J. Stat. Appl. Pro5, No. 2, 299-309 (2016) %N =) 299

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/050211

The Odd Generalized Exponential Linear Failure Rate
Distribution

M. A. El-Damcesk Abdelfattah Mustafa®, B. S. El-Desouldand M. E. Mustafa

1 Mathematics Department, Faculty of Science, Tanta UrilyeBgypt
2 Department of Mathematics, Faculty of Science, Mansourigeddsity, Mansoura 35516, Egypt

Received: 30 Oct. 2015, Revised: 31 Mar. 2016, Accepted: 22016
Published online: 1 Jul. 2016

Abstract: In this paper we study the odd generalized exponential fifehire rate distribution. Some statistical propertidste
proposed distribution such as the moments, the quantilesnedian and the mode are investigated. The method of maxlikelihood
is used for estimating the model parameters. An applicatiorreal data is carried out to illustrate that the new distion is more
flexible and effective than other popular distributions iadaling lifetime data.
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1 Introduction

Some distributions such as the exponential (E), Rayleighd@neralized exponential (GE) and linear exponential) (LE
are used for modelling the lifetime data in reliability. Beedistributions have several desirable properties and
satisfactory interpretations which enable them to be useguently. It is well-known that the exponential distriiount

can have only constant hazard rate function whereas, Riwyldinear failure rate, and generalized exponential
distributions can have only monotone (increasing in cadeeér failure rate distribution and increasing/decreg@sn
case of generalized exponential distribution) failures ratnctions. However, the above distributions sometime® ha
some respective drawbacks in analyzing lifetime data. &apt Kundu$] proposed a generalization of the exponential
distribution named as Generalized Exponential (GE) distion. The two-parameter GE distribution with parameters
o > 0 andp > 0, has the following distribution function

F(x):[1—e*“X]B,x>0,a>O,B>O. (1)

The linear exponential (LE) distribution is also known ag thinear Failure Rate (LFR) distribution, having
exponential and Rayleigh distributions as special casss,[3. The two-parameter LE distribution with parameters
a> 0 andb > 0, has the following distribution function

F)=1-e2 2% x>0 a>0,b>0. (2)

Sarhan and Kundulp] presented a three-parameter generalized linear failate (GLFR) distribution by
exponentiating the LFR distribution as was done for the exptiated Weibull distribution by8]. The exponentiation
introduces an extra shape parameter in the model, which riedg sore flexibility in the shape of the probability
density function (pdf) and hazard function. The distribatifunction of the generalized linear failure rate (GLFR)
distribution is given as

B
F(x):{l—e‘ax‘gxz} ,x>0,a>0b>0,8>0. (3

It is observed that the GLFR distribution has decreasingnanadal pdf and it can have increasing, decreasing, and
bathtub-shaped hazard functions. Another important ciariatic of GLFR distribution is that it contains, as spci
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sub-models, the generalized exponential (GE), genethRayleigh (GR), Linear failure rate (LFR), exponential ,(E)
and Rayleigh (R) distributions,4[10]. Jamkhaneh ] introduced four-parameter distribution called the meuifi
generalized linear failure rate (MGLFR) distribution. Mabud and Alam 9] proposed a generalization of linear
exponential distribution called the generalized linearpamential (GLE) distribution. Anew four-parameter
generalization of the linear failure rate (LFR) distrilmutiwhich is called Beta-linear failure rate (BLFR) distriioun is
introduced by Jafari and Mahmoudi[ The BLFR distribution is quite flexible and can be used &ffely in modeling
survival data and reliability problems. It can have a camistdecreasing, increasing, upside-down bathtub (unifhoda
and bathtub-shaped failure rate function depending onatarpeters, and it also includes some well-known lifetime
distributions as special sub-models. Another generalegsion of linear exponential distribution introduced hyz¥u
tiana et al. 11] called the new generalized linear exponential (NGLE)riistion and discuss some of its properties, it
also includes some well-known lifetime distributions agdpl sub-models. Yuzhu tiana et alZ] also presented
another generalization of linear exponential distribatialled the transmuted linear exponential (TLE) distiidut
Recently, a new class of univariate continuous distrimgiacalled the odd generalized exponential (OGE) class
introduced by 8,13]. This class is flexible because of the hazard rate shapéd lbeincreasing, decreasing, bathtub and
upside down bathtub. The odd generalized exponential (&S} is defined as follows. (x), x > 0 is cumulative
distribution function (cdf) of a random variable X, then tb@responding survival function 5(x) = 1 — G(x) and the
probability density function ig(x), then we define the cdf of the OGE class by replaciimgthe distribution function of

generalized exponential (GE) distribution given in equa(l) by % leading to

G(x)

B
F(x):[l—e G<X>] ,X>0,0>0,3>0. (4)
The probability density function corresponding #) {s given by

) g AL
f(x)z%gg)z()e 80 [1—e aG(x):l , X>0,a>0,8>0. (5)
X

In this article we present a new distribution depending arehr Failure Rate distribution called the Odd Generalized
Exponential-Linear Failure Rate (OGE-LFR) distributionusing the class of univariate distributions defined above.

This paper is organized as follows. In Section 2 we define thmutative distribution function, density function,
reliability function, hazard function and the reverseddrdzfunction of the odd generalized exponential-linedufai
rate (OGE-LFR) distribution. In Section 3 we study someeat#ht properties of (OGE-LFR) distribution include, the
guantile function, median, mode, and the moments. Sectitisctisses the distribution of the order statistics for (@GE
LFR) distribution. Moreover, maximum likelihood estimati of the parameters is determined in Section 5. Finally, an
application of OGE-LFR distribution using a real data sqtrssented in Section 6.

2 The OGE-LFR distribution

In this section we present a new four parameters distribwtadled Odd Generalized Exponential-Linear Failure Rate
(OGE-LFR) distribution with parameters, a,b, and 3 written as OGE-LFRY), where the vecto¥ is defined in the
form¥ = (a,a,b,).

A random variableX is said to have OGE-LFR with parametersa, b, and if its cumulative distribution function (cdf)
given as

ax+ X2 B
—a(e 2 —1)
F(x) = ll—e ] , x>0, a,ab,p>0. (6)

The corresponding pdf has the form
g-1
_ a><+gx271 _ a><+gx271
f(x) = aB(a-+bxe e (¢ ) ll—e (¢ w ) @)

wherex >0, a,a,b,3 > 0.

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro5, No. 2, 299-309 (2016)www.naturalspublishing.com/Journals.asp NS = 301

3 Statistical properties

This section is devoted for studying some statistical prioge for the odd generalized exponential-linear failuaiger
(OGE-LFR), specifically quantile function, median and thements.

3.1 Quantile, median and mode

The quantile of the OGE-LFRY) distribution is simply the solution of the following eqiet, with respecttag, 0<g< 1

axq+ 94 P
q=F(xg) = [1—e‘“<exq gm)] . (8)

By solving equationg), we obtainxg as follow

—a+ |a2+2bIn{1+In|—L1—

T
Qo
T
|

a = b

Since the quantile, is positive, then we obtain the quantile as follow

—a+ |a2+2bin{1+In|—21

1
1-qgP
%= 5 . ©

The median can be derived froi9) (be settingy = % That is, the median is given by the following relation

—a+ |a2+2bin{14In|—L1
a

)

Med = : (10)

=

Moreover, the mode of the OGE-LFR] distribution can be obtained by deriving its pdf with resf® x and equal
it to zero. Thus the mode of the OGE-LRRY distribution can be obtained as a nonnegative solutiomeffollowing
nonlinear equation

1+b(a+bx)2— qe™ ¢ |1 Bb—zl =0. (11)
a<eax+?x 71>
e -1
It is not possible to get an explicit solution df) in the general case. Numerical methods should be used suoted-
point or bisection method to solve it.
Some numerical values of the mode and median for some ditfgedues of parameters given in the following table.

3.2 The moments

In this subsection, we will derive the rth moments of the OGER (W) distribution as infinite series expansion.
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Table 1. The values of mode and median for some different of parameter
a b a B mode median
01 03 01 16 -055915 1.41761

0.2 1.7 -0.54944 1.42977
0.3 1.8 -0.54086 1.40904
04 19 -3.53968 1.38231
05 2.0 -3.36757 1.35457
05 07 01 16 -1.22051 0.61857
0.2 1.7 -1.19729 0.62542
03 1.8 -1.17637 0.61375
04 19 -1.15746 0.59873
05 2.0 -1.14029 0.58324
08 1 01 16 -3.25195 0.43547
0.2 1.7 -2.98516 0.44065
0.3 1.8 -0.26476 0.43184
04 19 -0.28782 0.42053
0.5 2.0 -1.29101 0.40887
1 12 01 16 -3.10630 0.36379
0.2 1.7 -2.86647 0.36825
0.3 1.8 -0.26310 0.36067
04 19 -0.28812 0.35095
0.5 2.0 -1.35540 0.34094
3 6 01 16 0.56839 0.13066
0.2 1.7 046641 0.13235
0.3 1.8 -0.13284 0.12947
04 19 -0.14856 0.12579
05 2.0 -0.16357 0.12201

Theorem 3.1. The rth moment of a random variabfe~OGE-LFR#), where¥ = (a,a,b, 3) is given by

pe ok B0 (i + 1) [ 3 b{r +2L +1)

j
- B-1\ /j
He = iZO jZOkZOLZO( i )(IJ<) (_1) j!L!2L ar+2L(j —k+ 1)r+2L+l ar+2L+2(j —k+ 1)r+2L+2 :

Proof. The rth moment of a random variabfewith pdf f(x) is defined by

= /O X f(x)dx (12)

Substituting from 7) into (12), we obtain
B-1
. 0 _ ax+gx271 _ a><+gx271
o :/ X af(a+bxe* e (¢ ) ll—e (¢ ) dx (13)
0

- . - (emgxzfl) p-1 .
Using binomial expansion forl —e , we obtain

[1 ) ea(engw . BE: -1y 2y (6 (14)

Substituting from 14) into (13), we get

p-1 —a(i+1) (ea”gxz—l)

U = Z) (PN (—1)iaB/0mxr(a+ bx)e> e dx
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. . . fa<|+1>< ¢ 1) .
Using series expansion ef , We obtain
B—1 w R PU R i '
U = % 20(371) (_1)I+J Ba .(I + 1) / X (a+ bx)eaX+§X2 [eax+§x2 _ 1} J dx
i<0 = j! 0

. . . . ] :
Using binomial expansion ({fea”gxz - 1} , we obtain

i+ 1)l

“r:ﬁflm j (F3) (1) (_1)i+j+kBaj+. / (a4 bx)eAli kI g3k 1p2gy
i;) J;)k; | J! 0

Using series expansion eb1-k+1¥¢ we obtain
ite gy BaTH DI -kt D)

)
PPX 320 e
[a/m Xr+2Lea(jfk+1)de+b/ooxr+2L+l ikt Dxgy|
0 0

By using the definition of gamma function in the form, Zwitljer [14],

r(z)= xZ/ é*t?1dt, z x> 0.
0

Finally, we obtain the rth moment of OGE-LFR in the form
Pl ] ,+HkBa i+ DI kD)t

ﬁ 1 J
%Zo%% (W Lz
(r+2L)! b(r+2L+1)!
arJrZL(j _ k+ 1)r+2L+l ar+2L+2(j _ k_|_ 1)(+2L+2 :

This completes the proof.

4 Order statistics

Let X1, Xom, -+, Xnn denote the order statistics obtained from a random saddplk,, - - - , X, which taken from a
continuous population with cumulative distribution fuiect (cdf) F (x, %) and probability density function (pdf)(x, %),
then the probability density function of., is given by

_
B(r,n—r+1)
wheref(x, %), F(x,¥) are the pdf and cdf of OGE-LFRY) distribution given by ) and (7) respectively and(.,.) is
the beta function, also we define first order statiskgg = min(Xy, X2,---,Xy), and the last order statistics Xgn =

max(Xg, Xz, -+, %n). Since 0< F(x,¥) < 1 for x > 0, we can use the binomial expansion[bf- F(x,%)]" " given as
follows

frn(X, W) = FOGW) L 1—Fx )" f(x, W), (15)

1 F W) = ; (”.‘r) ) FxW). (16)

[
Substituting from 16) into (15), we obtain

frn(X, W) = mwx; W) ii) (n|_ r) (_1)i [F(x W)]i+r—1. 17)

Substituting from §) and (7) into (17), we obtain

¢ . b n—r (_1)in!

(X Aa0B) =3 T T+
Relation (8) shows thatf,.n(x,¥) is the weighted average of the odd generalized expondintésr failure rate with
different shape parameters.

f(a,ab,(r+i)B). (18)
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5 Estimation and I nference

Now, we discuss the estimation of the OGE-LER4, b, 3) parameters by using the method of maximum likelihood based
on a complete sample.

5.1 Maximum likelihood estimators

Let Xq,Xp, -+, X, be a random sample of size n frofn~ OGE-LFR(, a, b, B) with observed valueg;, Xz, - - - , Xn, then
the log-likelihood function can be written as

n

¥ = rlf(xi;a,a,b,B). (19)

Substituting from ) into (19), we get

B-1
n — axi+gxi271 —a|e®it2N 1
7 - |‘|aB[a+b>q]ea’“+5>9‘2e d ] 1-e ale ] .
i=
The log-likelihood function can be written as

L = nin(a) + nin(B) +iln [a-+bx] fi [a’“ ¥

_ a-i [ea>q+§xi2 B 1} L(B-1) _i'n [1_ e_a<ea>q+gxi2—1>] .
i= i= 0)

The maximum likelihood estimates of the parameters ardruddeby Differentiating the log-likelihood function L with
respect to the parametersa, b andf and setting the result to zero

oL n (eaw%xﬂg
= ==4+YIn|l-e =0, 21
B B Z [ (21)
oL n o(xi,a,b)—1]
00{_5 i;[cp(x.ab +HB-1) Zi Y(x,a,ab) _0’ (22)
= + aS d(x,abx+(B—1ay 2udDX 4 (23)
0a Zia+b>q Zix. Zi O, i wx.aab ’
oL X ¢ (x,a,b)x?
b Zla+b>q ZZ ZL(P (%@ b)x? Z y(x,a,a,b) =0 (24)
where the nonlinear functiong(x, a,a,b) and¢ (x;, a, b) are g|ven by
A%+ 5 X 1
9 (x,ab) = e +3¢, W(x,a,a,b) :ea[e } -1
From equationZ1), we obtain the maximum likelihood estimate®fn a closed form as follow
- -n
= . 25
B e (25)
Stilnjl—e

Substituting from 25) into (22), (23) and @4), we get the MLEs ofx, a, b by solving the following system of non-linear
equations

n " s L [pab) -1

21 x,4,b) — 1]+ (B 1)i= U(6.G.4D) =0,

N og(x,4b)x

Zami’“ "Z"’ B+ (B-1a .;wm,a,a,ﬁfo’
x4€?1i3x1

St ha- S dawands B0 5 SG o

There is no closed form solution to these equatlons, scthmil software or numerical technique must be applied.
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5.2 Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidencevate of the unknown parametessa, b andf. As the sample
sizen — oo, then(& —a,4—a, b b B ) approaches a multivariate normal vector with zero meanshendariance
(a a,b, B) wherely Y(&,a,b B) is the inverse of the observed information matrix which defias follows

2 92 92 52 771

97 Jaga 9agb Jagp var(&) cov(@,a) cowd,b) cov(@,p)

D I R i o iy 1 P
S LeovB.a) couBa) conB.b) var(h)
dBoa dBoa dpob 4p2

The second partial derivatives included it are given as follows

9°L  —n L ¢ (x,a,b) —
B2~ B2’ apda L,Ux.aab)
2°L . N x¢(x,a b) 9°L _g " x2¢(x,a,b)
aBaa_ i= LII(Xj,a,a,b)7 0Bab_ 2i: LII(Xj,a,a,b)7
°L _ -n 0 [9(x,ab) — 17 [Y(x,a,a,b)+ 1]
= (-1
o~ @ )izi [W(x,a,ab) ’
92L n = X9 (%,abh(x,a,ab)

5035 = —i;Xi¢()Qaaab)+(B_1)i; [(,L;(;i,a,a,;J)]z

2 B-1) 2 x,-2¢(xi,a,b)h(xi,a,a,b)
fmb 221 oAbt [W(x.a.a,b)”
L g L - 0 x2¢(x,a,b)T(x,a,a,b)
92 = Z(aton? “Zf“"’ 2D B0 T e aat?
oL ¢ L__ (B-VDa L 3 (x,a,b)1(x,a,a,b)
dadb Zl(a-i-b)ﬁ le bab)+ T 2 [wix,a,a b))
9°L N2 (B—l)a "Xt (xi,a,b)T(x, a,a,b)

ey § g oan B 5 TELERIRLEY

where the nonlinear functiong(x, o, a,b), ¢ (x,a,b), h(x, a,a,b) andr(x,a,a,b) are given by

ox,ab) =™ 3¢ wix,a,ab)— e’“<ew2 1) 1,
h(x,a,a,b) = ea( . 71) {1— a (ea’“+g’92 — 1)} -1

7(x,a,a,b) = eO{<eaMin 71) [1_ aeax%mz] _

The above approach is used to derive the- )100% confidence intervals for the parameters, b and3 as in the

following forms
izg Var(G), éizg\/Var(é), bizg\/Var(b), Bizg\/Var(B),

wherezg is the upperg)th percentile of the standard normal distribution.

[o}}
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6 Data analysis

Now we use a real data set to show that the OGE-LFR distribuim be a better model, comparing with many known
distributions such as the Exponential(E), GeneralizedoBeptial(GE), Linear Failure Rate(LFR), New Generalized
Linear Exponential (NGLE) and Transmuted Linear Expor@n(ffLE). Consider the data have been obtained from
Aarset [l], and widely reported in many literatures. It represents lifetimes of 50 devices, and also, possess a
bathtub-shaped failure rate property, Table

Table 2: The data from Aarsetl].
61 02 1 1 1 1 1 2 3 6 7 11 12 18
18 18 18 18 21 32 36 40 45 46 47 50 55 60
63 63 67 67 67 67 72 75 79 82 82 83 84 84
84 85 85 85 85 85 86 86

The MLEs of the unknown parameters and the corresponding&gbrov—Smirnov(K-S) test statistic for the six models
are given in Tabl&.

Table 3: The MLES of the parameters, the K-S values and p-values.

The model MLE of the parameters K-S P-value(K-S)

E a =0.0219 0.1911 0.0519

GE & =0.0212,8 =0.9012 0.1940 0.0514

LFR 4=0.014,0=2.4x10"* 0.1955 0.0370
4=0.0012,0=0.0127,

NGLE 6=1.0682,6 = 0.7231 0.2030 0.0276
4=0.0145p=2.4186x10*

TLE 2 ’ ’ 0.1740 0.0855
A =-0.0948
A — o —6

OGE-LFR (0 =472404a=8218x107 1600 (512830

b=6.427x10"7, 3 =0.529

The values of the log-likelihood functions (-L), AIC (Akakinformation Criterion), the statistics AICC (Akaike
Information Citerion with correction), BIC (Bayesian Imfoation Criterion) and HQIC (Hannan-Quinn information
criterion) are calculated in Tab¥efor the six distributions in order to verify which distriban fits better to these data.

Table4: The —L, AIC, AICC, BIC and HQIC for devices data.

The model -L AIC AICC BIC HQAIC

E 241.090 484.1792 484.2625 486.0912 484.908
GE 240.3855 484.7710 485.0264 488.5951 486.227
LFR 238.064  480.128 480.383 483.952 481.584
NGLE 239.49 486.98 487.869 494.6281 489.892
TLE 238.01 482.02 482.54 487.756 484.204

OGE-LFR 232.865  473.730 474.618 481.378 476.642

Based on Table8 and4, it is shown that OGE-LFRY, a,b, 3) model provide better fit to the data rather than other
distributions which we compared with because it has thelsstalalue of (K-S), AIC, AICC, BIC and HQIC test.

To show that the likelihood equation have unique solutiom plot the profiles of the log-likelihood function of a, b
andp in Figuresl-2.

The nonparametric estimate of the survival function using Kaplan-Meier method and its fitted parametric
estimations when the distributions is assumed to be E, GR, NGLE, TLE and OGE-LFR are computed and plotted
in Figure3.
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Figures4 and5, give the form of the probability density functions and ttezard functions for the ED, GED, LFRD,
NGLED, TLED, OGE-LFRD distributions which are used to fit theta after replacing the unknown parameters included
in each distribution by their MLE.

010

0.0z —

0.06 —

Fitted hazard

=

=

=2
I

Fig. 4: The Fitted hazard functions for the data.

0025

=
=
8
5
I

onio o

probability density function
=
g
o
L

0005 —

Fig. 5: The Fitted probability density functions for the data.

7 Conclusions

In this article, we studied the odd generalized exponelitiabr failure rate distribution. We refer to the new model a
the OGE-LFR distribution and study some of its mathematical statistical properties. We provide the pdf, the cdf,
the hazard rate function and the reversed hazard functiothéonew model also we provide an explicit expression for
the moments. The model parameters are estimated by maxiikelihdod method. We use application on set of real
data to compare the OGE-LFR with other known distributiomshsas Exponential (E), Generalized Exponential (GE),
Linear Failure Rate (LFR), New Generalized Linear ExpoiaifNGLE) and Transmuted Linear Exponential (TLE).
Applications on set of real data showed that the OGE-LFRas#st distribution for fitting these data sets compared with
ED, GED, LFRD, NGLED and TLED distributions.
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