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Abstract: Plastic media have the particular property to exhibit naw sérain at a vanishing applied stress and are modeled hyedya
of possible constitutive memory equations. In this notegisiboratory data we compare the results based on the tistequations
of Polycrystalline Halite (PH) which include the Caputo aaputo-Fabrizio fractional derivatives to model the ptaptoperties of
this medium. Based on this finding we suggest that a varietjiftdrent mathematical memory formalisms is needed to rhatle
phenomena and media with memory. We suggest a method to dhésie mathematical formalisms with laboratory experisieiich
leads to determine the plastic properties of PH showingithatrain memory is much longer than that of stress.
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1 Introduction

Elastic properties of media have been modeled since long tisng the classic Hooke’s law, anelastic properties have
been mathematically modeled by the following relations

t
et) = /r(t —u)T(u)du,
0

t
7(t) = /r(t —u)e(u)dy,
0

whereg(t) is strain,T(t) is stressr(t) andr(t) are called the causal functions and show the response ofeédaim
to a unit impulse of stress and strain respectively. Lateratielastic properties have been modeled by several weisati
of Hooke’s law obtained introducing the first order derivatihe general case being that of the standard linear sdlid [1
In order to model the dissipation of energy or the hysteratid fatigue phenomena in different anelastic media is now
usual to introduce in their constitutive equations the Gaplerivatives of fractional order, often considered as enory
operator A similar procedure is used for porous media in rotdenodel the variable diffusivity due to the history of
the previous flux [2] and also for other mathematical, ptaisigeophysical, biological and economic phenomena [3-
12]. The number of papers written for modeling scientific pir@ena using fractional calculus is so large that is would
take a book to list all of them [13]. Is to be noted in the greatiety of fields of science and in the great variety of
phenomena studied with the use the fractional calculussieument used is the Caputo fractional derivative. It &nth
quite challenging that the same mathematical instrumemgtheaised with success in the fitting of the experimental data
in all the fields considered above. As we noted these fieldgerétom biology and medical science to engineering and
material properties, from all the variety of branches of gemics to all the branches of economy and finance, from
theoretical physics to chemistry, from geology to demogyaplany interesting research articles have been writtethen
fractional derivative, on its physical and geometric magriil4] and on its relation with fractals [15-16], few in pauiar
on its definition [13,17-18], with common consensus on thénitportance and the definition, although the latter not yet
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official. In the applications a frequent use is made of fiawi derivatives for setting model of the constitutive eopres

for instance of anelastic media or diffusion. In few caseswualidity of these constitutive equations have been studie
experimentally [2]. Some models of constitutive equatiobgiously give better results than others in the approxionat

of the properties of the medium, most of them seem to give mapo information on the memory properties of the
medium examined. However, as we already noted, is quitgisig how the single Caputo derivative may be helpful in
modeling mathematically with the help of only two free paeders the properties of so many different phenomena and
different media and in the fitting of the data resulting frorany different experiments. Is then in order to investigate
the possibility that the memory operators are in fact fotyndifferent in the different media or phenomena. The recent
notes of Caputo and Fabrizio [19-20] are of help to the soifutif the problem and allow to chose, among the available
memory operators, which one would give an adequate fittilge@xperimental data and a more appropriate model type.
However the question remains open on which would be the mgfoonalism to introduce in the constitutive equations
in order to obtain the best mathematical modeling of the @riigs of the medium examined. It is then reasonable to think
that the answer could be imbedded in the experimental dataoae may then seek the solution there. This approach
has already been used by Caputo [21] concerning generiasditeinedia giving the formulae identifying the memory
operator, not necessarily a fractional derivative, monerapriate to fit the results of the experiments. Obviousbré¢h

are different approaches to the solution of the problem kiéipg on the variety of appropriate analytical models used t
define the form of the sought memory operators. This notedsemded to the memory operators concerning the plastic
media recently modeled by Caputo and Fabrizio [20] who usset af constitutive equations, which is a particular case
of that previously mentioned of Caputo [21,22], but usedlfierspecific purpose of modeling plastic media. We will show
that in the modeling the rheology of Polycristalline Hatite fractional derivative with exponential kernel of Capand
Fabrizio [19] would be more adequate.

2 The Modeling of Plastic Media

Most literature on applied fractional calculus shows thatguccessful use of the presently available fractionalatares

is a proof of the presence of memory in many scientific phemanaad is a first order approximation in taking account the
memory phenomenon which is needed mostly, but not onlyaking into account the second law of thermodynamics.
The literature on the constitutive equations for the matitgsal modeling of plastic phenomena is vast beginning with
\olterra [23] who modeled the phenomenon using hereditaayhematical tools and whose dislocation theory is the
base of a new branch of plasticity studies [24] where the pimemon of plasticity is considered due to the migration
of dislocations. Is to be noted also the rich book of Argon[2#ich appeared before the quick diffusion of fractional
calculus, with the presentation and discussion of a vacasgs. Concerning hereditary phenomena are also of intieees
volume of Graffi [26] and the note of Fichera [27]. The apgiieas of fractional calculus to plasticity was considerkba

in the notes of Caputo [21,22] who studied the rheologicapprties of polycrystalline halite, appearing in naturkainge
thick deposits, which were considered for the disposal dib@ctive waste and whose experimental data will be used in
the present note and discussed with the constitutive emmsasilready used by Caputo and Fabrizio [19]. In order to find
which could be the most appropriate model for the memory dastic medium let us consider the above mentioned set
of constitutive equation for rheological media alreadydgtd by Caputo and Fabrizio [20].

h(u,t) «DTj + u(Tj — §jTrr /3) = (A Fjk(u,t) * D&y + 2uk(u,t) * Dgj), (1)
whose LT, provided;j (0) = 17;(0) = 0, may be written

pTIJ + U(TIJ - dJTrr/a)/H(ua p) = ()‘dJK(uv p) pErr —|—2[JK(U, p) pEIJ)/H(uv p)v (2)

where capital letters indicate LT of the function with siamilower case letter, D means classic derivative of firstiorde
u is the order of the memory operatortdfi, t), k(u,t) which arelL; , monotonically decreasing with(u, «) = 0, k(u,«) =
0,h(0,t) = k(0,t) = 1. The latter condition, would imply that the applicationtloé operatorf(0,t) « D andk(0,t) « D to
a function reproduces the function itself, which howevenas mandatory for the developments in this note but mostly
matter of elegance and formality for similarity with the mamoperators presently used. The range depends on the
problem considered. All the functions concerning the ptaigionditions of the medium modeled by equations (1) and (2)
are assumed to be initially zero that is the medium to begiljtat rest. Examples of generic functidiig,t) andk(u,t)
are

h(t),k(t) = exp(—ut) 1)

or
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h(t),k(t) = 1/log(e-+ ut),

where withu = 0 followsh(0,t) = k(0,t) = 1, which imply that the operator of order zero reproduce$uhetion, that
are monotonically decreasing and satisfy the conditigmg = k(o) = 0, moreover setting equations)in the equation
(1) would produce a general memory form of Standard LineéidS&/henu = 1 both operators are not representing the
first order derivative of the function aretp(—ut)and 1/log(e+ ut) are not kernels of a fractional derivatives of order u.
Obviously the functions h(u,t) and k(u,t) would not definecgrerator with the all properties of the classical fractiona
derivative but are simple, hopefully useful, memory forisrals which reproduce the function when the operator hag orde
u= 0. Classic examples of functidriu,t) x D andk(u,t) « D are the Caputo and the Caputo-Fabrizio fractional devigati
[19].

Setting

K/H =N(u,p),
M=N/H, (3)
m=n/h= (k/h)/h=k/h?,

we obtain from equation (2)

PT11+ M (Tar— Trr /3)/H(u, p) = (AN(u, p) pErr + 2uN(u, p) pE11),
PT22+ p(T1a— Ter /3)/H(u, p) = (AN(u, p) pErr + 2UN(u, p) pE22) /H, (4)
PTaz+ H(T1a— Ter /3)/H(u, p) = (AN(U, p) pErr + 2UN(u, p) pEss).

Summing equations (4) we find

Trr = (3A +2u)N(u, p)E;, (5)

which implies that the function N(u,p) is determined wheesides the elastic parameters also gn@nd t;; are
experimentally determined. Substitutifig in equations (4) we obtain

Taa(p+ H/H) = (A +2p/3)Er(N(u, p)/H(u, p)) + N(u, p) (A pErr + 21 pEqa),
Toa(p+ H/H) = (A +2p/3)Er (N(u, p)/H(u, p)) + N(u, ) (A pErr + 21 pE2o), (6)
Taa(p+ H/H) = (A +2p/3)Er (N(u, p)/H(u, p)) + N(U, p) (A pErr + 21 pEgg).
Knowing the values of the elastic parameters and the expetally obtained values af; andg;; one may consider
to determine from the equations (6) the unknown memory apes®l = N/H and H. In order to simplify the formulae

without losing in generality we assumg = 133 which impliese;, = €33 then third and second equations (6) are identical,
therefore we use only the first and the second equation of/dtera (6) that is the system

Tua(p+p/H) = (A +2u/3)Er (N(u, p) /H(u, p) + N(u, p)(A pErr + 21 pE11),
Too(p+ p/H) = (A +2u/3)E (N(u, p) /H (U, p)) + N(u, p) (A pEyr + 21 pEz2). (7)

Subtracting we find
(Tra—T22)(p+ H/H) = N(u, p)2up(Er1 — Ez2), (8)
while equation (5) gives

N(u,p) =T /(3A +21)E;;. ©)

Where is readily verified that ifi(u,t) andk(v,t) are kernels of Caputo fractional derivative witbh-\1>u>0, then
a constant volumetric change implies a nil asymptotic stresother words if the stress has shorter memory than the
strain then the stress is asymptotically vanishing as reduiy plastic media. The same results are obtained if idsiea
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the Caputo fractional derivative is used that of Caputo+zab[19] with same assumptionslv>u>0 on the orders of
fractional derivation. If flu,t) = k(u,t) equation (9) is simply

(3)‘ + 2IJ)Eii =T, (10)

which implies that, when the stress field is constant theatitan is constant and depends only on the sum of the
principal components of the stress; the strain componeaischange and the shape of the body changes keeping the
volume constant. Moreover when the strain is observed in a laboratory experiment withh constant andy, = 133
constant then the strairgs, = £33 may be computed. In order to proceed in the study of the syét@¢mwe substitute
equation (8) in equation (9) obtaining

(Tir—T22)(p+ p/H) = 2up(E11 — E22) T /(34 + 2)Err, (11)
or

(Ti1—To2)p— 2up(E11— E22) Ter /(3A + 2U)Ery = —p(T11— Ta2) /H)
H = p(Ti1— T22)(3A + 21)Err /2pp (Er1 — Ep) Try. (12)

Since K = N/H we find

K = u(Ti1—Ta2)/2up(E11— Ez2). (13)

When 111 ,and 12, are constant withry; # T2, which implies thate;; # &9, andEjq, Exp are finite , the necessary
condition for the existence &fT —* of (11) and (12) is satisfied. Also the EVT applied to the fimeH (u, p) andK (u, p)
shows thah(u, ) = k(u, ) while h(u, 0) = k(u, 0) = 0. Concerning the modeling of constitutive equations wititfional
derivatives the literature proves the presence of memonyany scientific phenomena but this is often only a first order
approximation in taking account of the memory phenomenoiginis needed mostly, but not only, for accounting for the
second law of thermodynamics. In order to distinguish tlffeidint types of memory, we note now that whep, 111 = T2
are measured and the elastic parameters are known theiealadyipressions of memory operator of the medHdfuo, p)
andK(u, p) may be obtained experimentally from equations (3), (11)@29. If their LT-1 exists then we may infer the
memory properties of the medium directly from the experitabtata. Rewriting equations (5) and (8) giving evidence to
the single component of the trace of the deformation

Trr = (3A +2U)N(u, p)Eii = (3A + 2U)N(u, p)(E11+ 2E2»),
(Tia—T22)(p+ p/H) = N(u, p)2up(E11 — Ezz)

and expressingy, from (8) we find

(Tar— T22)(P+ 1/H) = N(u, p)2upE11 — N(u, p) 21 pEz2,
Eoo = E11— (Tia— To2)(p+ p/H)/N(u, p)2up )

and substitutinge,o in (5) we obtain

Trr = (3A +2p)N(u, p)[3E11— (Tia — T22){p+ p/H(u, p)} /N(u, p)upl, (14)
which is a relation between H(u,p) and N(u,p) provided byvhieies ofE;; experimentally determined.

3 Experimental Checks

In order to study further the properties of the constituggeiations (1) we confront the results of the present study wi
those of the experimental studies on Polycrystalline HéRtH) made by Waversick [29] and discussed in a note of Caputo
[21]. The experiments were made on PH cylindrical samplbgestito lateral confining pressuge = 122 = 133 and to a
pressuregy = T1; parallel to the axis of the cylinder; using the data resglfiom these experiments Caputo [21] found
that the creep curves are accurately fitting curves of tHeviirhg type.

€11 =A+Bt+Cexp(—Dt), (15)
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whose parameters A, B, C, D are shown in the table and regtithm 4 laboratory experiments. The LT of equation
(15) to use in the comparison with the theoretical resultaiokd here is
Ei1=A/p+B/p?>+C/(p+D) (16)
and substituting it in equation (14) we obtain the relatietween H and N of the PH

Tor = (3A +2u)N(u, p){(3[A/p-+ B/ p*+C/(p+ D)+
—(T11—Ta2)(p+ p/H)/N(u, p)2up}, (17)

where we note that the Caputo derivative of fractional oedsstumed for H and K may seem to not fit equation (17).
In order to compare rigorously the expressiorigf as it results from our model with that resulting from the lediory
experiments we may explidd; 1 from equation (17) and use equation (16) finding

{Tor + (3 +2u) (Tia — Ta2) (p+ 1/H) /21 p} /3(3A + 2u)N(u, p) = A/p+B/p*+C/(p+D), (18)

where the equality sign is only symbolic in the sense that wamto compare the two expressions where

E11=TerH (U, p)/3(3A 4 2)K (U, p) + (To1— T22)H /23K (U, p) + (Tra— Ta2)/6pK (U, p).

Assuming now h(t) and k(t) as kernels of the Caputo derieativhich gives

LT (h(u,t) «Df(t)) = ap'F(p),
LT (k(v,t)*Df(t)) = bp'F(p),

and inverting the LT we obtain

St —9){(Trr /3(3A +2u) + (T11— T22) /6) (a/b)t U TY/T (1 —u+V)+
((T11— T22)/6b)tYY/I (2+Vv)} = A+ Bt + Cexp(—Dt), (19)

where S(t-g) is the unit step function beginning at t = g, th&t fierm in the left side is constant, the second term is
monotonically decreasing ifi<v, as we expect that the stress has a shorter memory than dirg sind the third term
is monotonically increasing. The inspection of equatio®) (§hows that the lack of the linear term in the term on the
left side of the equation, rigorously, only a poor approxim@awould be obtained and in a limited range. However, the
Caputo-Fabrizio derivative with exponential kernel, g\am acceptable approximation of the memory of PH which, in
turn, shows that each medium may need to be studied withguir@eonception regarding the use of any derivatives: the
laboratory experiments will suggest the correct form ofrtteglium memory. The kernels of the Caputo Fabrizio fractiona
derivatives of orders u and v respectively are

a(1/(1-u)exp(—ut/(1-u)) ;  b(1/(1-V))exp(—vt/(1-V)),
and the LT gives

ap/[(1-u)(p+u/(1-u)] :  bp/[(1-V)(p+V/(1-V))].
By substituting in equation (18) we find

exp(—gp){[Trr/3(3A +21) + (T21— T22)/213]/p
+a[(1-v)(p+Vv/(1-V)]/[b(1-u)(p+u/(1-u)] (20)
+(T11— T22) [(1-V) (p+V/ (1-V))] /6bp?} = A/p+B/p*+C/(p+D),
whosel. T~1 gives in the first line of equations (20) a constant, the setior gives an exponential and a delta function

att= 0, while the third line gives a constant and a linear telitbeginning at the time g which, because of the convoltion
with the step function beginning at t = g, excludes the presei the delta function. Finally, we find
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Tablel Values of the coefficients A, B, C and D concerning the expenite on PH appearing in equation (16) and their 95% confidence
levels for the data presented in the table. The columns uhd8r C and D give the 95% confidence level of the data in theroolsi A,
B, C and D respectively; time is in seconds A and C are strais,drain/sec and D isec 1.
A A B B’
CA121 | 1,2510-3 | 1,22;1,28 | 1,4310-8| 1,41;1,48
CA7 1,4010-2 | 1,15;1,65 | 1,59 10-8| 1,54;2,65
CA107 | 7,77 10-3 | 7,44;8,18 | 8,70 10-7| 8,50;8-91
CA120 | 3,4810-2 | 3,14;3,83 | 2,0410-7| 1,97;2,11
C C D D’
CA121 | -6,30 10-2| -6,70;-5,90| 5,34 10-6| 4,61;6,10
CA7 -9,27 10-3| -9,07;-9,48| 1,5510-5| 1,20;1,91
CA107 | -6,70 10-3| -7,01;-6,42| 3,11 10-6| 2,81;3,51
CA120 | -3,0310-2| -3,34;-2,72| 9,3110-6| 7,6;11,4

S(t —g) { [Trr/3(3A +2p) + (T11— T22) /213] +[(@(1 = V) /b(1 — u)) (V(1 — V) — u/(1—u))exp(—Wt (1 — V)]
+{(t11—T22) [(L—V) +wt/6b]] }. (21)

Equation (21) seem then appropriate to approximate theriemgstal results on PH given by equation (16).

Using the above mentioned memory formalism with simple exmial kernelsxp(—ut) andexp(—vt) one would
obtain foreg; an expression similar, but somehow formally simpler, tramiula (21).

The comparison of formulae (21) and (15) indicates that

C=u/(1—u), D=v/(1-v).

From which follows
u=C/(1+C), v=D/(1+D),

orsinceC« 1, D> 1 u=C, v=D and we may see directly in the Table 1 that, in all the 4 cakesnemory acting

on the strain is orders of magnitude longer that that actmtipe stress, that is< v. The variety of the temperature in the

4 different experiments ranging from%2to 200°C, of the confining pressures ranging from 35 bar to 430 bar &titko
limited number of cases considered does not allow any csimiwon the effect of the temperature and of the difference
711 — T2z, however we may say that their effects are relevant.

4 Conclusion

The use of presently available fractional derivatives isa@pof the presence of memory in many scientific phenomena
but, generally only a first order The memory is generally itegkin the constitutive equations by including a memory
formalism represented by fractional derivatives howeveihave seen that some fractional derivatives may not be alway
appropriate for a good fitting of the experimental data inttieory while others would allow a good fitting. We have
seen in this note that the plastic media may need to be stwdibdut any preconception regarding the use of any type
of derivatives: the laboratory experiments will suggest tlorrect form of the medium memory. This may be true for
many other media and phenomena; as we have shown here talyaraperiments may be the way to identify the most
appropriate model for the memory of the media or the phenamen
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