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Abstract: It is known that in subcritical branching process with statiry immigration the average population size for the first
generations and the ratio of the reproduction process timtakprogeny are strongly consistent estimators for themué the stationary
distribution and for the offspring mean, respectively. Weve that the same estimators remain strongly consistent have only
partial observations of the population and the number ofignamts. We also show that the rates of convergence of thmagsts to
the true values of the parameters are the same as in the cemmplete observation.
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1 Introduction

We consider a discrete time branching stochastic prodgss > 0,Wy = 1, defined by two families of independent,
nonnegative integer valued random variall¥s, (n,i) € .42}, = {1,2...} and{vy,k > 1} recursively as

Wh
Wn+1 - ziXm + Vn+1, n 2 0 (11)
i=

Assume thakXy; have a common distribution for allandi, and families{ X,;} and{v,} are independent. We also assume
that{ vy, k > 1} are independent and identically distributed. Variablgsvill be interpreted as the number of offspring of
theith individual innth generation andy is the number of immigrating individuals in timth generation. Then);, can

be considered as the sizerdgh generation of the population.

Supposen = E X;; is the mean number of offspring of a single individual. Pssi#&}, is calledsubcritical, critical or
supercriticaldepending om < 1, m= 1 orm > 1, respectively. The independence assumption for the ilesqiX,; } and
{vn} means that reproduction and immigration processes arpémdient.

Since the behavior of the branching process is mostly détedrby the offspring meam, the problem of estimation
of this parameter is important. Therefore estimation ofafigpring and immigration parameters in the branching pssc
with immigration have been an active area of the researdhlfomng time. As a result of this activity, it has been estéiglts
that a maximum likelihood approach leads to useful resififtse number of immigrating individualsvy,k > 1} and all
offspring sizes{ X, n,i > 1} are observable. Later, it turned out that the offspring meamsuccessfully be estimated, if
population sizegW, 1 <i < n} up to some generation are observed. However, in applicatiery often not all individuals
existing in the population will be observed. As a result, gioisity of estimating the offspring mean based on partial
observations is of interest.

In estimating the offspring mean in the process with imntigrabased on full observation the analogy between the
immigration-branching process and the first order aut@ssive process is often useful (s8&4]) However, there is no
such a similarity, if we have only partial observations @& gopulation sizes, which is due to complexity of the depande
in partially observed process.

The partially observed branching process is defined aswoitp Each ofW, individuals existing at timen
independently from others can be detected with probal#illiy< 6 < 1 and remains undetected with probability- B.
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Assume that the offspring distributions of both detected andetected individuals may change after inspection. Let
{&ni, (n,i) € A?} be a family of ii.d. Bernoulli random variables with a prdidy of success 8 and

{x§;>, (n,i) € 42}, j = 1,2 be two independent families of i.i.d. random variablesrtgkonnegative integer values and
these families may follow different probability distriboms for j = 1 and 2. Assume also that familié&;, (n,i) € .42}

and{xrgij), (n,i) € .42} are independent for all values ofi andj. If we take

Xni = X,E.” (1—é&ni) + X,S?Em

in (1.1), we obtain new process

Zo=1,
Zni1 = 2X,§i1)(1—fni)+ 2x§?>ém+vn+1 n>0. (1.2)

We note thaf Z,,n > 0} is the standard branching process with immigration and avghecial offspring distribution. The
partially observed branching process with immigrationdfited as

Zn
Yni1= Zﬁni; n>0.
i&

The partially observed (or restricted) branching procgdsave been considered by many authors mostly in the
framework of applications in epidemic modeling. It is knowrat "susceptible-infectious-removed” (SIR) epidemic

model can successfully be approximated by branching psesesvhen the initial number of susceptible individuals is
large. In 1] a systematic study of SIR models, based on the branchingginpation, is provided.

Problems related to statistical inference based on plgroserved branching processes have been considergd in [
6,7] and [10Q]. In particular, in B] it has been demonstrated that, if one has a binomiallyidigd subset of observations
of each generation, one will be able to estimate three fanstof parameters of the offspring distribution. We alsanot
that these papers concentrate on possibility of usingttosdil Lotka-Nagaev and Harris type ratio estimators tovese
the offspring mean when the observations are restricted.

In this note we consider the problem of estimation of paransedf the process with immigration based on partial
observations of the branching process. We concentratelmmisoal case. It is well known that when < 1 the process
W, defined in (1.1) has a unique stationary probability distiim, if and only if E(log*vy) is finite. If in addition
E(vn) < o, then the stationary distribution has a finite meas E(v,)/(1—m). A. Pakes §] has proposed an strongly
consistent and asymptotically normal estimator flousing his results about the total progeny of the proces®rliait
was shown in §] that if there is an observation of population siZ&¥,i = 1,2,...n} and the numbers of immigrating
individuals{vi,i = 1,2,...n} one can construct the maximum likelihood estimator for tfiepoing meanm, which is
asymptotically normal when — . The question, which we address in this paper is simple:thélestimators proposed
in [8] and [9] remain consistent, if we have only partially observed papon sizes and the numbers of immigrating
individuals Another question of interests in this note is thte of convergence of the estimators to the true valueeof th
parameters and asymptotic normality of the estimators.

We prove that the estimators proposed by Pakes and Nantd loaspartial observations remain strongly consistent.
We also obtain results which give the rate of convergencbesd estimators. What concerns the asymptotic normality
of the estimators, our results show that the difference beinestimators and the true values of parameters normed by
nl/2 converges in distribution to a sum of several normal randariables which are, generally speaking, not necessarily
independent. The same kind of results are obtaine@|ifof the partially observed processes without immigratishich
is because of the more complexity of the dependence in thalhaobserved process. It is clear that one has to consider
some modified estimators in this situation. Here the "skigpmethod exploited (first used i®]) in [5] may be useful.
Unlike the proofs in §] and [6], our proofs use a central limit theorem (CLT) for a randormsuwof dependent random
variables (seel[1], p.13), and do not relay Scott’s CLTJ).

In Section 2 we introduce the estimators and formulate the neaults. In Section 3 we provide the CLT frodd] in
a appropriate form for a ready reference. Certain prelinyinesults and proofs of the main theorems are given in Sectio
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2 Main results

It is not difficult to see that the new procegsis a branching process with the same immigration probglgjknerating
function as (1.1) and with offspring generating function

f(8) = (1— 0)f1(s) + B(9), (2.1)

wherefi(s) = Esxﬂ) and fa(s) = Esxﬁ) are offspring generating functions of branching processaded by detected
and undetected individuals, respectively. From here wayefasd that the offspring meam =: EX,; and the variance
02 =:VarX,; are defined as follows:

m=(1-6)u1+ Oy,

02 =(1-0)0?+ 002+ (1—0)0(p1 — t2)?,

wherep; = EX1(I1> ando? = Var)(l(il> fori = 1,2. Throughout the paper we assume that the immigration meanEv;
and the variancg? = Vary; are finite.

We also denotepg') = P{Xl('l> =j}, j=0,1,..., i =1,2. To exclude the trivial situations, we assume throughout the
paper that

py Py <L p #Lj=01.

fori = 1,2. Throughout in the pap&¥(a, b?) denotes a normal random variable with meaand variancé?.
As it was already mentioned, for the completely observedgss defined by (1.1) A. Paked has shown that

I-Aln: %Iivvl

is strongly consistent estimator for the mean of the statipulistributionu = A (1 —m)~. Under the conditions < 1
and botho? andy? are finite, the same author has established (it — ) asn — o converges in distribution to a
normal random variable with mean zero and the varigpe + y?)/(1—m)2.

What concerns the offspring mean, in the case when the pigulsizes{W,i = 1,2,...n} and the numbers of
immigrating individuals{vi,i = 1,2,...n} are completely observable, it was shown in [8] (see &al§}) that

o YW —w)

m - 20 (2.2)

is a maximum likelihood estimator fon and/n(rh, — m) asn — o converges in distribution to a normal random variable
with mean zero and the varianog/ .

To estimatem based on a partial observation, we definejqythe number of observed individuals immigrating in the
(n— 1)st generation. Le{ni, (n,i) € .42} be a family of i.i.d. Bernoulli random variables with the saprobability of

succes® and independent c{fxrgi”, (n,i) € 42}, j =1,2and{&ni, (n,i) € 4#2}. Then, itis natural to defing, as
Vn
M=) énjyn>1
=1

We consider the following estimators farandm

. }”Yi én:Zi"izl(Yi—ni)
ng "’ YiiYi

(2.3)

based on the partial observations of the reproduction amdrimigration processes.
First we provide result related to the estimator of the mdahestationary distribution of the process.

Theorem 1. Let m< 1 andA < co.

a) Thent, is a strongly consistent estimator féyu i.e.f, — 6u almost surely as n+ o, whereu is the mean of the
stationary distribution of £

b) If in addition 0% < 0 and y? < o, then/n(f, — Ou) can be represented as a sum of two asymptotically normal as
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n — oo random variables with zero means and finite varian@gso? + y?)/(1—m)2 andu8(1— ).
Next result is related to estimator of the offspring mearo state it we denotd? = A6(1— 8) + (y8)2.

Theorem 2. Let m< 1 andA < co.

a) Thend, is a strongly consistent estimator for m.

b) If in addition g% < « and y? < , then,/n(&, —m) can be represented as a sum of four asymptotically normal as
n — oo random variables with zero means and finite variandes 8)/u8, m?(1—8)/u8, o?/u and(A/u8)2.

3 Random sum of dependent variables

We now provide a central limit theorem for multiple sums af tandom number of dependent random variables, which
was proved in]1] (see page 13). The notations in this section are indepéifrdem other sections of the paper and will be
used to formulate the theorem of this section only.4&t(n), (i, j) € 2} be a family of (generally speaking dependent)
random variables for eaahe 45 = {0,1,2,..} and{vi(n),i € .4} be certain family of integer valued random variables
taking values from/4g and defined on a probability spa@, F,P}. We consider the following sum

n vi(n

)
31:; J; &ij(n).

Let { #;j(n),(i,]) € N?} be a family ofc-algebras, such that variabfg (n) is measurable with respect tdj (n) for
each pair(i, j) € N? and
k—1vi(n

) [
Fk|(n) = rl 1@7”‘ (n) X I_ll%kj(n) X Mo,
i=1 = |=

whereg is a certaino-algebra such thatg C 2711(n) for anyn and direct products of a random numbeiglgebras,
we understand as usual:

v I
gi(n)={AeF:An{v=I1}} ;(n).
JI:L i(n € v eDl i(n

We assume that for arythe random variableg (n) such thaf vk (n) <1} € R, (n), which means that it is measurable with
respect tar-algebra generated by variablg$; (n),i <k—1,j < v;j(n)} or a stopping time with respect {d;(n), j > 1}.
We denoteEy [] = E[£ |Fq(n)] the conditional mean with respectfg (n) and

8 (n) = Ej-1[&j ()], Yij(n) = &j(n) — 8;(n), (3.1)
a7} (n) = Eij—a[Y§ ()], 9(&.x) = E2X (& <x), (3.2)
(€% —1—itx)x 2, if x#0,
L(t,x) =
-2, if x=0.
I(t) = explity+ /w L(t,0dK(X)}, (3.3)

wherey is somea/p-measurable random variabje(A) denotes the indicator function of evehaindK (x) = K(x, w) is a
function mappingR x Q into R= (—o,) such that, it is anz-measurable random variable for eacand a bounded
non-decreasing function affor almost all fixedw andK (e, w) = 0.

Theorem A. Let{v(n) <I} € Rqy(n) for any | and there is a finites,-measurable random variable T such that for some
sequence of positive numbdiB,,n > 1} as n— o

1 n Vi(”) 5
P = oi;(n)>T =0, (3.4)
{Bﬁ i;J ! }

=1
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1 P
B 1025, 0 o @9

= 8i(n) >y, 3.6
Bn i; ng 1) ( ) y ( )
n vi(n) b
> 3 Ei-a[oBy im0 5 K. (3.7)
i=1j=1
Then as n— «
Sody (3.8)
Bn
where the characteristic function of W ig &t)).
We note that in11] Theorem A is proved for more general scheme of summatioemgged byéi,i, i, (n), (i1,i2,...,ir) €

A", which are the same type §$(n). Here we provide the theorem in the form, which is appropriat our proofs.

4 Proofs of the theorems

We start with a simple but important result, which was firgtivad in [] for the process without immigration.

Proposition 1. If m < 1 andA € (0,), then

n v
2=l g (4.1)
Y11

almost surely (a.s.) as+ .

Remark. Note that in p] the authors has shown (4.1) on the explosion{$etn_..X, = «}, whereX, is the process
without immigration. Our proofs here show that their reseihains true on the s¢timy_,. {1 X = «} as well.

Proof. We use the traditional approach, based on a strong law oé lamnbers fromJ] ( see Theorem 2.18, p.35).
Below we provide it in a appropriate form for ready reference

Theorem B. Let{Th = {1 X, §n,n > 1} be a martingale andU,,n > 1} a nondecreasing sequence of positive random
variables such that RJis Fn_1-measurable for each n. ff < p < 2, then limy» Tn/Up = 0 a.s. on the set

liMmp_eUp = oo, mui*pE Xi|P|Fi—1] < o).
{limn—eUn i; [1Xi]PISi-1] < oo}

It follows from Pakes result®] that under our conditions

n
Zzi—l — 00
=

a.s. an — . Therefore we can apply Theorem B to the stim= 5 ;Y — 6Zi_4]. Let §, be theo-algebra generated
by {Zo,23,...,Zn,Y1,Y2,...,Yn} for eachn > 1. Then we have

E[Tn|gnfl] = Tnfl+ E[Yn - ezn71|§nfl]'
It follows from the definition ofY, that the second term on the right side of last equality eqeaile. On the other
hand, one can easily show tHaf;? = (1 — 8) T"} EZ. Therefore, under our assumptiod3;? < « for eachn > 1,
i.e{Th,¥n, N> 1} is a martingale. Since

E[(Yj — 0Zj_1)%[F)-1] = 6(1— 0)Zj_1,
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using the fact that for any sequeni@,i > 1} such that, > 0 seriesy” 1&(21 1) 2 is convergentwhenever” ; a =

o, we obtain
EE[( GZJ 1) |SJ 1] oo,
=1 (31-1Z1)?
Now the assertion of the Proposition 1 follows from Theorelarigl equality
Y 4, T
YiiZor o YLiZed

Proposition 2. Ifm < 1, A < 0 andg? < o thenriy, — m almost surely as as .

Remark. As it was mentioned before, it was shown Bj fhat f, is the maximum likelihood estimator fon, which,
generally speaking, does not imply consistency of the edtim Therefore here we establish the strong consistency of
the estimatomy,.

Proof. We consider

. N(n)

My —M= ——,
(n)

where
n W1 n
N =5 ¥ (% —m).D(m=3 W,
22 2
Let R, for eachn > 1 beo-algebra generated fWM,i = 0,1,...,n}. Then itis it is not difficult to see thgtN(n), Fn}

is a martingale and again we can use Theorem B. We easily fatd th

W1 2 1
E <Z (Xij—m)> Fi1| = 0°W_y

=1

Therefore the series

o | (2106 -m) R
2 | 57() -3,

is convergent. Thus we conclude due to Theorem BN{a} /D(n) a.s. converges to zero as-— .

Proof of Theorem 1. Part (a) of the theorem is a direct consequence of Propoditand consistency of Pakes estimator
fin.
We now prove part (b). We represdpt- 8u as following:
— 0p = I1(n)+12(n), (4.2)

1nfl 1 0 n-1
=6(; i;zi — ), Ia(n) = ﬁ(i;Yi .y i;zi).

We immediately obtain from Theorem 3 in [9] thafli(n) asn — o converges in distribution to a normal random

variableVy with mean zero and varian@ o? + y?) /(1 — m)2.

We now considel,(n). It is not difficult to see that

where

nZ-_

\/_|2 ZI Z EI 1j, (4-3)
whereaJ &ij — 0 is a centered Bernoulli random variable for edih) € 2. We apply Theorem A to the sum on the
right side of (4.3). Letw; be the sigma-algebra generated{d4t, JZ,Eij} forall (i,j) € A2, ol ={2,Q} and

k—1Zi-1

ij—r“_!ﬁfu 1I><I_!~Q7k 1 X 4.
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It is clear that{Z,_, > j} € F; for any j which means that assumption on the number of summan@heorem A is
fulfilled. Using notation of the Theorem A we find that

6 = E[& 1) IR 1] = E[&j] = 0, 0 = E[&2 j|Rj_1] = E[&F] = 6(1 - 6).
To check condition (3.4), using the fact thiat— u a.s. as1 — «, we obtain that

6(1— e“l

n Z-1 o2

> D %= %Zk
k=1 =1

asn — . Therefore, for ang >0

n Ze1
. - 2} - _
rLmnooP{nk;JZlakJ>6(1 6)u(1+£)} 0,

which means that condition (3. 4) is satisfied.
Since {&j,(i,]) € € .42} are i.i.d. with zero mean, conditions (3.5) and (3.6) are afivially satisfied. To check
condition (3.7), we denote

zz & st %_ 0 Fig_a]

Since
Kn(X) = [Enx = <X)] %Zk,

we easily find that am — oo
{ 0(1—8)u, if x>0,

0, if x<O.

Thus we obtain from Theorem A thgfnl,(n) LN V, asn — o, where

2 —
o oup| LA OUY,

which means that, ~ /0(1— 6)uN(0,1), whereN(0, 1) is the standard normal random variable.

Proof of Theorem 2. First we prove consistency of the estimagqr We represent it as following

&n= A1(n) + Az(n) + Ag(n), (4.4)

_ Sz (3
o= T8 (855 o).

n(Z—w n N
Aoy = IZA@ V) FEA(OV— )
dicaYi Yie1Yi
It follows from Proposition 1 tha#; (n) — 0 a.s. as1 — c. Now we consider

SaS L (6-4))
YitqYi '

where

Ag(n) =

Since due to strong low of large numbers

n v

;z (6 Gy) —El 2(9—511)]=
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a.s. as — oo, using Part (a) of Theorem 1 we conclude thgtn) a.s. converges to zero as— «. What concerngy(n)
we can rewrite it as following

Az(n) _ 62{;:12'*1 . 2|n=r]1.(zl _ Vi) )
zlzlYl Z|:1 Zl—l
From here, using Proposition 1 and consistency of Nanthmesbrm,, we obtain tha,(n) — ma.s. as1— . Part (a)
of Theorem 2 now follows from equality (4.4).
We now prove part (b). For this we consider

B(r) = (B0 5 ¥, @9

Itis not difficult to see thaB(n) can be represented as following

n+1 n+1 n+1

B(n) = _;(Yi —nNi—mY_y) = ;(Yi —0Z_1)+06 _;(Zi—l —mMZ_5—Vi_1)

n+1 n+1

+ezz v 1—1 +m22 (8Zi_p —Yi_1) = B1(n) + Ba(n) + Bs(n) + Ba(n).

It is obvious that
n+1Zi-1 _

n)=; Zf"’

Where{E.J,( .j) € 42} are defined in (4.3). Therefore we obtain from the proof of dfeen 1 thatn—%/2B;(n )

N(0, u(1—6)8) asn — oo, whereN(0,a?) is a normal random variable with mean zero and the variaAc8imilarly we

can see that
n+1Zi2 _

and, therefore, the same arguments as in the proof of Thebedlows us to conclude that 1/2B,(n) LN N(O,mPp(1—
6)0) asn — oo.
We now consideBy(n). It is easy to see that it can be presented as following

n+1 n+l ZI 1—Vio 1)
6222., l anZ —m|.
i i—2

Therefore, if we use Nanthi theorem , we obtain that as «

VN d 2
Bz(n) = N(0O, 0 . 4.6
gz > NO.o%/W) (4.6)
What concern83(n), we can rewrite it as following
n+1Vi-1
n) = (6 —Gi-1j)-
Itis not difficult to see that )
i—1
(8 —qi—1j),i =2,3,...
5106

are independent and identically distributed random véeglvith mean zero and variang® =: A8(1— 8) + (y6)>2.
Therefore it follows from the central limit theorem thait/2B3(n) asn — c converges in distribution td(0,42) a
normal random variable with mean zero and the variaitce

Now we can rewrite (4.5) as following

1
n(&,—m) = ~—=B(n).
VN(anh—m) W (n)
If we take into account thdh, — 6u almost surely a; — « and the above results relatedBgn), i = 1,2,3,4, we

obtain the assertion of Part (b) of Theorem 2.

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro4, No. 3, 343-351 (2015)www.naturalspublishing.com/Journals.asp NS = 351

Acknowledgments

My sincere thanks to the referee and the associate edittinégrvaluable comments and to University College of Zayed
University, Dubai, UAE, for all the support and facilitiebad.

References

[1] Andresson H., Britton T. (2000Stochastic Epidemic Models and their Statistical AnalySisringer, Ser. LN in Statistics 151,
New York.
[2] Hall, P., Heyde, C. C. (1980Martingale Limit Theory and Its ApplicatioWiley, New York.
[3] Heyde, C., C., Seneta, E. (1972). Estimation theory fomgh and immigration rates in a multiplicative proceisAppl. Probab.
9235-258.
[4] Heyde, C., C., Seneta, E. (1974). Notes on "Estimati@oih for growth and immigration rates in a multiplicativeopess.”J.
Appl. Probab11 572-577.
[5] Kvitkovicvova A., Panaretos V., M.(2011) Asymptoticfarence for partially observed branching processes, Agywl AProbab.
43, 1166-1190.
[6] Meester R., Trapman P. (2006) Estimation in branchiragesses with restricted observations, Adv. Appl. Prols#).1098-1115.
[7] Meester R., De Koning J., De Jong M., S., Diekmann O. (20@ddeling and real-time prediction of classical swine feve
epidemics, Biometrics, 58, 178-184.
[8] Nanthi K. (1979). Some limit theorems of statisticalexdnce on branching processes. Ph.D. thesis submitted trikiersity of
Madras.
[9] Pakes A. G. (1971). Branching processes with immigratib Appl. Probability, 8, 32-42.
[10] Panaretos V., M.(2007) Partially observed branchiragesses for stochastic epidemics, J. Math. Biol., 54, GBE-
[11] Rahimov I. (1995)Random Sums and Branching Stochastic ProceSginger, LNS 96. New York.
[12] Scott D. J. (1978). A central limit theorem for martitggand an application to branching processes. Stoch. $&oéepl. 6,
241-252.
[13] Venkataraman K. N., Nanthi K. (1982). A limit theorem sutbcritical Galton-Watson process with immigration. ThmAProbab.,
10, No 4, 1069-1074.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	 Introduction 
	Main results
	Random sum of dependent variables
	Proofs of the theorems

