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1 Introduction

Fractional calculus is a field of applied mathematics thatgi@ith derivatives and integrals of arbitrary orders, tredr
applications appear in various fields in science, engingedapplied mathematics, economics, such as, viscoatgstic
diffusion, neurology, control theory, and statistid¢sZ, 3,4,5,6,7]. Therefore it has achieved significance during the past
three decades. The similar theory for discrete fractioalludus was begun and features of the theory of fractiomaksu
and differences were constituted. Many papers relatedgddpic have appeared recent8}{ 21].

In 1956 [], differences of fractional order was first introduced byttker. Difference of fractional order has attracted
more attention in the last few years.. Diaz and Osirjvestigated the fractional difference defined as an itdineries
and they acquired a generalization of the binomial formbDiacrete fractional calculus is a generalization of ordyna
difference and summation on arbitrary order that can beintager, and it has gained considerable popularity duelynain
to its demonstrated applications in describing some realdyphenomenaZ0,21]. Among all the topics, the branch
of discrete fractional boundary value problems is curgentidergoing active investigatio®]f[21] and the references
therein.

The aim of this paper is to acquire some new discrete fraatisslutions of the homogeneous and nonhomogeneous
CEs by means of the nabla discrete fractional operator.

The work is organized as follows. In Section 2, we presenb#sic definitions of the discrete fractional calculus. Our
results are then given in Section 3. In the last Section, we gpme conclusions.

2 Preliminaries

In this section, we present some essential informationtediscrete fractional calculus theory. We use the some iooisit
N is the set of natural numbers including zero @is the set of integerd, = {a,a+1,a+2,---} forac Z. Let f(n)
andg(n) be a real-valued function defined Bij .

Definition 1 [14].The rising factorial power is given by

t"=t(t+1)(t+2)...(t+n—1),neN,t°=1. 1)
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Let a a real number. Thet¥ is defined to be

~ o @)
wheret € R\ {...,—2 —1 0} and @ = 0. Let us note that
O (tﬁ) =qt® 1, 3)
wheredu(t) = u(t) —u(t —1). Forp=2,3,... definedP indeductively byP = OOPL.
Definition 2 [14]. Thea —th order fractional sum of is given by
tot—a(t) 1t
Op%9(t) = (79 s), 4)
wheret € Ny, o (t) =t — 1 is backward jump operator of the time scale calculus.
Theorem 1 [20]. Let f(n) andg(n) : Ny — R, y, @ > 0 andh, v are scalars. The following equality holds:
1.07V0°%f (n) =0V 9§ (n)=0"?07Yf (n). (5)
2.0V [hf(n)+vg(n)] =hO"f (n) +vOg(n). (6)
3.007Yf(n)=0"""Yf(n). 7)
4. 07Y0f () = DAY § (n) — (”:ﬁ 2) £(0). ®)
Lemma 1 [14]. (Leibniz Rule). For anyr > 0, a —th order fractional difference of the produfy is given by
L /a _
53190 = 3 (7 ) 057" 0=n) (o). ©
n=!
where
ay ra+1)
n) T+l (a—n+1)
Lemma 2 (Index law). If the functionf (n) is single-valued and analytic then
(fy (M), = fyau (M) = (fu (M), (fy () #0; fu () #0;y,H € RiNEN). (10)

3 Main Results

3.1 Discrete fractional solutions of nonhomogeneous CE

Theorem 2.Lety = Y (X) € {Y : 0# |Pu| < o;00 € R} andg=g(X) € {g: 0# |ga| < ©}. Then the nonhomogeneous
CE

W (¥ —1)+yix—yYvi=g (VER,X*—1#£0), (11)
has particular solutions of the forms;
V2_1 —V2—1
Y=y = { [gElvz (x*—-1) ?] (x*—-1) 2} , (12)
-1 —(1+E-1v2)
p=y"= (xz—l)l/2 {[g( 2 1)71/2} 1 (x2—1)1+(w>} % (Xz_l)(w>) ’
B (v2-1) 1 1 E (12
(13)
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R (IO PR e )
7z (Vg -1

2

_ ( 4v2+3> _ ( 4v2+1l>
x (x+1) ¥/ (x=1) 8 ) ) (14)
L5 ()
V2 v2_
W= ww = (X+ 1)1/2 { [g(x+ 1)—1/2} . ) (X+ 1)(4_8+_3> (X— 1)(4_8_5)}
Er-(v2-3) -1
v2 V2
« (x1) () (x—l)(48+3>) , (15)
(3
Hereyp = d(/d, Yo = ¢ = Y (X) (XE R).
Proof. i-) Operate]” to both sides of11), we have then
O [y (€~ 1)] + 07 (yax) — 0% () v2 = D%,
Wora (¥ — 1) + 114X (20E + 1) + Yo (aE — V) = ga. (16)
Choosex such that 5
a= VE =E 2,
we have then
Yr g-1,2 (X2 — 1) + Y g12X (2\/2 + 1) + Yo (GE — VZ) =0Og-1,2, a7)
from (16).
Next writing
ez =0=000 (V=0 (1e17)) (18)
we obtain
$1 (¢ —1) + ¢px(2v2+ 1) =g 1,2, (19)
from (17). A particular solution to this linear first order equation igem by
2_1 _y2_1
6 — {gElvz (x*-1)" 2] (-1 2. (20)
-1
Therefore, we obtain
2_1\V>-3 21y vi-3
Y=2|gg1,2(x¥—1) (x*—1) , (21)
-1 —(1+E-1v2)
from (18) and(20).
ii-) Set
A
Y=(-1)"9, 9=09(), (22)
we have then (21
@ (C— 1)+ @x(4A + 1)+ o {(4;\2_ V) + ﬁ} —g(e-1)", 23)
from (11), applying(22).
WhenA =0, (23) is reduced tq11). WhenA = 1/2, we have
(pz(x2—1)+q013x+(p(1—v2):g(xz—l)_l/z, (24)
from (23).
Operate]? to the both sides of24), then yields
®ra (% —1)+ @riaX(20E +3) + @ (3aE+1—v?) = {g (X2~ 1)71/2} . (25)
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Choosex such that

we have then

V247 ~1/2
2 - 2 _
et 08D 05 ) = 0000 (26)
from (25).
In this case, letting
€01+5;_1(V2_1) =V =V(x) (¢:V_1+53_1(1_V2)) ) (27)
we obtain ,
> 2vE4+TY 2 L2
Vi (@ —1) +VX( )= [g (F-1) } e g)’ (28)
from (26) . A particular solution to this linear first order equation igem by
_ 2 -1/2 2 7l+(%+7> 2 7(%”>
V= { 90¢-1) ] et g . (@—1) (29)
Therefore, we obtain
Ww=(¢-1) e [g (X2 — 1)_1/2} (x2— 1)_1+(2_Véﬂ)
& (v2-1) -1
2v247
‘ (x2—1)_(_6+_>> (30)
~14 B (1-v2)
from (22), applying(27) and(29), for A =1/2.
iii-) Set
v=x-1"9 0=0(, (31)
we have then N (oA 1
®(C—1)+@x(2A+1)+2A]+¢ {()\2— v?) + EX_1> )} =g(x-1)", (32)
from (11), applying(31).
WhenA =0, (32) is reduced td11). WhenA = 1/2, we have
1
cpz(x2—1)+col(2x+1>+cp(z—v2) =g(x-1)72, (33)
from (32).
Operate]? to the both sides of33), then yields
1
@ra (—1)+ @ria[X(2AE+2) + 1]+ @ (ZaE +5- v2> = [g (X— 1)—1/2} . (34)
Chooserx such that
a_E (2 1
2 4)’
we have then
@, g1 1 (XZ - 1) +@ 1 1 |:X <V2+ Z) + 1] = [g (X_ 1)71/2} 1 ) (35)
2+E857(v2-3) 1+E5-(v2-3) 4 E-(v2-))
from (34).
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In this case, letting

¢1+%4(V2_%)=W=W(X) (¢:W—1+Ezl(}1—v2)) ) (36)
we obtain
7
2 2, f _ _ 112
Wi (@ — 1) + W [x (v + 4> +1] [g(x 1) }E;(VZ_%) , (37)
from (35). A particular solution to this equation is given by
2
2 2 *(4V8+3>
_ 112 2 (2%2) (-1
w {[g(x ) ey 60T ey} B (38)
Therefore, we obtain
V2 v2
w=ec- 02 {foo- 07y 05 e ()
Er(v2-1) -1
_ ( 4v2+3> _ ( 4v2+1l>
x (x+1) V¥ J(x—=1) \ B ) (39)
15 (3-)
from (31), and(36), applying(38), forA =1/2.
iv-) Set
Y=0+1)"0, 9=0(), (40)
we have then
A(2A -1
% (¢~ 1)+ @ x(2A +1)—2)\]+qo[()\2—v2) - Ex+1) )] —g(x+1), (41)
from (11), applying(30).
WhenA =1/2, we have
1
@(x2—1)+<p1<2x—1>+¢(2‘vz) =g(x+ 172, (42)
from (41).
Operate]? to the both sides df42), then yields
1
®ra (C—1)+ @riaX(2aE+2) — 1] + @y <2aE+ i v2) = [g(x+ 1)*1/2}(]. (43)
Choosex such that
a_E (2 1
T2 4)°
we have then
7
2 2.0\ a4l ~1/2
<P2+ET—1(V2_%) (x 1)+¢1+E%1(V2—%) [x (v +4> 1} = {g(x+ 1) }ET’l(vL%)’ (44)
from (43).
In this case, letting
(P1+ET*1(V2_711):U:U(X) (QDZU_HEzl(i_Vz))a (45)
we obtain
7
2 2,0 4 = -1/2
U (x*—1)+U [x(v +4) 1} [g(x+1) }%(VZ_%), (46)
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from (44). A particular solution to this equation is given by

U:{{g(erl)l/z}éz_l(vz%)(X2_1)<4_V2+_3) : } 1(X2—1)_<4L28+_11> (x=1). (47)

Therefore, we obtain

W =(x+ 1)1/2<{[g<x+ D s

B (-}
2

av2i11

7( ) 7(4\; +3>
x (x+1) V& J(x—1)\ @ ) , (48)
1B (3-02)
from (40) and(45), applying(47), for A =1/2.
3.2 Discrete fractional solutions of homogeneous CE
Theorem 3.Let = Y (X) € {Y : 0# |Pq| < 0; a € R}. Then the homogeneous Chebyshev’s equation
W (= 1)+ x—yYv?=0 (veR,X*—1#0), (49)
has particular solutions of the forms
Kl 1)V 2 —
—(1+E-v?)
(2247
w=k(E—1)" {(xz— 1) (%)} =y, (51)
~14 B2 (1-v2)
V2 V2
W =k(x— 12 [<x+ 1) (*5%) (x— 1)~ (*=* >} =y, (52)
51 (G-)
V2 V2
=k Y2 1y ey (5] =y, (53)
()
wherek is an arbitrary constant.
Proof. If we takeg = 0 in Theorem 2, we have the following homogeneous CEs
$1 (1) +¢px(2v2+1) =0, (54)
5 2v2+7
Vi (X*—1)+Vx 7 ) =0 (55)
2 2, !
Wl(X —1)+W[X(V +Z)+1:|=O (56)
and
Uy (X*—1)+U {x(vz—k;)—l] =0. (57)

If we apply the nabla discrete fractional operator to bottesiof Eqs(54) — (57) and we use similar process in
Theorem 2, then we get discrete fractional solutitB® — (53) for Eqgs.(54) — (57), respectively.
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4 Conclusions

In this work, we use the nabla discrete fractional operaiotiie homogeneous and nonhomogeneous CEs. We acquire
many different discrete fractional solutions for theseatuns. Previously, no one obtains solutions for these tangm
Miyakoda and Nishomoto2?] gave some fractional solutions of the nonhomogeneous Yinely's equation using
N—fractional calculus operator. We will obtain discrete fracal solutions of the same equations by using the combined
delta-nabla sum operator in discrete fractional calcut3kip our future work.
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