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1 Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders, andtheir
applications appear in various fields in science, engineering, applied mathematics, economics, such as, viscoelasticity,
diffusion, neurology, control theory, and statistics [1,2,3,4,5,6,7]. Therefore it has achieved significance during the past
three decades. The similar theory for discrete fractional calculus was begun and features of the theory of fractional sums
and differences were constituted. Many papers related to this topic have appeared recently [8]-[21].

In 1956 [8], differences of fractional order was first introduced by Kuttner. Difference of fractional order has attracted
more attention in the last few years.. Diaz and Osler [9] investigated the fractional difference defined as an infinite series
and they acquired a generalization of the binomial formula.Discrete fractional calculus is a generalization of ordinary
difference and summation on arbitrary order that can be non-integer, and it has gained considerable popularity due mainly
to its demonstrated applications in describing some real-world phenomena [20,21]. Among all the topics, the branch
of discrete fractional boundary value problems is currently undergoing active investigation [8]-[21] and the references
therein.

The aim of this paper is to acquire some new discrete fractional solutions of the homogeneous and nonhomogeneous
CEs by means of the nabla discrete fractional operator.

The work is organized as follows. In Section 2, we present thebasic definitions of the discrete fractional calculus. Our
results are then given in Section 3. In the last Section, we give some conclusions.

2 Preliminaries

In this section, we present some essential information about discrete fractional calculus theory. We use the some notations:
N is the set of natural numbers including zero andZ is the set of integers.Na = {a,a+1,a+2, · · ·} for a∈ Z. Let f (n)
andg(n) be a real-valued function defined onN+

0 .
Definition 1 [14].The rising factorial power is given by

tn = t (t +1)(t +2) . . . (t +n−1), n∈N, t0 = 1. (1)
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Let α a real number. Thentα is defined to be

tα =
Γ (t +α)

Γ (t)
, (2)

wheret ∈R\{. . . ,−2,−1,0} and 0α = 0. Let us note that

∇
(

tα
)

= αtα−1, (3)

where∇u(t) = u(t)−u(t −1) . For p= 2,3, . . . define∇p indeductively by∇p = ∇∇p−1.
Definition 2 [14].Theα − th order fractional sum ofg is given by

∇−α
b g(t) =

t

∑
s=b

(t − δ (t))α−1

Γ (α)
g(s) , (4)

wheret ∈Nb, δ (t) = t −1 is backward jump operator of the time scale calculus.
Theorem 1 [20]. Let f (n) andg(n) : N+

0 −→R, γ,φ > 0 andh,v are scalars. The following equality holds:

1. ∇−γ ∇−φ f (n) = ∇−(γ+φ) f (n) = ∇−φ ∇−γ f (n) . (5)

2. ∇γ [h f (n)+ vg(n)] = h∇γ f (n)+ v∇γg(n) . (6)

3. ∇∇−γ f (n) = ∇−(γ−1) f (n) . (7)

4. ∇−γ∇ f (n) = ∇(1−γ) f (n)−

(

n+ γ −2
n−1

)

f (0) . (8)

Lemma 1 [14]. (Leibniz Rule). For anyα > 0, α − th order fractional difference of the productf g is given by

∇α
0 ( f g) (t) =

t

∑
n=0

(

α
n

)

[

∇α−n
0 f (t −n)

]

[∇ng(t)] , (9)

where
(

α
n

)

=
Γ (α +1)

Γ (n+1)Γ (α −n+1)
.

Lemma 2 (Index law). If the functionf (n) is single-valued and analytic then
(

fγ (n)
)

µ = fγ+µ (n) =
(

fµ (n)
)

γ ,
(

fγ (n) 6= 0; fµ (n) 6= 0;γ,µ ∈ R;n∈ N
)

. (10)

3 Main Results

3.1 Discrete fractional solutions of nonhomogeneous CE

Theorem 2.Let ψ = ψ (x) ∈ {ψ : 0 6= |ψα |< ∞;α ∈ R} andg= g(x) ∈ {g : 0 6= |gα |< ∞} . Then the nonhomogeneous
CE

ψ2
(

x2−1
)

+ψ1x−ψν2 = g
(

ν ∈R, x2−1 6= 0
)

, (11)

has particular solutions of the forms;

ψ ≡ ψ ı =

{[

gE−1ν2

(

x2−1
)ν2− 1

2

]

−1

(

x2−1
)−ν2− 1

2

}

−(1+E−1ν2)
, (12)

ψ ≡ ψ ıı =
(

x2−1
)1/2

(

{

[

g
(

x2−1
)−1/2

]

E−1
3 (ν2−1)

(

x2−1
)−1+

(

2ν2+7
6

)}

−1

×
(

x2−1
)−
(

2ν2+7
6

))

−1+ E−1
3 (1−ν2)

,

(13)
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ψ ≡ ψ ııı = (x−1)1/2

(

{

[

g(x−1)−1/2
]

E−1
2 (ν2− 1

4)
(x+1)

(

4ν2−5
8

)

(x−1)

(

4ν2+3
8

)}

−1

× (x+1)
−
(

4ν2+3
8

)

(x−1)
−
(

4ν2+11
8

))

−1+ E−1
2 ( 1

4−ν2)
, (14)

ψ ≡ ψ ıv = (x+1)1/2

(

{

[

g(x+1)−1/2
]

E−1
2 (ν2− 1

4)
(x+1)

(

4ν2+3
8

)

(x−1)

(

4ν2−5
8

)}

−1

× (x+1)
−
(

4ν2+11
8

)

(x−1)
−
(

4ν2+3
8

))

−1+ E−1
2 ( 1

4−ν2)
, (15)

Hereψ2 = d2ψ/dx2, ψ0 = ψ = ψ (x)(x∈ R).
Proof. i-) Operate∇α to both sides of(11) , we have then

∇α [ψ2
(

x2−1
)]

+∇α (ψ1x)−∇α (ψ)ν2 = ∇αg,

ψ2+α
(

x2−1
)

+ψ1+αx(2αE+1)+ψα
(

αE−ν2)= gα . (16)

Chooseα such that

α =
ν2

E
= E−1ν2,

we have then
ψ2+E−1ν2

(

x2−1
)

+ψ1+E−1ν2x
(

2ν2+1
)

+ψα
(

αE−ν2)= gE−1ν2, (17)

from (16) .
Next writing

ψ1+E−1ν2 = ϕ = ϕ (x)
(

ψ = ϕ−(1+E−1ν2)

)

, (18)

we obtain
ϕ1
(

x2−1
)

+ϕx
(

2ν2+1
)

= gE−1ν2, (19)

from (17) . A particular solution to this linear first order equation is given by

ϕ =

[

gE−1ν2

(

x2−1
)ν2− 1

2

]

−1

(

x2−1
)−ν2− 1

2 . (20)

Therefore, we obtain

ψ =

{[

gE−1ν2

(

x2−1
)ν2− 1

2

]

−1

(

x2−1
)−ν2− 1

2

}

−(1+E−1ν2)
, (21)

from (18) and(20) .
ii-) Set

ψ =
(

x2−1
)λ φ , φ = φ (x) , (22)

we have then

φ2
(

x2−1
)

+φ1x(4λ +1)+φ
[

(

4λ 2−ν2)+
2λ (2λ −1)
(x2−1)

]

= g
(

x2−1
)−λ

, (23)

from (11) , applying(22) .
Whenλ = 0, (23) is reduced to(11) . Whenλ = 1/2, we have

φ2
(

x2−1
)

+φ13x+φ
(

1−ν2)= g
(

x2−1
)−1/2

, (24)

from (23) .
Operate∇α to the both sides of(24) , then yields

φ2+α
(

x2−1
)

+φ1+αx(2αE+3)+φα
(

3αE+1−ν2)=
[

g
(

x2−1
)−1/2

]

α
. (25)
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Chooseα such that

α =
E−1

3

(

ν2−1
)

,

we have then

φ
2+ E−1

3 (ν2−1)

(

x2−1
)

+φ
1+ E−1

3 (ν2−1)
x

(

2ν2+7
3

)

=
[

g
(

x2−1
)−1/2

]

E−1
3 (ν2−1)

, (26)

from (25) .
In this case, letting

φ
1+ E−1

3 (ν2−1)
=V =V (x)

(

φ =V
−1+ E−1

3 (1−ν2)

)

, (27)

we obtain

V1
(

x2−1
)

+Vx

(

2ν2+7
3

)

=
[

g
(

x2−1
)−1/2

]

E−1
3 (ν2−1)

, (28)

from (26) . A particular solution to this linear first order equation is given by

V =

{

[

g
(

x2−1
)−1/2

]

E−1
3 (ν2−1)

(

x2−1
)−1+

(

2ν2+7
6

)}

−1

(

x2−1
)−
(

2ν2+7
6

)

. (29)

Therefore, we obtain

ψ =
(

x2−1
)1/2

(

{

[

g
(

x2−1
)−1/2

]

E−1
3 (ν2−1)

(

x2−1
)−1+

(

2ν2+7
6

)}

−1

×
(

x2−1
)−
(

2ν2+7
6

))

−1+ E−1
3 (1−ν2)

(30)

from (22) , applying(27) and(29) , for λ = 1/2.
iii-) Set

ψ = (x−1)λ φ , φ = φ (x) , (31)

we have then

φ2
(

x2−1
)

+φ1 [x(2λ +1)+2λ ]+φ
[

(

λ 2−ν2)+
λ (2λ −1)
(x−1)

]

= g(x−1)−λ , (32)

from (11) , applying(31) .
Whenλ = 0, (32) is reduced to(11) . Whenλ = 1/2, we have

φ2
(

x2−1
)

+φ1(2x+1)+φ
(

1
4
−ν2

)

= g(x−1)−1/2 , (33)

from (32) .
Operate∇α to the both sides of(33) , then yields

φ2+α
(

x2−1
)

+φ1+α [x(2αE+2)+1]+φα

(

2αE+
1
4
−ν2

)

=
[

g(x−1)−1/2
]

α
. (34)

Chooseα such that

α =
E−1

2

(

ν2−
1
4

)

,

we have then

φ
2+ E−1

2 (ν2− 1
4)

(

x2−1
)

+φ
1+ E−1

2 (ν2− 1
4)

[

x

(

ν2+
7
4

)

+1

]

=
[

g(x−1)−1/2
]

E−1
2 (ν2− 1

4)
, (35)

from (34) .
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In this case, letting

φ
1+ E−1

2 (ν2− 1
4)

=W =W(x)

(

φ =W
−1+ E−1

2 ( 1
4−ν2)

)

, (36)

we obtain

W1
(

x2−1
)

+W

[

x

(

ν2+
7
4

)

+1

]

=
[

g(x−1)−1/2
]

E−1
2 (ν2− 1

4)
, (37)

from (35) . A particular solution to this equation is given by

W =

{

[

g(x−1)−1/2
]

E−1
2 (ν2− 1

4)

(

x2−1
)

(

4ν2−5
8

)

(x−1)

}

−1

(

x2−1
)−
(

4ν2+3
8

)

x−1
. (38)

Therefore, we obtain

ψ =(x−1)1/2

(

{

[

g(x−1)−1/2
]

E−1
2 (ν2− 1

4)
(x+1)

(

4ν2−5
8

)

(x−1)

(

4ν2+3
8

)}

−1

× (x+1)
−
(

4ν2+3
8

)

(x−1)
−
(

4ν2+11
8

))

−1+ E−1
2 ( 1

4−ν2)
(39)

from (31) , and(36) , applying(38) , for λ = 1/2.
iv-) Set

ψ = (x+1)λ φ , φ = φ (x) , (40)

we have then

φ2
(

x2−1
)

+φ1 [x(2λ +1)−2λ ]+φ
[

(

λ 2−ν2)−
λ (2λ −1)
(x+1)

]

= g(x+1)−λ , (41)

from (11) , applying(30) .
Whenλ = 1/2, we have

φ2
(

x2−1
)

+φ1(2x−1)+φ
(

1
4
−ν2

)

= g(x+1)−1/2 , (42)

from (41) .
Operate∇α to the both sides of(42) , then yields

φ2+α
(

x2−1
)

+φ1+α [x(2αE+2)−1]+φα

(

2αE+
1
4
−ν2

)

=
[

g(x+1)−1/2
]

α
. (43)

Chooseα such that

α =
E−1

2

(

ν2−
1
4

)

,

we have then

φ
2+ E−1

2 (ν2− 1
4)

(

x2−1
)

+φ
1+ E−1

2 (ν2− 1
4)

[

x

(

ν2+
7
4

)

−1

]

=
[

g(x+1)−1/2
]

E−1
2 (ν2− 1

4)
, (44)

from (43) .
In this case, letting

φ
1+ E−1

2 (ν2− 1
4)

=U =U (x)

(

φ =U
−1+ E−1

2 ( 1
4−ν2)

)

, (45)

we obtain

U1
(

x2−1
)

+U

[

x

(

ν2+
7
4

)

−1

]

=
[

g(x+1)−1/2
]

E−1
2 (ν2− 1

4)
, (46)
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from (44) . A particular solution to this equation is given by

U =

{

[

g(x+1)−1/2
]

E−1
2 (ν2− 1

4)

(

x2−1
)

(

4ν2+3
8

)

1
(x−1)

}

−1

(

x2−1
)−
(

4ν2+11
8

)

(x−1) . (47)

Therefore, we obtain

ψ =(x+1)1/2

(

{

[

g(x+1)−1/2
]

E−1
2 (ν2− 1

4)
(x+1)

(

4ν2+3
8

)

(x−1)

(

4ν2−5
8

)}

−1

× (x+1)
−
(

4ν2+11
8

)

(x−1)
−
(

4ν2+3
8

))

−1+ E−1
2 ( 1

4−ν2)
, (48)

from (40) and(45) , applying(47) , for λ = 1/2.

3.2 Discrete fractional solutions of homogeneous CE

Theorem 3.Let ψ = ψ (x) ∈ {ψ : 0 6= |ψα |< ∞;α ∈ R} . Then the homogeneous Chebyshev’s equation

ψ2
(

x2−1
)

+ψ1x−ψν2 = 0
(

ν ∈R, x2−1 6= 0
)

, (49)

has particular solutions of the forms

ψ = k

[

(

x2−1
)−ν2− 1

2

]

−(1+E−1ν2)
≡ ψ(ı), (50)

ψ = k
(

x2−1
)1/2

[

(

x2−1
)−
(

2ν2+7
6

)]

−1+ E−1
3 (1−ν2)

≡ ψ(ıı), (51)

ψ = k(x−1)1/2
[

(x+1)
−
(

4ν2+3
8

)

(x−1)
−
(

4ν2+11
8

)]

−1+ E−1
2 ( 1

4−ν2)
≡ ψ(ııı), (52)

ψ = k(x+1)1/2
[

(x+1)
−
(

4ν2+11
8

)

(x−1)
−
(

4ν2+3
8

)]

−1+ E−1
2 ( 1

4−ν2)
≡ ψ(ıv), (53)

wherek is an arbitrary constant.
Proof. If we takeg= 0 in Theorem 2, we have the following homogeneous CEs

ϕ1
(

x2−1
)

+ϕx
(

2ν2+1
)

= 0, (54)

V1
(

x2−1
)

+Vx

(

2ν2+7
3

)

= 0, (55)

W1
(

x2−1
)

+W

[

x

(

ν2+
7
4

)

+1

]

= 0 (56)

and

U1
(

x2−1
)

+U

[

x

(

ν2+
7
4

)

−1

]

= 0. (57)

If we apply the nabla discrete fractional operator to both sides of Eqs.(54)− (57) and we use similar process in
Theorem 2, then we get discrete fractional solutions(50)− (53) for Eqs.(54)− (57), respectively.
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4 Conclusions

In this work, we use the nabla discrete fractional operator for the homogeneous and nonhomogeneous CEs. We acquire
many different discrete fractional solutions for these equations. Previously, no one obtains solutions for these equations.
Miyakoda and Nishomoto [22] gave some fractional solutions of the nonhomogeneous Chebyshev’s equation using
N−fractional calculus operator. We will obtain discrete fractional solutions of the same equations by using the combined
delta-nabla sum operator in discrete fractional calculus [23] in our future work.
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