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Abstract: In this work, we use the similarity method to solve fractional order partial differential equations where the fractional
derivative is defined in Riesz sense. Two examples are presented to illustrate how problems are reduced from two-variable fractional
partial differential equations to ordinary ones. Fourier transform method is used for solving the ordinary problems.
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1 Introduction

The field of fractional calculus has attracted the interest of researchers in many fields of applied sciences such as
mathematics, physics, chemistry, engineering, finance andsocial sciences. This is the result of the availability of several
definitions for fractional derivatives that are utilized topresent more accurate models for real life phenomena. These
definitions include Riemann-Liouville [1], Caputo [2], Riesz [3], Riesz-Feller [4], and Jumarie [5]. These definitions
have been employed for generalizing many models into the form of fractional partial differential equations (FPDEs).

Analytic solutions to FPDEs were generally obtained eitherby using Laplace transform with Fourier transform or
by applying the separation of variables technique [1]. Recently, some semi-analytic methods have been also utilized to
obtain series solution to FPDEs. These methods include Adomian decomposition method [6] and [7], homotopy analysis
method [8] and [9], homotopy perturbation method [10] and [11], variational iteration method [12] and [13], and fractional
differential transformation method [14] and [15].

Riesz fractional derivative definition has been studied by authors either in finite or in infinite domains. Examples of
the research that considered Riesz definition on infinite domains include the work in [16] where the authors obtained the
fundamental solutions of the space Riesz FPDE and the space-time Riesz FPDE using methods of Fourier series expansion
and Laplace transform. They also include the series solution obtained to such problems via homotopy analysis method [8]
or via the variational iteration method [13]. Whereas the work on Riesz definition on finite domains include obtaining an
approximate solution for the fractional diffusion equation with the Riesz fractional derivative by utilizing the McCormack
numerical method [17]. Also, the work in [18] where the authors obtained the analytical solutions of twotypes of FPDEs
with Riesz space fractional derivatives; fractional diffusion equation and fractional advection–dispersion equation.

Both linear and nonlinear partial differential equations have been tackled by symmetry methods. Yet, the application
of these methods for obtaining solutions of FPDEs is still inthe initial stage. The work reported in this area include
for example the derivation of scaling transformations to reduce time-fractional heat equation with Riemann-Liouville
fractional derivative to a fractional differential equation (FDE) but with Erdelyi-Kober fractional differential operator
[19]. Also, similarity solutions are presented in [20] for the time-fractional nonlinear conduction equations to reduce them
to ordinary FDEs that are solved by analytic and numerical techniques. Whereas for the fractional derivative defined in
Caputo sense, symmetry properties of fractional diffusionequations are studied in [21]. Finally, the Lie group method is
applied in [22] to a space-time fractional diffusion equation where the fractional derivative given by Jumarie sense.
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In this work, we solve space-fractional PDEs with fractional derivative in Riesz sense. We illustrate a direct approach
to use similarity methods to reduce FPDEs to FDEs in the same fractional derivative. Two examples are presented where
the resulting FDE is solved by Fourier transform method. Thegraphs of the solution, shows the continuation of the
solution of the obtained FDE with the exact solutions of the corresponding integer order problem.

This article is arranged as follows. The definition and properties of Riesz fractional derivative are listed in Section
2. In Section 3, similarity method technique is illustratedto transform FPDEs into FDEs motivated by two examples. In
Section 4, Fourier transform method is employed to obtain the solution to the FDE and the graphs of the solution are
presented. The conclusion of this work is summarized in Section 5.

2 The Riesz Fractional Derivative

The Riesz fractional derivativeRα
x is defined as [13,23,24]

Rα
x u(x) =−

[Dα
+u(x)+Dα

−u(x)

2cos(απ/2)
, 0< α < 2, α 6= 1, (1)

whereDα
±u(x) are the Weyl fractional derivatives defined by

f (x) =

{

± d
dxI1−α

± u(x), 0< α < 1;
d2

dx2 I2−α
± u(x), 1< α < 2,

(2)

whereIβ
± denote the Weyl fractional integrals of orderβ > 0, given by

Iβ
+u(x) =

1
Γ (β )

∫ x

−∞
(x− z)β−1u(z)dz,

Iβ
−u(x) =

1
Γ (β )

∫ ∞

x
(z− x)β−1u(z)dz. (3)

Whenα = 0 the Weyl fractional derivative degenerates into the identity operator

D0
±u(x) = Iu(x) = u(x). (4)

For continuity we get

D1
±u(x) =±

d
dx

u(x), D2
±u(x) =

d2

dx2 u(x). (5)

Evidently, in the caseα = 2, Riesz fractional derivative takes the form of the second-order derivative operator

R2
xu(x) =

d2

dx2 u(x). (6)

For the caseα = 1, we have

R1
xu(x) =

d
dx

Hu(x) =
d
dx

1
π

∫ ∞

−∞

u(z)
z− x

dz, (7)

whereH is the Hilbert transform and the integral is understood in the Cauchy principal value sense.

3 Similarity Method Solution

In this section, we illustrate the technique for using similarity methods in solving FPDEs with Riesz definition of fractional
derivative.

Problem 1. Consider the following problem

t1− α
2

∂u
∂ t

= Rα
x u, u= u(x, t). (8)
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To solve equation (8), first we perform its scaling transformation using similarity methods, see [20] and [25]. Consider
the new independent and dependent variables denoted byt, x, andu defined in the following way

t = λ nt, x= λ px, u= λ q u, (9)

whereλ is called the scaling parameter,p, q, andn are arbitrary constants to be determined such that equation(8)
remains invariant under this transformation. From Riesz definition for the case 1< α < 2, it can be easily verified that

Rα
x u(x, t) =

−1
2cos(απ/2)Γ (2−α)

d2

dx2

[

∫ x

−∞
(x− z)1−αu(z)dz+

∫ ∞

x
(z− x)1−αu(z)dz

]

=
−1

2cos(απ/2)
[λ−2p d2

dx2

1
Γ (2−α)

∫ x

−∞
(λ px−λ pz)1−α λ q uλ pdz+

λ−2p d2

dx2

1
Γ (2−α)

∫ ∞

x
(λ pz−λ px)1−αλ q uλ pdz] (10)

= λ q−pαRα
x u(x, t).

wherez= λ pz. Also we have

∂u
∂ t

= λ q−n ∂u

∂ t
. (11)

Hence, by substituting equations (10) and (11) into equation (8), we get

λ n(1− α
2 )tλ q−n ∂ αu

∂ t
α = λ q−pα Rα

x u(x, t). (12)

From equation (12), it is clear that by setting

n= 2p, (13)

equation (8) is invariant under transformation (9). The characteristic equation associated with transformation (9) is given
by

du
qu

=
dx
px

=
dt
nt
. (14)

At q= 0, this shows thatu (x, t) can be expressed as

u (x, t) = f (ζ ), (15)

where ζ = xt
−p
n .

By using formula (15), we have

Rα
x u(x, t) =

−1
2cos(απ/2)Γ (2−α)

d2

dx2

[

∫ x

−∞
(x− z)1−αu(z)dz+

∫ ∞

x
(z− x)1−αu(z)dz

]

=
−1

2cos(απ/2)
[t

−2p
n

d2

dζ 2

1
Γ (2−α)

∫ ζ

−∞
(

ζ
t
−p
n

−
y

t
−p
n

)1−α f (ζ )t
p
n dy+

t
−2p

n
d2

dζ 2

1
Γ (2−α)

∫ ∞

ζ

y

t
−p
n

−
ζ

t
−p
n

)1−α f (ζ )t
p
n dy] (16)

= t
−p
n αRα

ζ f (ζ ),

wherey= zt
−p
n and d2

dx2 = t
−2p

n d2

dζ 2 .
Formula (15) yields

∂u
∂ t

= (
−p
n

)x t
−p
n −1 d f

dζ
. (17)
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From equation (13), the resulting FDE is given by:

−1
2

ζ
d f
dζ

= Rα
ζ f (ζ ). (18)

Problem 2. Consider the following problem

t
∂u
∂ t

+ x
∂u
∂x

=−t
α
2 Rα

x u(x, t), u= u(x, t). (19)

On the same manner, we use the similarity transformation variables defined by equation (9) we have

Rα
x u(x, t) = λ q−pαRα

x u.(x, t). (20)

and

∂u
∂x

= λ q−p ∂ ū
∂x

,

∂u
∂ t

= λ q−n ∂ ū

∂ t
. (21)

By substituting equations (20) and (21) into equation (19) we get

λ ntλ q−n ∂ ū

∂ t
+λ pxλ q−p ∂ ū

∂x
=−λ

nα
2 λ q−pαRα

x u(x, t). (22)

From equation (22), it is clear that

n+q−n= p+q− p=
nα
2

+q− pα. (23)

Equation (23) means that by settingpn = 1
2 then equation (19) is invariant under transformation (9). The characteristic

equation becomes

du
qu

=
dx
px

=
dt
nt
. (24)

By solving the characteristic equation (24), and settingq= 0, u(x, t) can be expressed as

u (x, t) = f (ζ ), ζ = x t
−1
2 . (25)

From formula (25) we have

Rα
x u(x, t) = t

−α
2 Rα

ζ f (ζ ). (26)

Finally, the FPDE (19) is reduced to the ordinary FDE (18).

4 Fourier Transform

To find the solution of equation (18), we consider the FDE of the form

kt
d y
d t

= Rα
t y(t). (27)

Apply Fourier transform, as adopted by [23] and [24], to both sides of equation (27), we get

−k(ω
dY
dω

+Y(ω)) =−|ω |αY(ω). (28)

Equation (28) is a separable first order ordinary differential and its solution is given by

Y(ω) =
1
ω

C e
|ω|α
kα , (29)
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Fig. 1: The functionf (ζ ) described by equation (32) at different values ofα.

whereC is a constant.
Consider the caseC=− 1

j . Then

Y(ω) =−
1
jω

e
|ω|α
kα , (30)

and the solution of equation (27) takes the form

y(t) =
1

2π

∫ t

0

∫ ∞

−∞
e
|ω|α
kα e− jωτ dω dτ. (31)

So, the solution of equation (18) becomes

f (ζ ) =
1

2π

∫ ζ

0

∫ ∞

−∞
e
−2|ω|α

α e− jωτ dω dτ. (32)

Evidently, whenα = 2, f (ζ ) represents the classical error function which is the solution to the corresponding integer
order differential equation.

Figure1 shows the effect of changing the order of fractional derivative α on the behavior of the solution function
f (ζ ) given by equation (32). The figure also illustrates that asα approaches two, the graph takes the form of the graph of
the classical error function erf( ζ

2 ) which is the solution of the integer-order differential equation corresponding to FDE
(18).

5 Conclusions

The similarity method is used to solve FPDEs where the fractional derivative is given in Riesz sense. Because the
similarity methods decreases the number of independent variables of the equation by one variable, we use it to transform
the considered FPDE with two independent variables into ordinary FDE in the same fractional derivative. The ordinary
FDE obtained is solved using Fourier transform. The graph ofthe solution function at different values ofα indicates the
continuation of the solution to the solution of the corresponding integer order problem asα tends to 2.
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