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Abstract: This article is concerned with the existence and uniquenég®sitive solution to a class of fractional order diffetiah
equation with three point boundary conditions of the type

°D%u(t) = f(t,u(t).° D tu(t)), 1< a <2ted=10,1]

u(0) = yu(n), “DPu(1) = y*DPu(n),0< B <1,n € (0.1),
wheref : J xR x R — R is nonlinear continuous function alﬁlg’+ represents Caputo’s fractional derivative of ordeiVe use some
results from fixed point theory to obtain the existence ariquaness results. We provide an example to show the apjbiigadf our

results

Keywords: Fractional differential equations; Three point boundamgditions, Fixed point theorems, Existence and uniquemnssssts.

1 Introduction multi-point boundary conditions have attracted the
attention of many researchers and is a rapidly growing
Fractional differential equations have extensive €@ Of investigation, we refer the readers 13,18,19,
d : 20.21,22,23,24,25,26,27]. The purpose of this paper is
to study existence and uniqueness of solution for

be found in various scientific and engineering dISCIp“nesboundary value problem of the form

such as physics, chemistry, biology, viscoelasticity,
control theory, signal processing etc, for detail we refer
[1,2,3,4,5]. Moreover, most of the authors studied
fractional differential equations as an object of

mathematical investigations, we refer the reader$}6, [ °Du(t) = f(t,u(t),* DY tu(t)),
7,8,9,10,11,12,13,14,15,16] and the references therein o) — DBU(L) — v DB 1)
for the recent development in the theory of fractional u(0) = yu(n), u(1) =y*D”u(n),

differential equations. It is worthwhile to mention that

Caputo’s fractional derivatives play important role in

applied problems as it provides known physical

interpretation for initial and boundary conditions. On the where 1< a <2,0<f8 < 1,y<,(0,1) andt € J=0,1].
other hand, the Riemann-Liouville derivatives of We developed the necessary and sufficient conditions for
fractional order do not provide physical interpretatioms i the existence of positive solution to the above class of
most of the cases for initial and boundary conditions.fractional differential equations with the help of clasdic
Existence theory for real world problems which can befixed point theory. We also provide an example for the
modeled by of fractional differential equations with illustrations of our main results.
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2 Preliminaries Lemma 3For y(t) € C[0,1], the unique solution of
We recall some basic definitions and lemmas of fixed point Deu(t) =y(t),1<a<2tel=[01],
theory and functional analysis, which are required for our u(0) = ( ) DBu(1) = y °DPu(n), )

main work [L,2,3,4,5,6,7]. 0<B<1ye(01)

Definition 1.The Banach space of all continuous
functions from J— R with the wusual norm isgiven by (t) :folG(t,s)y(s)dste [0,1], where Gt,s)
[lulle = sup{ju(t)] : 0 <t < 1}, is denoted by GJ,R). is the Green’s function and is given by

The Banach space of functions:u — R that are

Lebesgue integrable with the norul| 1 = f3|u(t)|dt is ,-i(t— 991+ %(1—)(0 —9)%
denoted by £(J,R). Further, we know that8] the space F(2=B)(yn+1-yt)
C(J,R) = {ue C(J,R) D% 1ue C(J,R)} is a Banach Tt Br(a—p)
space under the noriful|z = max{||ul[«, [|°D* tul[e }.
[ 9Pl _(1-g9 Pl o<s<t<n,
Definition 2.The fractional integral of ordenr € R, ofa ~ G(t.s)=4¢ | v (3)
function he L*([a,b],R) is defined by I_—(l—y)(n —g)1
t 2—-B)(yn+(1—-y)t
lah(t) = %/ (t=97h(s)ds " a ynl)(ﬂx ((a )>§
-9 P t—1-9° Pt o<t<s<n.

Whena= 0, we writel9h(t) = [h* ¢4](t), wheregq(t) =
‘a 1) fort>0,d4(t) =0fort <Oandgp, — 5(t) asa —0,  Proofin view of lemmamaZ2), we have

Where(S is the delta function.

u(t) =1%y(t) +co+cat, co, €1 €R )
Definition 3.The Caputo fractional order derivative of a
function h on the interval, b] is defined by and L p

{1~
°DPu(t) = 19 Py(t) + o1 ————-.
t 1
CDngh(t):;/ (t—9)" 91 (s)ds n=[a] +1, re-p)
F(n—a)/a The boundary conditions

provided that the integral on the right converges. u(0) = yu(n), and°DPu(1) = y*DPu(n) yield that
For more details on the subject of fractional derivatives - r2-p) (e Py(n) — |afgy(l)}
and integrals, we refer the readers203 4,5]. 1—yni-B

Lemma 1]14] The fractional order differential equation cy= L{l“y(n) + L@(yl“*ﬁy(n) - I“*By(l))n}.
1-vy 1—yni-A
of ordera > 0 of the form

°Dh(t)=0,n—1<a<n, Thus @) implies that

r-
has a unique solution of the form u(t) =19(t) + 1—Xy| Ty(n)+ %(VU
h(t) = t+Cot?+ ... +Cpqt"? _ _
) =CotCul+ G+ ...+ Groal™, +a-yoduetym -1y
where Ge R, fori =0,1,...n—1. 1
= —/ (t—s)% 1y(s)ds
Lemma 2][14]. The following result holds for a fractional ’_1‘7 0 "
derivative and integral of ordear 4 / _aa-1
a1y Jy (=9 ¥(e)ds
|aCDah(t) = h(t)+co+clt+C2t2+ ...+Cn,1tn_1, r-p) ( ( 0
- yn+ (1 -yt
for arbitrary G; € R,for i=0,1,2,...,n— 1. (1—yn*F)(r (a—B))

[ / 58y [ (15 y(ss]

= G(t s)y(s)ds
In this section, we study existence and uniqueness of the
solution of the fractional differential equatioh)( where the Green'’s functioB(t, s) is given in @).

3 Main Results
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If a—pB < 1 then the green functioi(t,s) become

unbounded but the function :— folG(t,s)y(s)ds is
continuous ord = [0, 1] so attain its spermium value say

n
G" = sup |

G(t,s) | ds
te[0,1] /0

In view of Lemma B), we write the BVP {) as an integral
equation of the form

/Gts (s,u(s

Define an operatdF : C(J,R) —s C(J,R) by

/Gts s, u(s

then solutions of the BVP1j are fixed points off . Note
that

D% tu(s))ds t e d.

°D lu(s))dsted, (5)

r@-pp=*
1-yn*F)r@E-a

(DY Tut =19

{y*Py(n) —19"Py(1)}
_/fsu °Da-1y(s))ds

N r(2—pjizoa (6)
(L—yn*P)r 3—a)(I (a—p))

{y/ 5)9 P2t (s,u(s),* D tu(s))ds
/0(1 )~ 5‘1f(s,u(s),cD“‘lu(s))ds}.

(@ By()

Theorem 1Further assume
(A1) f : Ix R xR — Ris continuous;
(A2)There exist pe C(J,R™) and ¢ : [0,0] — (0,0) is
continuous and non-decreasing such that
| f(t,u,2) |[< pt)Y(| z]) forallt € J,u,ze R;
(Ag)There exist constant® 0 such that

P> max{e* o (), pur)

r@-a)r(a—p+1)(1-yn*-P)
F(3-a)r (a—B+1)(1-ynt- B
re- ﬁ )yn®—F-1)
Ll )< ) (@D ynt B))}

where g = sup{p(s),s € J}, then the BVPY) has at
least one solution on J withu(t)| < r for each te J.

ProofWe use Schauder fixed point theorem. We prove that

T is continuous. Choose as defined inAz) and define
D={ueC(J,R),[|u[lg <r} aclosed subset &(J,R). If
{un} converges tarin C(J,R), then there exisd > 0 such
that

[lUnllg <&, [Julle <.

For allt € J, we have

[Tun(t) —Tu(t)|

< 1691 (5n(5), D" un(s)) — F(s.u(5), D u(s)] s
JO

which in view of the continuity off and Lebesague

dominated convergence Theorem implies

[[Tun(t)
Also
D M Tun(t) —=°D 1T u(t) ||

—Tu(t)||e — 0 asn — oo. 7

< /Ot | (5,Un(S), DY Lun(s)) — f (s, G(9)DYLiI(s)) | ds+

re-—p*
A—yn*P)r(3—a)(r (a—p))

{V [/ (0-9 8 21(6.n(9.5D% (o) - 1(5 (5D (5 s}

B re-p°
A—yn*F)r 3—a)(r (a—p))

{ [a-9% 8 H11(s (9.5 Hun(s) - (505D ) ).

By Lebesgue dominated convergence Theorem, we obtain

DT un(t) —° DY 1T uU(t)[|w — 0 @s n— oo. (8)
From (7) and @), it follows that

ITun(t) -

implies thatT is continuous. Now, we show th@tD) is
bounded.
Letu(t) € D then for each € J ,we have

Tu(®)| < /OI(IG(LS)IIf(S7U(S)7°D“*1U(S))I)dS
< G prw(|['D* tu)))
< G p'¥max{||u(t)[e, [|DT u(t)[|e) }

< Gp¥(ulle)
< GprW(r).

Further

Tu(t)||e — 0 asn — oo,

0% )| < [ 11(su(9.°D% u(s)))ds

r@-pre
@y A E-a)r (@ p))

{/o” (n—9° P Yf(s.u(s).°D% 1)[ds
1

‘/ (1_s>‘”’llf(s,u(s)fD”l”dS}
0

< pw(|julle)
r2-B)n°Y
{” F(3—0)F(U—B+1)(1—vn“’)}'

_|_
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Hence, it follows that| Tu(t)||z <, where

r> maX{G* pr(r),

—a)l (a—p+1)(1-yn'F)
Prylr )< ~a)r (e B+1><1—ynlﬂ>>
r
“ar

2-B)(yn®* P-1)
Pl )< (B DLy P)

which yleIdsT( ) € D. Finally, we prove thall mapD

into equi-continuous set &(J,R). Forty,tp € J,t; <ty
andu(t) € D, we have

[Tu(tz) — Tu(ty)]

/|G t2,9)
< p(ule) / G(t2.9)

which implies that||Tu(ty) —
Moreover,

ITeDLu(ty)
to t1

< /0 f(s.u(s) D Lu(s)ds) - /0 f(s,u(s) D Lu(s)ds
-2 r2-p)

F(3-a)r (a—B)(1—yn=P)
n

{ [ 01-97 P (s, 0" ru(s)as

- /l(l —9)9 Bt (su(s),° D”‘lu(s)ds}
0

< p (DT Mu(9))| [ { (t2 — ta)
(5 —tF )re-p)
r@—a)r(a—p)(1-yn*F)
<p¥(ule)
G -8 re-gyn*rt-1
{et B Fr D )
which implies thatT (°D9~tu)t, — T(°D?~tu)ty] — O as

to — t1. Hence||Tu(tz) — Tu(ty)||g — 0 ast, — t3.
By Arzela Ascoli Theorem, it follows thak is completely

G(ty,s)||f(s,u(s), D tu(s))|ds
G(ty,9)|ds

Tu(ty)|| — 0 asty — t;.

~T°D tu(ty)|

+

{ynF -1}

7t1

continuous. Hence by Schauder’s fixed point theofiem

has a fixed pointi in D.

Theorem 2Assuming that the following hold
(Ag)f : IxR xR — Ris continuous;
(As)There exists constantk 0 such that for each & J and
allx,y,x,y € R,
(% y) = F(t, X Y)| < k(X=X + |y —¥D),
holds. Further, if
r@—a)r(a—p+11-—yn**)
r@—a)r(a—p+1)(1-yn*F)
r2-p)yn"*-1 )}<1
a)l (a—B+1)(1-yn'F) ’

max{ 2G*k, 2k<

ra—

then the BVR1) has a unique solution on J.

ProofFor the uniqueness of solutions, we use Banach

contraction principle. We show that the operator
T:C(J,R) — C(J,R) is contraction mapping with fixed
point u(t). In view of the continuity off andG and the
proof of TheoremY), it follows from (5) and €) thatTu
and°D?~1Tuare both continuous oh Letu,u e C(J,R)
then for each € J, we have

| Tu(t) —Tu(t) |< supG(t,s)

) tej ) )
/0 | f(s,u(s),*DLu(s)) — f(s,u(s),° D ta(s)) | ds

<G'k{|u—U|+| D tu—-D* 10|} <2G*k | u—1U]g,

and
| DY ITu(t) —

< [ 11(s.u9),07 tu(s) - H5@5D" i) |ds

r— B t2 a a
Tt ,;)( e )a>( a—B)) vfy n-sp
|f(s,u(s),°D“’lu(s))—f(s,u(s), D~ 10(s))|ds
r@e-pi«a
- A-yn*B)r@—a)r(a—p))

/01(1 —5)" P f(su(s),° D tu(s)) - (s, U(s).°D T U(s))|ds

DT (M) |

Which implies that

| DY ITu(t) — DAITO) |

<k{|u—ul]+|D* lu— Do tu|}t
re-pe=-

(1 ynt=B) (I (3—a))(F (a—P))

<(’7—S)a A - (1-92 P |1)
a—p © a—p °
1

(Ju—u|+ | D% tu— D a))kt

<2k |u-ulle

Lo r2-pk
r@—a)r(a-pB+1)(1-yntF)

(P 1) | u— g

F3-a)r(a— 1l ynt?)
o) (@~ B+ 1A yn™P)
r2-p)(yn®*-1

T e o Byt P
lu—ul.

< 2k
= “FEo

It follows that

[ Tu(t) =Tu(t) le < dffu=ul,
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Natural Sciences Publishing Cor.



Math. Sci. Lett5, No. 3, 291-296 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

295

where
r@—a)y(a—-p+11—yn*F
r@—a)(a—B+1)(1-yn*F)

re-pg)yn**-1 }
r—a)yr(a-—B+1)(1- yr]ll3

d= max{ 2G*k, 2k

+2k

= T is contraction mapping.
By Banach fixed point theorem the BVR)(has a unique
solution.

Example 1Consider the following boundary value

problem

O u(t)

1 1
= telo,1
20cost+7<1+3|u(t)|+4|CD1/2u(t)|)’ €1
Here o = 3/2p = y = n = 3 and
ft,u,v) = 20cgs+7 (1+3\u(%)\+4\v\) , with v =¢ DY2u(t).
We find that
_ 4

|f(t,U,V) - f(tau7\7>| < 2—7(|U—J[ - |V_\7D7
which is condition(A;) of Theorem 2) with (k = 2i7).

Also G* = sup.; fo' | G(t,s) | ds= 1.404 and
r@-a)r(a-p+1)(1-yn" P
r@—ar(a—B+1)(1-yn'#)

re-p)(yn**-1
o) (a—B+1)(1—yniF)

+2k —0.46< 1,

r3-

B-a) (a-B+1)(1—yn'P)
r@-a(a—p+1)(1-yn*Pk)
r(2-p)yn®*-1 9
r@E—a)(a—p+1)(1-yn*F) '
Hence by Theorem2], boundary value problem has a
unique solution od € [0, 1].

max{ 2G*k, Zk(
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