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Abstract: Plastic media have the particular property to exhibit non zero strain at a vanishing applied stress and are modeled by a variety
of possible constitutive memory equations. In this note using laboratory data we compare the results based on the constitutive equations
of Polycrystalline Halite (PH) which include the Caputo andCaputo-Fabrizio fractional derivatives to model the plastic properties of
this medium. Based on this finding we suggest that a variety ofdifferent mathematical memory formalisms is needed to model all
phenomena and media with memory. We suggest a method to obtain these mathematical formalisms with laboratory experiments which
leads to determine the plastic properties of PH showing thatits strain memory is much longer than that of stress.
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1 Introduction

Elastic properties of media have been modeled since long time using the classic Hooke’s law, anelastic properties have
been mathematically modeled by the following relations

ε(t) =
t∫

0

r(t − u)τ(u)du,

τ(t) =
t∫

0

r(t − u)ε(u)du,

whereε(t) is strain,τ(t) is stress,r(t) andr(t) are called the causal functions and show the response of the medium
to a unit impulse of stress and strain respectively. Later the anelastic properties have been modeled by several variations
of Hooke’s law obtained introducing the first order derivative the general case being that of the standard linear solid [1].
In order to model the dissipation of energy or the hystereticand fatigue phenomena in different anelastic media is now
usual to introduce in their constitutive equations the Caputo derivatives of fractional order, often considered as a memory
operator A similar procedure is used for porous media in order to model the variable diffusivity due to the history of
the previous flux [2] and also for other mathematical, physical, geophysical, biological and economic phenomena [3-
12]. The number of papers written for modeling scientific phenomena using fractional calculus is so large that is would
take a book to list all of them [13]. Is to be noted in the great variety of fields of science and in the great variety of
phenomena studied with the use the fractional calculus the instrument used is the Caputo fractional derivative. It is then
quite challenging that the same mathematical instrument may be used with success in the fitting of the experimental data
in all the fields considered above. As we noted these fields range from biology and medical science to engineering and
material properties, from all the variety of branches of geophysics to all the branches of economy and finance, from
theoretical physics to chemistry, from geology to demography. Many interesting research articles have been written onthe
fractional derivative, on its physical and geometric meaning [14] and on its relation with fractals [15-16], few in particular
on its definition [13,17-18], with common consensus on the its importance and the definition, although the latter not yet
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official. In the applications a frequent use is made of fractional derivatives for setting model of the constitutive equations
for instance of anelastic media or diffusion. In few cases the validity of these constitutive equations have been studied
experimentally [2]. Some models of constitutive equationsobviously give better results than others in the approximation
of the properties of the medium, most of them seem to give important information on the memory properties of the
medium examined. However, as we already noted, is quite surprising how the single Caputo derivative may be helpful in
modeling mathematically with the help of only two free parameters the properties of so many different phenomena and
different media and in the fitting of the data resulting from many different experiments. Is then in order to investigate
the possibility that the memory operators are in fact formally different in the different media or phenomena. The recent
notes of Caputo and Fabrizio [19-20] are of help to the solution of the problem and allow to chose, among the available
memory operators, which one would give an adequate fitting tothe experimental data and a more appropriate model type.
However the question remains open on which would be the memory formalism to introduce in the constitutive equations
in order to obtain the best mathematical modeling of the properties of the medium examined. It is then reasonable to think
that the answer could be imbedded in the experimental data and one may then seek the solution there. This approach
has already been used by Caputo [21] concerning generic anelastic media giving the formulae identifying the memory
operator, not necessarily a fractional derivative, more appropriate to fit the results of the experiments. Obviously there
are different approaches to the solution of the problem depending on the variety of appropriate analytical models used to
define the form of the sought memory operators. This note is addressed to the memory operators concerning the plastic
media recently modeled by Caputo and Fabrizio [20] who used aset of constitutive equations, which is a particular case
of that previously mentioned of Caputo [21,22], but used forthe specific purpose of modeling plastic media. We will show
that in the modeling the rheology of Polycristalline Halitethe fractional derivative with exponential kernel of Caputo and
Fabrizio [19] would be more adequate.

2 The Modeling of Plastic Media

Most literature on applied fractional calculus shows that the successful use of the presently available fractional derivatives
is a proof of the presence of memory in many scientific phenomena and is a first order approximation in taking account the
memory phenomenon which is needed mostly, but not only, for taking into account the second law of thermodynamics.
The literature on the constitutive equations for the mathematical modeling of plastic phenomena is vast beginning with
Volterra [23] who modeled the phenomenon using hereditary mathematical tools and whose dislocation theory is the
base of a new branch of plasticity studies [24] where the phenomenon of plasticity is considered due to the migration
of dislocations. Is to be noted also the rich book of Argon [25], which appeared before the quick diffusion of fractional
calculus, with the presentation and discussion of a varietycases. Concerning hereditary phenomena are also of interest the
volume of Graffi [26] and the note of Fichera [27]. The applications of fractional calculus to plasticity was considered also
in the notes of Caputo [21,22] who studied the rheological properties of polycrystalline halite, appearing in nature inlarge
thick deposits, which were considered for the disposal of radioactive waste and whose experimental data will be used in
the present note and discussed with the constitutive equations already used by Caputo and Fabrizio [19]. In order to find
which could be the most appropriate model for the memory of a plastic medium let us consider the above mentioned set
of constitutive equation for rheological media already studied by Caputo and Fabrizio [20].

h(u, t)∗Dτi j + µ(τi j − δi jτrr/3) = (λ δi jk(u, t)∗Dεrr +2µk(u, t)∗Dεi j), (1)

whose LT, providedεi j(0) = τi j(0) = 0, may be written

pTi j + µ(Ti j − δi jTrr/3)/H(u, p) = (λ δi jK(u, p)pErr +2µK(u, p)pEi j)/H(u, p), (2)

where capital letters indicate LT of the function with similar lower case letter, D means classic derivative of first order,
u is the order of the memory operator ofh(u, t), k(u, t) which areL1 , monotonically decreasing withh(u,∞) = 0,k(u,∞) =
0,h(0, t) = k(0, t) = 1. The latter condition, would imply that the application ofthe operatorsh(0, t)∗D andk(0, t)∗D to
a function reproduces the function itself, which however isnot mandatory for the developments in this note but mostly
matter of elegance and formality for similarity with the memory operators presently used. The range ofu depends on the
problem considered. All the functions concerning the physical conditions of the medium modeled by equations (1) and (2)
are assumed to be initially zero that is the medium to be initially at rest. Examples of generic functionsh(u, t) andk(u, t)
are

h(t),k(t) = exp(−ut) (1’)

or
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h(t),k(t) = 1/log(e+ ut),

where withu= 0 followsh(0, t) = k(0, t) = 1, which imply that the operator of order zero reproduces thefunction, that
are monotonically decreasing and satisfy the conditionsh(∞) = k(∞) = 0, moreover setting equations (1′) in the equation
(1) would produce a general memory form of Standard Linear Solid. Whenu = 1 both operators are not representing the
first order derivative of the function andexp(−ut)and 1/log(e+ ut) are not kernels of a fractional derivatives of order u.
Obviously the functions h(u,t) and k(u,t) would not define anoperator with the all properties of the classical fractional
derivative but are simple, hopefully useful, memory formalisms which reproduce the function when the operator has order
u= 0. Classic examples of functionh(u, t)∗D andk(u, t)∗D are the Caputo and the Caputo-Fabrizio fractional derivatives
[19].

Setting

K/H = N(u, p),

M = N/H, (3)

m = n/h = (k/h)/h = k/h2,

we obtain from equation (2)

pT11+ µ(T11−Trr/3)/H(u, p) = (λ N(u, p)pErr +2µN(u, p)pE11),

pT22+ µ(T11−Trr/3)/H(u, p) = (λ N(u, p)pErr +2µN(u, p)pE22)/H, (4)

pT33+ µ(T11−Trr/3)/H(u, p) = (λ N(u, p)pErr +2µN(u, p)pE33).

Summing equations (4) we find

Trr = (3λ +2µ)N(u, p)Eii, (5)

which implies that the function N(u,p) is determined when, besides the elastic parameters also andεii andτrr are
experimentally determined. SubstitutingTrr in equations (4) we obtain

T11(p+ µ/H) = µ(λ +2µ/3)Err(N(u, p)/H(u, p))+N(u, p)(λ pErr +2µ pE11),

T22(p+ µ/H) = µ(λ +2µ/3)Err(N(u, p)/H(u, p))+N(u, p)(λ pErr +2µ pE22), (6)

T33(p+ µ/H) = µ(λ +2µ/3)Err(N(u, p)/H(u, p))+N(u, p)(λ pErr +2µ pE33).

Knowing the values of the elastic parameters and the experimentally obtained values ofτii andεii one may consider
to determine from the equations (6) the unknown memory operatorsM = N/H and H. In order to simplify the formulae
without losing in generality we assumeτ22= τ33 which impliesε22= ε33 then third and second equations (6) are identical,
therefore we use only the first and the second equation of the system (6) that is the system

T11(p+ µ/H) = µ(λ +2µ/3)Err(N(u, p)/H(u, p)+N(u, p)(λ pErr +2µ pE11),

T22(p+ µ/H) = µ(λ +2µ/3)Err(N(u, p)/H(u, p))+N(u, p)(λ pErr +2µ pE22). (7)

Subtracting we find

(T11−T22)(p+ µ/H) = N(u, p)2µ p(E11−E22), (8)

while equation (5) gives

N(u, p) = Trr/(3λ +2µ)Eii. (9)

Where is readily verified that ifh(u, t) andk(v, t) are kernels of Caputo fractional derivative with 1>v>u>0, then
a constant volumetric change implies a nil asymptotic stress, in other words if the stress has shorter memory than the
strain then the stress is asymptotically vanishing as required by plastic media. The same results are obtained if instead of
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the Caputo fractional derivative is used that of Caputo- Fabrizio [19] with same assumption 1>v>u>0 on the orders of
fractional derivation. If h(u, t) = k(u, t) equation (9) is simply

(3λ +2µ)Eii = Trr, (10)

which implies that, when the stress field is constant the dilatation is constant and depends only on the sum of the
principal components of the stress; the strain components may change and the shape of the body changes keeping the
volume constant. Moreover when the strainτ11 is observed in a laboratory experiment withτ11 constant andτ22 = τ33
constant then the strainsε22 = ε33 may be computed. In order to proceed in the study of the system(1) we substitute
equation (8) in equation (9) obtaining

(T11−T22)(p+ µ/H) = 2µ p(E11−E22)Trr/(3λ +2µ)Err, (11)

or

(T11−T22)p−2µ p(E11−E22)Trr/(3λ +2µ)Err =−µ(T11−T22)/H)

H = µ(T11−T22)(3λ +2µ)Err/2pµ(E11−E22)Trr. (12)

Since K = N/H we find

K = µ(T11−T22)/2µ p(E11−E22). (13)

Whenτ11 ,andτ22 are constant withτ11 6= τ22, which implies thatε11 6= ε22, andE11,E22 are finite , the necessary
condition for the existence ofLT−1 of (11) and (12) is satisfied. Also the EVT applied to the function H(u, p) andK(u, p)
shows thath(u,∞)= k(u,∞) while h(u,0)= k(u,0) = 0. Concerning the modeling of constitutive equations with fractional
derivatives the literature proves the presence of memory inmany scientific phenomena but this is often only a first order
approximation in taking account of the memory phenomenon which is needed mostly, but not only, for accounting for the
second law of thermodynamics. In order to distinguish the different types of memory, we note now that whenε11, τ11= τ22
are measured and the elastic parameters are known the analytical expressions of memory operator of the mediumH(u, p)
andK(u, p) may be obtained experimentally from equations (3), (11) and(12). If their LT-1 exists then we may infer the
memory properties of the medium directly from the experimental data. Rewriting equations (5) and (8) giving evidence to
the single component of the trace of the deformation

Trr = (3λ +2µ)N(u, p)Eii = (3λ +2µ)N(u, p)(E11+2E22),

(T11−T22)(p+ µ/H) = N(u, p)2µ p(E11−E22)

and expressingE22 from (8) we find

(T11−T22)(p+ µ/H) = N(u, p)2µ pE11−N(u, p)2µ pE22,

E22 = E11− (T11−T22)(p+ µ/H)/N(u, p)2µ p ,

and substitutingE22 in (5) we obtain

Trr = (3λ +2µ)N(u, p)[3E11− (T11−T22){p+ µ/H(u, p)}/N(u, p)µ p], (14)

which is a relation between H(u,p) and N(u,p) provided by thevalues ofE11 experimentally determined.

3 Experimental Checks

In order to study further the properties of the constitutiveequations (1) we confront the results of the present study with
those of the experimental studies on Polycrystalline Halite (PH) made by Waversick [29] and discussed in a note of Caputo
[21]. The experiments were made on PH cylindrical samples subject to lateral confining pressureσ2 = τ22 = τ33 and to a
pressureσ1 = τ11 parallel to the axis of the cylinder; using the data resulting from these experiments Caputo [21] found
that the creep curves are accurately fitting curves of the following type.

ε11 = A+Bt+Cexp(−Dt), (15)
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whose parameters A, B, C, D are shown in the table and resulting from 4 laboratory experiments. The LT of equation
(15) to use in the comparison with the theoretical results obtained here is

E11 = A/p+B/p2+C/(p+D) (16)

and substituting it in equation (14) we obtain the relation between H and N of the PH

Trr = (3λ +2µ)N(u, p){(3[A/p+B/p2+C/(p+D)]+

−(T11−T22)(p+ µ/H)/N(u, p)2µ p}, (17)

where we note that the Caputo derivative of fractional orderassumed for H and K may seem to not fit equation (17).
In order to compare rigorously the expression ofE11 as it results from our model with that resulting from the laboratory
experiments we may explicitE11 from equation (17) and use equation (16) finding

{Trr +(3λ +2µ)(T11−T22)(p+ µ/H)/2µ p}/3(3λ +2µ)N(u, p) = A/p+B/p2+C/(p+D), (18)

where the equality sign is only symbolic in the sense that we mean to compare the two expressions where

E11= TrrH(u, p)/3(3λ +2µ)K(u, p)+ (T11−T22)H/2µ3K(u, p)+ (T11−T22)/6pK(u, p).

Assuming now h(t) and k(t) as kernels of the Caputo derivative, which gives

LT (h(u, t)∗D f (t)) = apuF(p),

LT (k(v, t)∗D f (t)) = bpvF(p),

and inverting the LT we obtain

S(t − g){(τrr/3(3λ +2µ)+ (τ11− τ22)/6µ)(a/b)t−u+v/Γ (1− u+ v)+

((τ11− τ22)/6b)t1+v/Γ (2+ v)}= A+Bt+Cexp(−Dt), (19)

where S(t-g) is the unit step function beginning at t = g, the first term in the left side is constant, the second term is
monotonically decreasing ifu<v, as we expect that the stress has a shorter memory than the strain, and the third term
is monotonically increasing. The inspection of equation (19) shows that the lack of the linear term in the term on the
left side of the equation, rigorously, only a poor approximation would be obtained and in a limited range. However, the
Caputo-Fabrizio derivative with exponential kernel, gives an acceptable approximation of the memory of PH which, in
turn, shows that each medium may need to be studied without any preconception regarding the use of any derivatives: the
laboratory experiments will suggest the correct form of themedium memory. The kernels of the Caputo Fabrizio fractional
derivatives of orders u and v respectively are

a(1/(1− u))exp(−ut/(1− u)) ; b(1/(1− v))exp(−vt/(1− v)),

and the LT gives

ap/[(1− u)(p+ u/(1−u))] ; bp/[(1− v)(p+ v/(1− v))].

By substituting in equation (18) we find

exp(−gp){[τrr/3(3λ +2µ)+ (τ11− τ22)/2µ3]/p

+a [(1− v)(p+ v/(1− v))]/ [b(1− u) (p+ u/(1− u))] (20)

+(τ11− τ22) [(1− v)(p+ v/(1− v))]/6bp2}= A/p+B/p2+C/(p+D),

whoseLT−1 gives in the first line of equations (20) a constant, the second line gives an exponential and a delta function
at t = 0, while the third line gives a constant and a linear termall beginning at the time g which, because of the convolutions
with the step function beginning at t = g, excludes the presence of the delta function. Finally, we find
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Table 1 Values of the coefficients A, B, C and D concerning the experiments on PH appearing in equation (16) and their 95% confidence
levels for the data presented in the table. The columns underA, B, C and D give the 95% confidence level of the data in the columns A,
B, C and D respectively; time is in seconds A and C are strain, Bis strain/sec and D issec−1.

A A’ B B’
CA121 1,25 10-3 1,22;1,28 1,43 10-8 1,41;1,48
CA 7 1,40 10-2 1,15;1,65 1,59 10-8 1,54;2,65
CA107 7,77 10-3 7,44;8,18 8,70 10-7 8,50;8-91
CA120 3,48 10-2 3,14;3,83 2,04 10-7 1,97;2,11

C C’ D D’
CA121 -6,30 10-2 -6,70;-5,90 5,34 10-6 4,61;6,10
CA 7 -9,27 10-3 -9,07;-9,48 1,55 10-5 1,20;1,91
CA107 -6,70 10-3 -7,01;-6,42 3,11 10-6 2,81;3,51
CA120 -3,03 10-2 -3,34;-2,72 9,31 10-6 7,6 ;11,4

S(t − g){ [τrr/3(3λ +2µ)+ (τ11− τ22)/2µ3]+ [(a(1− v)/b(1− u))(v(1− v)− u/(1−u))exp(−vt(1− v)]

+ {(τ11− τ22) [(1− v)+ vt/6b]] } . (21)

Equation (21) seem then appropriate to approximate the experimental results on PH given by equation (16).
Using the above mentioned memory formalism with simple exponential kernelsexp(−ut) andexp(−vt) one would

obtain forε11 an expression similar, but somehow formally simpler, than formula (21).
The comparison of formulae (21) and (15) indicates that

C = u/(1− u), D = v/(1− v).

From which follows
u =C/(1+C), v = D/(1+D),

or sinceC ≪ 1, D ≫ 1, u =C, v = D and we may see directly in the Table 1 that, in all the 4 cases, the memory acting
on the strain is orders of magnitude longer that that acting on the stress, that isu ≪ v. The variety of the temperature in the
4 different experiments ranging from 220C to 2000C, of the confining pressures ranging from 35 bar to 430 bar and of the
limited number of cases considered does not allow any conclusion on the effect of the temperature and of the difference
τ11− τ22, however we may say that their effects are relevant.

4 Conclusion

The use of presently available fractional derivatives is a proof of the presence of memory in many scientific phenomena
but, generally only a first order The memory is generally inserted in the constitutive equations by including a memory
formalism represented by fractional derivatives however we have seen that some fractional derivatives may not be always
appropriate for a good fitting of the experimental data in thetheory while others would allow a good fitting. We have
seen in this note that the plastic media may need to be studiedwithout any preconception regarding the use of any type
of derivatives: the laboratory experiments will suggest the correct form of the medium memory. This may be true for
many other media and phenomena; as we have shown here laboratory experiments may be the way to identify the most
appropriate model for the memory of the media or the phenomena .
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