢(t)dt+4/0 o (t)dt
(hpo, haha G(hpo,haha) By subadditivity, we have
+a / )dt+ 0!6/0 ¢ (t)dt B 1/[G(hahp,hr)+G(hb,hq,hc)]
G(hahpo.hpo) Nt G(hahpo.hpo) Nt 4
a ot . .
* 7/0 pdt+ 8/0 o Thus we see that the conditigB.13) of Corollary 3.2 is
< (a1+ a2+ 205+ 206 + a7+ Og) satisfied withor; = o = %1. So, we may say thatj-H», Hs
G(po,Poa) and h have a common fixed point. Furth@rs the unique
/0 ¢ (t)dt common fixed point for all maps;H,, Hz and h.
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Corollary 3.4Let (Y,G) be a G-metric space. Let HY x
Y —Y andh'Y —Y be four mappings such that

G(H(a,b),H(p,g).H(r.c))
/ o1t
0

G(hahphp) G(hb,hg.hg)
<o pvydt+ o | o (t)dt
0 0

G(hp,hr,hr) G(hg,hc.he)
+ 03/0 o(t)dt + a4/0 o (t)dt

(hr,haha) G(hc,hb,hb)
+ a5/0 o(t)dt + a6/0 p(t)dt  (3.14)

for all a,b,c,p,q,r €Y, wherea; > 0,i=1,2,...,6 and
o, + apx + 203 + 204 + a5 + o < 1. Also
¢ : [0,00) — [0,00) is a Lebesgue integrable mapping

which is summable, non-negative and such that for each
¢ (t)dt > 0. Suppose that H and h satisfy the

€>0, [
below conditions:

(i) H(Y xY) ChY;

(i) hY is G-complete;

(iii ) h is G-continuous and commutes with H.

Then there exists a unique & Y such that
ha=H(a,b) =a.
Example 3.5uppose Y = [01]. Define

G:YxYxY—R"by

G(a,b,c) =|a—b|+|b—c|+|c—a|
for all a,b,c € Y. Then(Y,G) is a complete G-metric
space. Define a mapping HY xY — Y by

Hiab) = 2

for all a,b € Y. Also, define a map:g¥ — Y by ha=a
andg(t)=tforte.
Then the condition of Corollar9 4 holds, in fact,

/G( (a,b)H(p.a) H G(2..5%8)
0

- / t)dt
1 [G(hahphp) Ndt (hbhg,ha) Odt
-5/ w>+E/ o)
hp7hrhr
i

(hg,hc,he)
Jdt+ = / o(t)dt
1 rG(hrhaha)

G(hchbhb)
“ 35 ¢<>dt+—16/" BVt

Clearly we see that the conditiq8.14) of Corollary 3.4
is satisfied witho; = a2 = 03 = a4 = a5 = Qg = 1. SO,
H and h have a uniqgue common fixed point. MoredVés,

the uniqgue common fixed point for all the mappings H and

h.

4 Conclusion

In this paper we use the idea of A. Branciai,[about
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