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Abstract: It is known that in subcritical branching process with stationary immigration the average population size for the firstn
generations and the ratio of the reproduction process to thetotal progeny are strongly consistent estimators for the mean of the stationary
distribution and for the offspring mean, respectively. We prove that the same estimators remain strongly consistent, if we have only
partial observations of the population and the number of immigrants. We also show that the rates of convergence of the estimators to
the true values of the parameters are the same as in the case ofcomplete observation.
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1 Introduction

We consider a discrete time branching stochastic processWn,n ≥ 0,W0 = 1, defined by two families of independent,
nonnegative integer valued random variables{Xni,(n, i) ∈ N 2},N = {1,2...} and{νk,k≥ 1} recursively as

Wn+1 =
Wn

∑
i=1

Xni +νn+1, n≥ 0. (1.1)

Assume thatXni have a common distribution for alln andi, and families{Xni} and{νn} are independent. We also assume
that{νk,k≥ 1} are independent and identically distributed. VariablesXni will be interpreted as the number of offspring of
the ith individual innth generation andνn is the number of immigrating individuals in thenth generation. Then,Wn can
be considered as the size ofnth generation of the population.

Supposem= EXni is the mean number of offspring of a single individual. ProcessWn is calledsubcritical, criticalor
supercriticaldepending onm< 1,m= 1 orm> 1, respectively. The independence assumption for the families{Xni} and
{νn} means that reproduction and immigration processes are independent.

Since the behavior of the branching process is mostly determined by the offspring meanm, the problem of estimation
of this parameter is important. Therefore estimation of theoffspring and immigration parameters in the branching process
with immigration have been an active area of the research fora long time. As a result of this activity, it has been established
that a maximum likelihood approach leads to useful results,if the number of immigrating individuals{νk,k≥ 1} and all
offspring sizes{Xni,n, i ≥ 1} are observable. Later, it turned out that the offspring meancan successfully be estimated, if
population sizes{Wi ,1≤ i ≤ n} up to some generation are observed. However, in applications very often not all individuals
existing in the population will be observed. As a result, possibility of estimating the offspring mean based on partial
observations is of interest.

In estimating the offspring mean in the process with immigration based on full observation the analogy between the
immigration-branching process and the first order autoregressive process is often useful (see [3,4]) However, there is no
such a similarity, if we have only partial observations of the population sizes, which is due to complexity of the dependence
in partially observed process.

The partially observed branching process is defined as following. Each ofWn individuals existing at timen
independently from others can be detected with probabilityθ ,0< θ < 1 and remains undetected with probability 1−θ .
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Assume that the offspring distributions of both detected and undetected individuals may change after inspection. Let
{ξni,(n, i) ∈ N 2} be a family of i.i.d. Bernoulli random variables with a probability of success θ and

{X( j)
ni ,(n, i) ∈ N 2}, j = 1,2 be two independent families of i.i.d. random variables taking nonnegative integer values and

these families may follow different probability distributions for j = 1 and 2. Assume also that families{ξni,(n, i) ∈ N 2}
and{X( j)

ni ,(n, i) ∈ N 2} are independent for all values ofn, i and j. If we take

Xni = X(1)
ni (1− ξni)+X(2)

ni ξni

in (1.1), we obtain new process

Z0 = 1,

Zn+1 =
Zn

∑
i=1

X(1)
ni (1− ξni)+

Zn

∑
i=1

X(2)
ni ξni +νn+1 n≥ 0. (1.2)

We note that{Zn,n≥ 0} is the standard branching process with immigration and witha special offspring distribution. The
partially observed branching process with immigration is defined as

Yn+1 =
Zn

∑
i=1

ξni, n≥ 0.

The partially observed (or restricted) branching processes have been considered by many authors mostly in the
framework of applications in epidemic modeling. It is knownthat ”susceptible-infectious-removed” (SIR) epidemic
model can successfully be approximated by branching processes, when the initial number of susceptible individuals is
large. In [1] a systematic study of SIR models, based on the branching approximation, is provided.

Problems related to statistical inference based on partially observed branching processes have been considered in [5,
6,7] and [10]. In particular, in [6] it has been demonstrated that, if one has a binomially distributed subset of observations
of each generation, one will be able to estimate three functions of parameters of the offspring distribution. We also note
that these papers concentrate on possibility of using traditional Lotka-Nagaev and Harris type ratio estimators to estimate
the offspring mean when the observations are restricted.

In this note we consider the problem of estimation of parameters of the process with immigration based on partial
observations of the branching process. We concentrate on subcritical case. It is well known that whenm< 1 the process
Wn defined in (1.1) has a unique stationary probability distribution, if and only if E(log+νn) is finite. If in addition
E(νn) < ∞, then the stationary distribution has a finite meanµ = E(νn)/(1−m). A. Pakes [9] has proposed an strongly
consistent and asymptotically normal estimator forµ using his results about the total progeny of the process. Later it
was shown in [8] that if there is an observation of population sizes{Wi , i = 1,2, ...n} and the numbers of immigrating
individuals{νi , i = 1,2, ...n} one can construct the maximum likelihood estimator for the offspring meanm, which is
asymptotically normal whenn→ ∞. The question, which we address in this paper is simple: willthe estimators proposed
in [8] and [9] remain consistent, if we have only partially observed population sizes and the numbers of immigrating
individuals Another question of interests in this note is the rate of convergence of the estimators to the true value of the
parameters and asymptotic normality of the estimators.

We prove that the estimators proposed by Pakes and Nanthi based on partial observations remain strongly consistent.
We also obtain results which give the rate of convergence of these estimators. What concerns the asymptotic normality
of the estimators, our results show that the difference between estimators and the true values of parameters normed by
n1/2 converges in distribution to a sum of several normal random variables which are, generally speaking, not necessarily
independent. The same kind of results are obtained in [6] for the partially observed processes without immigration, which
is because of the more complexity of the dependence in the partially observed process. It is clear that one has to consider
some modified estimators in this situation. Here the ”skipping” method exploited (first used in [6]) in [5] may be useful.
Unlike the proofs in [5] and [6], our proofs use a central limit theorem (CLT) for a random sums of dependent random
variables (see [11], p.13), and do not relay Scott’s CLT [12].

In Section 2 we introduce the estimators and formulate the main results. In Section 3 we provide the CLT from [11] in
a appropriate form for a ready reference. Certain preliminary results and proofs of the main theorems are given in Section
4.
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2 Main results

It is not difficult to see that the new processZn is a branching process with the same immigration probability generating
function as (1.1) and with offspring generating function

f (s) = (1−θ ) f1(s)+θ f2(s), (2.1)

where f1(s) = EsX
(1)
11 and f2(s) = EsX

(2)
11 are offspring generating functions of branching processesstarted by detected

and undetected individuals, respectively. From here we easily find that the offspring meanm=: EXni and the variance
σ2 =: VarXni are defined as follows:

m= (1−θ )µ1+θ µ2,

σ2 = (1−θ )σ2
1 +θσ2

2 +(1−θ )θ (µ1− µ2)
2,

whereµi = EX(i)
11 andσ2

i = VarX(i)
11 for i = 1,2. Throughout the paper we assume that the immigration meanλ := Eνi

and the varianceγ2 :=Varνi are finite.

We also denotep(i)j = P{X(i)
11 = j}, j = 0,1, ..., i = 1,2. To exclude the trivial situations, we assume throughout the

paper that

p(i)0 + p(i)1 < 1, p(i)j 6= 1, j = 0,1, ...

for i = 1,2. Throughout in the paperN(a,b2) denotes a normal random variable with meana and varianceb2.
As it was already mentioned, for the completely observed process defined by (1.1) A. Pakes [9] has shown that

µ̂n =
1
n

n

∑
i=0

Wi

is strongly consistent estimator for the mean of the stationary distributionµ = λ (1−m)−1. Under the conditionsm< 1
and bothσ2 andγ2 are finite, the same author has established that

√
n(µ̂n− µ) asn→ ∞ converges in distribution to a

normal random variable with mean zero and the variance(µσ2+ γ2)/(1−m)2.
What concerns the offspring mean, in the case when the population sizes{Wi, i = 1,2, ...n} and the numbers of

immigrating individuals{νi , i = 1,2, ...n} are completely observable, it was shown in [8] (see also [13]) that

m̂n =
∑n

i=1(Wi −νi)

∑n
i=1Wi−1

(2.2)

is a maximum likelihood estimator formand
√

n(m̂n−m) asn→ ∞ converges in distribution to a normal random variable
with mean zero and the varianceσ2/µ .

To estimatem based on a partial observation, we define byηn the number of observed individuals immigrating in the
(n−1)st generation. Let{ζni,(n, i) ∈ N 2} be a family of i.i.d. Bernoulli random variables with the same probability of

successθ and independent of{X( j)
ni ,(n, i) ∈ N 2}, j = 1,2 and{ξni,(n, i) ∈ N 2}. Then, it is natural to defineηn as

ηn+1 =
νn

∑
j=1

ζn j, n≥ 1.

We consider the following estimators forµ andm

t̂n =
1
n

n

∑
i=1

Yi , ân =
∑n+1

i=2 (Yi −ηi)

∑n
i=1Yi

(2.3)

based on the partial observations of the reproduction and the immigration processes.
First we provide result related to the estimator of the mean of the stationary distribution of the process.

Theorem 1. Let m< 1 andλ < ∞.
a) Thent̂n is a strongly consistent estimator forθ µ i.e. t̂n → θ µ almost surely as n→ ∞, whereµ is the mean of the
stationary distribution of Zn.
b) If in addition σ2 < ∞ and γ2 < ∞, then

√
n(t̂n − θ µ) can be represented as a sum of two asymptotically normal as
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n→ ∞ random variables with zero means and finite variancesθ (µσ2+ γ2)/(1−m)2 andµθ (1−θ ).

Next result is related to estimator of the offspring meanm. To state it we denote∆2 = λ θ (1−θ )+ (γθ )2.

Theorem 2. Let m< 1 andλ < ∞.
a) Thenân is a strongly consistent estimator for m.
b) If in addition σ2 < ∞ and γ2 < ∞, then

√
n(ân −m) can be represented as a sum of four asymptotically normal as

n→ ∞ random variables with zero means and finite variances(1−θ )/µθ , m2(1−θ )/µθ , σ2/µ and(∆/µθ )2.

3 Random sum of dependent variables

We now provide a central limit theorem for multiple sums of the random number of dependent random variables, which
was proved in [11] (see page 13). The notations in this section are independent from other sections of the paper and will be
used to formulate the theorem of this section only. Let{ξi j (n),(i, j) ∈N 2} be a family of (generally speaking dependent)
random variables for eachn∈ N0 = {0,1,2, ..} and{νi(n), i ∈ N } be certain family of integer valued random variables
taking values fromN0 and defined on a probability space{Ω ,F,P}. We consider the following sum

Sn =
n

∑
i=1

νi(n)

∑
j=1

ξi j (n).

Let { Ai j (n),(i, j) ∈ N2} be a family ofσ -algebras, such that variableξi j (n) is measurable with respect toAi j (n) for
each pair(i, j) ∈ N2 and

Fkl(n) =
k−1

∏
i=1

νi(n)

∏
j=1

Ai j (n)×
l

∏
j=1

Ak j(n)×A0,

whereA0 is a certainσ -algebra such thatA0 ⊂ A11(n) for anyn and direct products of a random number ofσ -algebras,
we understand as usual:

ν

∏
j=1

A j(n) = {A∈ F : A∩{ν = l}} ∈
l

∏
j=1

A j(n).

We assume that for anyl the random variablesνk(n) such that{νk(n)≤ l}∈ Fkl(n), which means that it is measurable with
respect toσ -algebra generated by variables{ξi j (n), i ≤ k−1, j ≤ νi(n)} or a stopping time with respect to{ξk j(n), j ≥ 1}.

We denoteEkl [ξ ] = E[ξ |Fkl(n)] the conditional mean with respect toFkl(n) and

θi j (n) = Ei j−1[ξi j (n)], Yi j (n) = ξi j (n)−θi j (n), (3.1)

σ2
i j (n) = Ei j−1[Y

2
i j (n)], g(ξ ,x) = ξ 2χ(ξ ≤ x), (3.2)

L(t,x) =







(eitx −1− itx)x−2, if x 6= 0,

− t2
2 , if x= 0.

π(t) = exp{it γ +
∫ ∞

−∞
L(t,x)dK(x)}, (3.3)

whereγ is someA0-measurable random variable,χ(A) denotes the indicator function of eventA andK(x) = K(x,ω) is a
function mappingR×Ω into R= (−∞,∞) such that, it is anA0-measurable random variable for eachx and a bounded
non-decreasing function ofx for almost all fixedω andK(∞,ω) = 0.

Theorem A. Let{νk(n)≤ l} ∈ Fkl(n) for any l and there is a finiteA0-measurable random variable T such that for some
sequence of positive numbers{Bn,n≥ 1} as n→ ∞

P

{

1
B2

n

n

∑
i=1

νi(n)

∑
j=1

σ2
i j (n)> T

}

→ 0, (3.4)
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1
B2

n
max
1≤i≤n

max
1≤ j≤νi(n)

σ2
i j (n)

P→ 0, (3.5)

1
Bn

n

∑
i=1

νi(n)

∑
j=1

θi j (n)
P→ γ, (3.6)

n

∑
i=1

νi(n)

∑
j=1

Ei j−1
[

g(B−1
n Yi j (n),x)

] P→ K(x). (3.7)

Then as n→ ∞
Sn

Bn

d→W, (3.8)

where the characteristic function of W is E(π(t)).

We note that in [11] Theorem A is proved for more general scheme of summation generated byξi1i2...ir (n),(i1, i2, ..., ir) ∈
N r , which are the same type asξi j (n). Here we provide the theorem in the form, which is appropriate for our proofs.

4 Proofs of the theorems

We start with a simple but important result, which was first proved in [6] for the process without immigration.

Proposition 1. If m< 1 andλ ∈ (0,∞), then
∑n

i=1Yi

∑n
i=1Zi−1

→ θ (4.1)

almost surely (a.s.) as n→ ∞.

Remark. Note that in [6] the authors has shown (4.1) on the explosion set{limn→∞Xn = ∞}, whereXn is the process
without immigration. Our proofs here show that their resultremains true on the set{limn→∞ ∑n

i=1Xi = ∞} as well.

Proof. We use the traditional approach, based on a strong law of large numbers from [2] ( see Theorem 2.18, p.35).
Below we provide it in a appropriate form for ready reference.

Theorem B. Let{Tn = ∑n
i=1Xi , Fn,n≥ 1} be a martingale and{Un,n≥ 1} a nondecreasing sequence of positive random

variables such that Un is Fn−1-measurable for each n. If1≤ p≤ 2, then limn→∞Tn/Un = 0 a.s. on the set

{limn→∞Un = ∞,
∞

∑
i=1

U−p
i E[|Xi |p|Fi−1]< ∞}.

It follows from Pakes results [9] that under our conditions

n

∑
i=1

Zi−1 → ∞

a.s. asn→ ∞. Therefore we can apply Theorem B to the sumTn = ∑n
i=1[Yi − θZi−1]. Let Fn be theσ -algebra generated

by {Z0,Z1, ...,Zn,Y1,Y2, ...,Yn} for eachn≥ 1. Then we have

E[Tn|Fn−1] = Tn−1+E[Yn−θZn−1|Fn−1].

It follows from the definition ofYn that the second term on the right side of last equality equalszero. On the other
hand, one can easily show thatET2

n = θ (1− θ )∑n−1
i=0 EZi . Therefore, under our assumptionsET2

n < ∞ for eachn ≥ 1,
i.e.{Tn,Fn, n≥ 1} is a martingale. Since

E[(Yj −θZ j−1)
2|F j−1] = θ (1−θ )Z j−1,
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using the fact that for any sequence{ai, i ≥ 1} such thatai ≥ 0 series∑∞
i=1ai(∑i

j=1a j)
−2 is convergent whenever∑∞

i=1ai =
∞, we obtain

∞

∑
j=1

E[(Yj −θZ j−1)
2|F j−1]

(∑ j
i=1Zi−1)2

< ∞.

Now the assertion of the Proposition 1 follows from Theorem Band equality

∑n
i=1Yi

∑n
i=1Zi−1

−θ =
Tn

∑n
i=1Zi−1

.

Proposition 2. If m< 1, λ < ∞ andσ2 < ∞ thenm̂n → m almost surely as n→ ∞.

Remark. As it was mentioned before, it was shown in [8] that m̂n is the maximum likelihood estimator form, which,
generally speaking, does not imply consistency of the estimator. Therefore here we establish the strong consistency of
the estimator ˆmn.

Proof. We consider

m̂n−m=
N(n)
D(n)

,

where

N(n) =
n

∑
i=1

Wi−1

∑
j=1

(Xi j −m). D(n) =
n

∑
i=1

Wi−1

Let Fn for eachn≥ 1 beσ -algebra generated by{Wi , i = 0,1, ...,n}. Then it is it is not difficult to see that{N(n),Fn}
is a martingale and again we can use Theorem B. We easily find that

E





(

Wi−1

∑
j=1

(Xi j −m)

)2

|Fi−1



= σ2Wi−1

Therefore the series

∞

∑
i=1

E

[

(

∑Wi−1
j=1 (Xi j −m)

)2
|Fi−1

]

D2(i)
=

∞

∑
i=1

σ2Wi−1

D2(i)

is convergent. Thus we conclude due to Theorem B thatN(n)/D(n) a.s. converges to zero asn→ ∞.

Proof of Theorem 1. Part (a) of the theorem is a direct consequence of Proposition 1 and consistency of Pakes estimator
µ̂n.

We now prove part (b). We representt̂n−θ µ as following:

t̂n−θ µ = I1(n)+ I2(n), (4.2)

where

I1(n) = θ (
1
n

n−1

∑
i=0

Zi − µ), I2(n) =
1
n
(

n

∑
i=1

Yi −θ
n−1

∑
i=0

Zi).

We immediately obtain from Theorem 3 in [9] that
√

nI1(n) as n → ∞ converges in distribution to a normal random
variableV1 with mean zero and varianceθ (µσ2+ γ2)/(1−m)2.

We now considerI2(n). It is not difficult to see that

√
nI2(n) =

1√
n

n

∑
i=1

Zi−1

∑
j=1

ξ̄i−1 j , (4.3)

whereξ̄i j = ξi j −θ is a centered Bernoulli random variable for each(i, j) ∈ N 2. We apply Theorem A to the sum on the
right side of (4.3). LetAi j be the sigma-algebra generated by{X1

i j ,X
2
i j ,ξi j } for all (i, j) ∈ N 2, A0 = {∅,Ω} and

Fk j =
k−1

∏
i=1

Zi−1

∏
l=1

Ai−1l ×
j

∏
l=1

Ak−1l ×A0.
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It is clear that{Zk−1 > j} ∈ Fk, j for any j which means that assumption on the number of summands in Theorem A is
fulfilled. Using notation of the Theorem A we find that

θk j = E[ξ̄k−1 j |Fk j−1] = E[ξ̄i j ] = 0, σ2
k j = E[ξ̄ 2

k−1 j |Fk j−1] = E[ξ̄ 2
i j ] = θ (1−θ ).

To check condition (3.4), using the fact thatµ̂n → µ a.s. asn→ ∞, we obtain that

1
n

n

∑
k=1

Zk−1

∑
j=1

σ2
k j =

θ (1−θ )
n

n−1

∑
k=0

Zk
P→ θ (1−θ )µ

asn→ ∞. Therefore, for anyε > 0

lim
n→∞

P

{

1
n

n

∑
k=1

Zk−1

∑
j=1

σ2
k j > θ (1−θ )µ(1+ ε)

}

= 0,

which means that condition (3.4) is satisfied.
Since{ξ̄i j ,(i, j) ∈ N 2} are i.i.d. with zero mean, conditions (3.5) and (3.6) are also trivially satisfied. To check

condition (3.7), we denote

Kn(x) =:
n

∑
k=1

Zk−1

∑
j=1

E[
ξ̄ 2

k−1 j

n
χ(

ξ̄k−1 j√
n

≤ x)|Fk j−1]

Since

Kn(x) =
1
n

E[ξ̄ 2
11χ(

ξ̄11√
n
≤ x)]

n−1

∑
k=0

Zk,

we easily find that asn→ ∞

Kn(x) =
P→ K(x) :=







θ (1−θ )µ , if x≥ 0,

0, if x< 0.

Thus we obtain from Theorem A that
√

nI2(n)
d→V2 asn→ ∞, where

EeitV2 = exp

{

− t2θ (1−θ )µ
2

}

,

which means thatV2 ∼
√

θ (1−θ )µN(0,1), whereN(0,1) is the standard normal random variable.

Proof of Theorem 2. First we prove consistency of the estimator ˆan. We represent it as following

ân = A1(n)+A2(n)+A3(n), (4.4)

where

A1(n) =
∑n

i=1Zi

∑n
i=1Yi

(

∑n+1
i=2 Yi

∑n
i=1Zi

−θ

)

,

A2(n) =
θ ∑n

i=1(Zi −νi)

∑n
i=1Yi

, A3(n) =
∑n

i=1(θνi −ηi+1)

∑n
i=1Yi

It follows from Proposition 1 thatA1(n)→ 0 a.s. asn→ ∞. Now we consider

A3(n) =
∑n

i=1 ∑νi
j=1(θ − ζi j )

∑n
i=1Yi

.

Since due to strong low of large numbers

1
n

n

∑
i=1

νi

∑
j=1

(θ − ζi j )→ E[
ν1

∑
j=1

(θ − ζ1 j)] = 0

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


350 I. Rahimov: Consistency of estimators in partially...

a.s. asn→ ∞, using Part (a) of Theorem 1 we conclude thatA3(n) a.s. converges to zero asn→ ∞. What concernsA2(n)
we can rewrite it as following

A2(n) =
θ ∑n

i=1Zi−1

∑n
i=1Yi

· ∑n
i=1(Zi −νi)

∑n
i=1Zi−1

.

From here, using Proposition 1 and consistency of Nanthi estimatorm̂n, we obtain thatA2(n)→ ma.s. asn→ ∞. Part (a)
of Theorem 2 now follows from equality (4.4).

We now prove part (b). For this we consider

B(n) := (ân−m)
n

∑
i=1

Yi . (4.5)

It is not difficult to see thatB(n) can be represented as following

B(n) =
n+1

∑
i=2

(Yi −ηi −mYi−1) =
n+1

∑
i=2

(Yi −θZi−1)+θ
n+1

∑
i=2

(Zi−1−mZi−2−νi−1)

+θ
n+1

∑
i=2

(νi−1−
ηi

θ
)+m

n+1

∑
i=2

(θZi−2−Yi−1) = B1(n)+B2(n)+B3(n)+B4(n).

It is obvious that

B1(n) =
n+1

∑
i=2

Zi−1

∑
j=1

ξ̄i j ,

where{ξ̄i j ,(i, j) ∈ N 2} are defined in (4.3). Therefore we obtain from the proof of Theorem 1 thatn−1/2B1(n)
d→

N(0,µ(1−θ )θ ) asn→ ∞, whereN(0,a2) is a normal random variable with mean zero and the variancea2. Similarly we
can see that

B4(n) =−m
n+1

∑
i=2

Zi−2

∑
j=1

ξ̄i j ,

and, therefore, the same arguments as in the proof of Theorem1 allows us to conclude thatn−1/2B4(n)
d→ N(0,m2µ(1−

θ )θ ) asn→ ∞.
We now considerB2(n). It is easy to see that it can be presented as following

B2(n) = θ
n+1

∑
i=2

Zi−2

[

∑n+1
i=2 (Zi−1−νi−1)

∑n+1
i=2 Zi−2

−m

]

.

Therefore, if we use Nanthi theorem , we obtain that asn→ ∞
√

n

θ ∑n+1
i=2 Zi−2

B2(n)
d→ N(0,σ2/µ). (4.6)

What concernsB3(n), we can rewrite it as following

B3(n) =
n+1

∑
i=2

νi−1

∑
i=1

(θ − ζi−1 j).

It is not difficult to see that
νi−1

∑
i=1

(θ − ζi−1 j), i = 2,3, ...

are independent and identically distributed random variables with mean zero and variance∆2 =: λ θ (1− θ ) + (γθ )2.
Therefore it follows from the central limit theorem thatn−1/2B3(n) asn → ∞ converges in distribution toN(0,∆2) a
normal random variable with mean zero and the variance∆2.

Now we can rewrite (4.5) as following
√

n(ân−m) =
1

t̂n
√

n
B(n).

If we take into account that̂tn → θ µ almost surely asn → ∞ and the above results related toBi(n), i = 1,2,3,4, we
obtain the assertion of Part (b) of Theorem 2.
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