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Abstract: In this work, we use the similarity method to solve fractibneder partial differential equations where the fractiona
derivative is defined in Riesz sense. Two examples are pebémillustrate how problems are reduced from two-vagdtdctional
partial differential equations to ordinary ones. Fouriansform method is used for solving the ordinary problems.
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1 Introduction

The field of fractional calculus has attracted the interdstesearchers in many fields of applied sciences such as
mathematics, physics, chemistry, engineering, financesanidl sciences. This is the result of the availability ofesal
definitions for fractional derivatives that are utilized goesent more accurate models for real life phenomena. These
definitions include Riemann-Liouvillel], Caputo P], Riesz [B], Riesz-Feller 4], and Jumarie§]. These definitions
have been employed for generalizing many models into tha fdrfractional partial differential equations (FPDES).

Analytic solutions to FPDEs were generally obtained eithyeusing Laplace transform with Fourier transform or
by applying the separation of variables techniglie Recently, some semi-analytic methods have been alseadito
obtain series solution to FPDEs. These methods include Aatodecomposition metho@]and [7], homotopy analysis
method B] and [9], homotopy perturbation method{] and [L1], variational iteration methodlP] and [13], and fractional
differential transformation method §] and [15].

Riesz fractional derivative definition has been studied tihars either in finite or in infinite domains. Examples of
the research that considered Riesz definition on infiniteadosinclude the work in1[6] where the authors obtained the
fundamental solutions of the space Riesz FPDE and the gjpaediesz FPDE using methods of Fourier series expansion
and Laplace transform. They also include the series solwtitained to such problems via homotopy analysis met8jod |
or via the variational iteration method3J]. Whereas the work on Riesz definition on finite domains idelobtaining an
approximate solution for the fractional diffusion equatieith the Riesz fractional derivative by utilizing the Mc@aack
numerical method][7]. Also, the work in [L8] where the authors obtained the analytical solutions oftiypes of FPDESs
with Riesz space fractional derivatives; fractional dffun equation and fractional advection—dispersion eqnoati

Both linear and nonlinear partial differential equatioasd been tackled by symmetry methods. Yet, the application
of these methods for obtaining solutions of FPDEs is stilthia initial stage. The work reported in this area include
for example the derivation of scaling transformations tduee time-fractional heat equation with Riemann-Liowvill
fractional derivative to a fractional differential equati (FDE) but with Erdelyi-Kober fractional differential epator
[19]. Also, similarity solutions are presented @& for the time-fractional nonlinear conduction equatiomsdduce them
to ordinary FDEs that are solved by analytic and numeriadinaues. Whereas for the fractional derivative defined in
Caputo sense, symmetry properties of fractional diffusiqnations are studied i2]]. Finally, the Lie group method is
applied in R2] to a space-time fractional diffusion equation where tlaefional derivative given by Jumarie sense.
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In this work, we solve space-fractional PDEs with fractikderivative in Riesz sense. We illustrate a direct approach
to use similarity methods to reduce FPDEs to FDEs in the saactidnal derivative. Two examples are presented where
the resulting FDE is solved by Fourier transform method. §rephs of the solution, shows the continuation of the
solution of the obtained FDE with the exact solutions of the@&sponding integer order problem.

This article is arranged as follows. The definition and props of Riesz fractional derivative are listed in Section
2. In Section 3, similarity method technique is illustratedransform FPDEs into FDEs motivated by two examples. In
Section 4, Fourier transform method is employed to obtainsilution to the FDE and the graphs of the solution are
presented. The conclusion of this work is summarized iniGeét

2 TheRiesz Fractional Derivative

The Riesz fractional derivatiie? is defined as13,23,24]

o ~ [Dfu(x) +D%u(x)
RIU(X) = — Ecoian/Z) , 0<a<2, a#l, 1)

whereD{ u(x) are the Weyl fractional derivatives defined by

+411-0y(x), O0<a<1;
f(x) = dZdi(zfa @
2lt ux),  l<a<2,
wherelﬁ denote the Weyl fractional integrals of orgér> 0, given by
1 X
1Pu(x :—/ x—2)P~lu(z)d
By — T /°° p-1
[Pu(X) = — Z—X u(zdz 3
0= g7, @0 @ ®)
Whena = 0 the Weyl fractional derivative degenerates into the idlgoperator
D2 u(x) = lu(x) = u(x). (4)
For continuity we get
Diu(x) = igu(x) DZu(x) = CI—Zu(x) (5)
EV T T VT e
Evidently, in the caser = 2, Riesz fractional derivative takes the form of the secordkr derivative operator
d2
Reu(x) = a2 (6)
For the case = 1, we have
d d1l r* u(z
1 _Y _ = S’
ReU(x) = dxHu(X) dx n/_w z—xdZ )

whereH is the Hilbert transform and the integral is understood en@auchy principal value sense.

3 Similarity Method Solution

In this section, we illustrate the technique for using samifly methods in solving FPDEs with Riesz definition of fiangl
derivative.
Problem 1. Consider the following problem

_adu
2 — —

! ot

RYu, u=u(xt). (8)
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To solve equationg), first we perform its scaling transformation using simtlamethods, see0] and [25]. Consider
the new independent and dependent variables denoteckbgndd defined in the following way

t=A", x=APx, u=A40Q, 9

whereA is called the scaling parameteqx, g, andn are arbitrary constants to be determined such that equégjon
remains invariant under this transformation. From Riegind®n for the case k a < 2, it can be easily verified that

_ 2 X -
RQU(X,t) = 2CO$CHT/2:;- F2= a)& [/M(X—Z)l“u(z)dz—k/ (Z—x)l"’u(z)dz
-1 _ d 1 .
~ e Pt | A A e
AT igﬁ/ (APz—APR)192A9 0A PdZ] (10)
= AT PIRIG(%,T).

wherez = A Pz Also we have

du_)\ ndu

i r (11)
Hence, by substituting equatiorfsdf and (L1) into equation §), we get
ad
AN >/\q"0t = A9PYRI y(x,f). (12)
From equation12), it is clear that by setting
n=_2p, (13)

equation 8) is invariant under transformatioB)( The characteristic equation associated with transftom#9) is given
by

du_dx_dt "
qu px nt
At g =0, this shows that (x,t) can be expressed as
u(x,t)="f(J), (15)
where ¢ —xtn.
By using formula {5), we have
RAU(x,1) = _— & /X (x—z)l‘“u(z)dz+/w(z—x)l“’u(z)dz
X 2cogam/2)l (2—a) dx |/ - X
_ -1 —2p o? 1 ¢ Y \i-a p
- 2cos{om/2)[t d_@r(z—a)/m(t B2 _t%’) f(¢)trdy+
=2 d? 1 Yy p
e / _ S yragthd 16
ek F 2 Y o
:tT"Rg’f(Z),
wherey = zt 7 and % d T dd;z
Formula (L5) y|eIds
M _(Pyprdl (17)
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From equation13), the resulting FDE is given by:

—-1_df o
— a7 =R (18)
Problem 2. Consider the following problem
Jdu Jdu a g4
tﬁ +x& = —t2 R{u(x,t), u=u(xt). (29)
On the same manner, we use the similarity transformatiaahi@s defined by equatiof)(we have
RYu(x,t) = A9 PIRIO. (X T). (20)
and
ou _ )a-pdU
ax ox’
ou ou
27 _janZZ
ot A ot (1)
By substituting equation20) and @1) into equation {9) we get
Angaan2Y L ypgpa-p2Y — A FAGPIRIG(%, ). (22)
ot ox
From equationZ?), it is clear that
n+q—n:p+q—p:%+q—pa. (23)

Equation 23) means that by settinﬁ = % then equationX9) is invariant under transformatiof)( The characteristic
equation becomes

du_dx_dt 24
qu px nt
By solving the characteristic equatia®4j, and settingj= 0, u(x,t) can be expressed as
u(xt)=f (7), {=xt7. (25)
From formula 25) we have
RIu(xt) =tZ RIF({). (26)
Finally, the FPDE 19) is reduced to the ordinary FDHE§).
4 Fourier Transform
To find the solution of equatiori @), we consider the FDE of the form
ktﬂ = Ry(t). (27)
dt
Apply Fourier transform, as adopted B3 and [24], to both sides of equatior2{), we get
dy a
—k(w% +Y(w)) = —|w|"Y (w). (28)
Equation 28) is a separable first order ordinary differential and itaigoh is given by
Y(w) = (%c ek, (29)
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Fig. 1: The functionf({) described by equation (32) at different valuesxof
whereC is a constant.
Consider the casé = —%. Then
Y(w) = ! e“!(?f‘x_a (30)
=T ,
and the solution of equatio7) takes the form
1 t 0 \m\“ Cor
y(t) = —// ek e /“Tdwdr. (31)
27T 0 J—o0
So, the solution of equatioi8) becomes
F(Z) = = /Z /m e 19T gy dr (32)
o 2T[ 0 —o00 '

Evidently, whena = 2, f({) represents the classical error function which is the sofuid the corresponding integer
order differential equation.

Figurel shows the effect of changing the order of fractional derieatr on the behavior of the solution function
f({) given by equation32). The figure also illustrates that asapproaches two, the graph takes the form of the graph of

the classical error function e{é) which is the solution of the integer-order differential atjan corresponding to FDE
(18).

5 Conclusions

The similarity method is used to solve FPDEs where the faeli derivative is given in Riesz sense. Because the
similarity methods decreases the number of independeiatoles of the equation by one variable, we use it to transform
the considered FPDE with two independent variables intinargt FDE in the same fractional derivative. The ordinary
FDE obtained is solved using Fourier transform. The graphe®olution function at different values afindicates the
continuation of the solution to the solution of the corresgiog integer order problem astends to 2.
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