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Abstract: In this paper we study the odd generalized exponential linear failure rate distribution. Some statistical properties of the
proposed distribution such as the moments, the quantiles, the median and the mode are investigated. The method of maximum likelihood
is used for estimating the model parameters. An applications to real data is carried out to illustrate that the new distribution is more
flexible and effective than other popular distributions in modeling lifetime data.
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1 Introduction

Some distributions such as the exponential (E), Rayleigh (R), generalized exponential (GE) and linear exponential (LE)
are used for modelling the lifetime data in reliability. These distributions have several desirable properties and
satisfactory interpretations which enable them to be used frequently. It is well-known that the exponential distribution
can have only constant hazard rate function whereas, Rayleigh, linear failure rate, and generalized exponential
distributions can have only monotone (increasing in case oflinear failure rate distribution and increasing/decreasing in
case of generalized exponential distribution) failure rate functions. However, the above distributions sometimes have
some respective drawbacks in analyzing lifetime data. Gupta and Kundu [5] proposed a generalization of the exponential
distribution named as Generalized Exponential (GE) distribution. The two-parameter GE distribution with parameters
α > 0 andβ > 0, has the following distribution function

F(x) =
[

1−e−αx]β
, x> 0, α > 0, β > 0. (1)

The linear exponential (LE) distribution is also known as the Linear Failure Rate (LFR) distribution, having
exponential and Rayleigh distributions as special cases, see [2]. The two-parameter LE distribution with parameters
a> 0 andb> 0, has the following distribution function

F(x) = 1−e−ax− b
2x2

, x> 0, a> 0, b> 0. (2)

Sarhan and Kundu [10] presented a three-parameter generalized linear failure rate (GLFR) distribution by
exponentiating the LFR distribution as was done for the exponentiated Weibull distribution by [8]. The exponentiation
introduces an extra shape parameter in the model, which may yield more flexibility in the shape of the probability
density function (pdf) and hazard function. The distribution function of the generalized linear failure rate (GLFR)
distribution is given as

F(x) =
[

1−e−ax− b
2x2
]β

, x> 0, a> 0, b> 0, β > 0. (3)

It is observed that the GLFR distribution has decreasing or unimodal pdf and it can have increasing, decreasing, and
bathtub-shaped hazard functions. Another important characteristic of GLFR distribution is that it contains, as special
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sub-models, the generalized exponential (GE), generalized Rayleigh (GR), Linear failure rate (LFR), exponential (E),
and Rayleigh (R) distributions, [4,10]. Jamkhaneh [6] introduced four-parameter distribution called the modified
generalized linear failure rate (MGLFR) distribution. Mahmoud and Alam [9] proposed a generalization of linear
exponential distribution called the generalized linear exponential (GLE) distribution. Anew four-parameter
generalization of the linear failure rate (LFR) distribution which is called Beta-linear failure rate (BLFR) distribution is
introduced by Jafari and Mahmoudi [7]. The BLFR distribution is quite flexible and can be used effectively in modeling
survival data and reliability problems. It can have a constant, decreasing, increasing, upside-down bathtub (unimodal)
and bathtub-shaped failure rate function depending on its parameters, and it also includes some well-known lifetime
distributions as special sub-models. Another generalizedversion of linear exponential distribution introduced by Yuzhu
tiana et al. [11] called the new generalized linear exponential (NGLE) distribution and discuss some of its properties, it
also includes some well-known lifetime distributions as special sub-models. Yuzhu tiana et al. [12] also presented
another generalization of linear exponential distribution called the transmuted linear exponential (TLE) distribution.
Recently, a new class of univariate continuous distributions called the odd generalized exponential (OGE) class
introduced by [3,13]. This class is flexible because of the hazard rate shapes could be increasing, decreasing, bathtub and
upside down bathtub. The odd generalized exponential (OGE)class is defined as follows. IfG(x), x > 0 is cumulative
distribution function (cdf) of a random variable X, then thecorresponding survival function isG(x) = 1−G(x) and the
probability density function isg(x), then we define the cdf of the OGE class by replacingx in the distribution function of

generalized exponential (GE) distribution given in equation (1) by G(x)
G(x)

leading to

F(x) =

[

1−e
−α G(x)

G(x)

]β
, x> 0, α > 0, β > 0. (4)

The probability density function corresponding to (4) is given by

f (x) =
αβg(x)

G(x)2 e
−α G(x)

G(x)

[

1−e
−α G(x)

G(x)

]β−1

, x> 0, α > 0, β > 0. (5)

In this article we present a new distribution depending on Linear Failure Rate distribution called the Odd Generalized
Exponential-Linear Failure Rate (OGE-LFR) distribution by using the class of univariate distributions defined above.

This paper is organized as follows. In Section 2 we define the cumulative distribution function, density function,
reliability function, hazard function and the reversed hazard function of the odd generalized exponential-linear failure
rate (OGE-LFR) distribution. In Section 3 we study some different properties of (OGE-LFR) distribution include, the
quantile function, median, mode, and the moments. Section 4discusses the distribution of the order statistics for (OGE-
LFR) distribution. Moreover, maximum likelihood estimation of the parameters is determined in Section 5. Finally, an
application of OGE-LFR distribution using a real data set ispresented in Section 6.

2 The OGE-LFR distribution

In this section we present a new four parameters distribution called Odd Generalized Exponential-Linear Failure Rate
(OGE-LFR) distribution with parametersα,a,b, andβ written as OGE-LFR(Ψ), where the vectorΨ is defined in the
formΨ = (α,a,b,β ).
A random variableX is said to have OGE-LFR with parametersα,a,b, andβ if its cumulative distribution function (cdf)
given as

F(x) =

[

1−e
−α
(

eax+ b
2x2

−1

)

]β

, x> 0, α,a,b,β > 0. (6)

The corresponding pdf has the form

f (x) = αβ (a+bx)eax+ b
2x2

e
−α
(

eax+ b
2 x2

−1

)

[

1−e
−α
(

eax+ b
2 x2

−1

)

]β−1

, (7)

where x> 0, α,a,b,β > 0.
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3 Statistical properties

This section is devoted for studying some statistical properties for the odd generalized exponential-linear failure rate
(OGE-LFR), specifically quantile function, median and the moments.

3.1 Quantile, median and mode

The quantile of the OGE-LFR(Ψ) distribution is simply the solution of the following equation, with respect toxq, 0<q<1

q= F(xq) =

[

1−e
−α
(

eaxq+ b
2 x2

q−1

)

]β

. (8)

By solving equation (8), we obtainxq as follow

xq =

−a±

√

√

√

√

√

√

√

√

a2+2bln



















1+ ln











1
(
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1
β

) 1
α


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
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
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
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




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

b
.

Since the quantilexq is positive, then we obtain the quantile as follow

xq =

−a+

√

√

√

√

√

√

√

√

a2+2bln










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



1+ ln
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
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
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
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

b
. (9)

The median can be derived from (9) be settingq= 1
2. That is, the median is given by the following relation

Med=

−a+

√

√

√

√

√

√

√

√

a2+2bln


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




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
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

1+ ln
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
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1
(

1−( 1
2 )

1
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)
1
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
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























b
. (10)

Moreover, the mode of the OGE-LFR(Ψ ) distribution can be obtained by deriving its pdf with respect to x and equal
it to zero. Thus the mode of the OGE-LFR(Ψ) distribution can be obtained as a nonnegative solution of the following
nonlinear equation

1+b(a+bx)−2
−αeax+ b

2x2






1−

β −1

e
α
(

eax+ b
2 x2

−1

)

−1






= 0. (11)

It is not possible to get an explicit solution of (11) in the general case. Numerical methods should be used such as fixed-
point or bisection method to solve it.
Some numerical values of the mode and median for some different values of parameters given in the following table.

3.2 The moments

In this subsection, we will derive the rth moments of the OGE-LFR(Ψ) distribution as infinite series expansion.
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Table 1: The values of mode and median for some different of parameters.
a b α β mode median

0.1 0.3 0.1 1.6 -0.55915 1.41761
0.2 1.7 -0.54944 1.42977
0.3 1.8 -0.54086 1.40904
0.4 1.9 -3.53968 1.38231
0.5 2.0 -3.36757 1.35457

0.5 0.7 0.1 1.6 -1.22051 0.61857
0.2 1.7 -1.19729 0.62542
0.3 1.8 -1.17637 0.61375
0.4 1.9 -1.15746 0.59873
0.5 2.0 -1.14029 0.58324

0.8 1 0.1 1.6 -3.25195 0.43547
0.2 1.7 -2.98516 0.44065
0.3 1.8 -0.26476 0.43184
0.4 1.9 -0.28782 0.42053
0.5 2.0 -1.29101 0.40887

1 1.2 0.1 1.6 -3.10630 0.36379
0.2 1.7 -2.86647 0.36825
0.3 1.8 -0.26310 0.36067
0.4 1.9 -0.28812 0.35095
0.5 2.0 -1.35540 0.34094

3 6 0.1 1.6 0.56839 0.13066
0.2 1.7 0.46641 0.13235
0.3 1.8 -0.13284 0.12947
0.4 1.9 -0.14856 0.12579
0.5 2.0 -0.16357 0.12201

Theorem 3.1. The rth moment of a random variableX ∼OGE-LFR(Ψ), whereΨ = (α,a,b,β ) is given by

µ´
r =

β−1

∑
i=0

∞

∑
j=0

j

∑
k=0

∞

∑
L=0

(β−1
i

)( j
k

)

(−1)i+ j+k β α j+1bL(i +1) j

j!L!2L

[

(r +2L)!
ar+2L( j − k+1)r+2L+1 +

b(r +2L+1)!
ar+2L+2( j − k+1)r+2L+2

]

.

Proof. The rth moment of a random variableX with pdf f (x) is defined by

µ´
r =

∫ ∞

0
xr f (x)dx. (12)

Substituting from (7) into (12), we obtain

µ´
r =

∫ ∞

0
xr αβ (a+bx)eax+ b

2x2
e
−α
(

eax+ b
2 x2

−1

)

[

1−e
−α
(

eax+ b
2 x2

−1

)

]β−1

dx. (13)

Using binomial expansion for

[

1−e
−α
(

eax+ b
2 x2

−1

)

]β−1

, we obtain

[

1−e
−α
(

eax+ b
2 x2

−1

)

]β−1

=
β−1

∑
i=0

(β−1
i

)

(−1)i e
−α i

(

eax+ b
2 x2

−1

)

. (14)

Substituting from (14) into (13), we get

µ´
r =

β−1

∑
i=0

(β−1
i

)

(−1)i αβ
∫ ∞

0
xr(a+bx)eax+ b

2x2
e
−α(i+1)

(

eax+ b
2 x2

−1

)

dx.
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Using series expansion ofe
−α(i+1)

(

eax+ b
2 x2

−1

)

, we obtain

µ´
r =

β−1

∑
i=0

∞

∑
j=0

(β−1
i

)

(−1)i+ j β α j+1(i +1) j

j!

∫ ∞

0
xr(a+bx)eax+ b

2x2
[

eax+ b
2x2

−1
] j

dx.

Using binomial expansion of
[

eax+ b
2x2

−1
] j
, we obtain

µ´
r =

β−1

∑
i=0

∞

∑
j=0

j

∑
k=0

(β−1
i

)( j
k

)

(−1)i+ j+k β α j+1(i +1) j

j!

∫ ∞

0
xr(a+bx)ea( j−k+1)x e

b
2 ( j−k+1)x2

dx.

Using series expansion ofe
b
2 ( j−k+1)x2

, we obtain

µ´
r =

β−1

∑
i=0

∞

∑
j=0

j

∑
k=0

∞

∑
L=0

(β−1
i

)( j
k

)

(−1)i+ j+k β α j+1bL(i +1) j( j − k+1)L

j!L!2L ×

[

a
∫ ∞

0
xr+2Lea( j−k+1)xdx+b

∫ ∞

0
xr+2L+1 ea( j−k+1)xdx

]

.

By using the definition of gamma function in the form, Zwillinger [14],

Γ (z) = xz
∫ ∞

0
etx tz−1dt, z, x> 0.

Finally, we obtain the rth moment of OGE-LFR in the form

µ´
r =

β−1

∑
i=0

∞

∑
j=0

j

∑
k=0

∞

∑
L=0

(β−1
i

)( j
k

)

(−1)i+ j+k β α j+1bL(i +1) j( j − k+1)L

j!L!2L ×

[

(r +2L)!
ar+2L( j − k+1)r+2L+1 +

b(r +2L+1)!
ar+2L+2( j − k+1)r+2L+2

]

.

This completes the proof.

4 Order statistics

Let X1:n,X2:n, · · · ,Xn:n denote the order statistics obtained from a random sampleX1,X2, · · · ,Xn which taken from a
continuous population with cumulative distribution function (cdf)F(x,Ψ ) and probability density function (pdf)f (x,Ψ ),
then the probability density function ofXr:n is given by

fr:n(x,Ψ ) =
1

B(r,n− r +1)
[F(x,Ψ )]r−1 [1−F(x,Ψ )]n−r f (x,Ψ ), (15)

where f (x,Ψ ), F(x,Ψ ) are the pdf and cdf of OGE-LFR(Ψ) distribution given by (6) and (7) respectively andB(., .) is
the beta function, also we define first order statisticsX1:n = min(X1,X2, · · · ,Xn), and the last order statistics asXn:n =

max(X1,X2, · · · ,Xn). Since 0< F(x,Ψ ) < 1 for x > 0, we can use the binomial expansion of[1−F(x,Ψ )]n−r given as
follows

[1−F(x,Ψ )]n−r =
n−r

∑
i=0

(

n− r
i

)

(−1)i [F(x,Ψ)]i . (16)

Substituting from (16) into (15), we obtain

fr:n(x,Ψ ) =
1

B(r,n− r +1)
f (x;Ψ )

n−r

∑
i=0

(

n− r
i

)

(−1)i [F(x,Ψ )]i+r−1
. (17)

Substituting from (6) and (7) into (17), we obtain

fr:n(x;α,a,b,β ) =
n−r

∑
i=0

(−1)in!
i!(r −1)!(n− r − i)!(r + i)

f (α,a,b,(r + i)β ). (18)

Relation (18) shows thatfr:n(x,Ψ ) is the weighted average of the odd generalized exponential-linear failure rate with
different shape parameters.
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5 Estimation and Inference

Now, we discuss the estimation of the OGE-LFR(α,a,b,β ) parameters by using the method of maximum likelihood based
on a complete sample.

5.1 Maximum likelihood estimators

Let X1,X2, · · · ,Xn be a random sample of size n fromX ∼ OGE-LFR(α,a,b,β ) with observed valuesx1,x2, · · · ,xn, then
the log-likelihood function can be written as

L =
n

∏
i=1

f (xi ;α,a,b,β ). (19)

Substituting from (7) into (19), we get

L =
n

∏
i=1

αβ [a+bxi]e
axi+

b
2x2

i e
−α
[

eaxi+
b
2 x2

i −1

]

[

1−e
−α
[

eaxi+
b
2x2

i −1

]

]β−1

.

The log-likelihood function can be written as

L = nln(α)+nln(β )+
n

∑
i=1

ln [a+bxi]+
n

∑
i=1

[

axi +
b
2

x2
i

]

−α
n

∑
i=1

[

eaxi+
b
2x2

i −1
]

+(β −1)
n

∑
i=1

ln

[

1−e
−α
(

eaxi+
b
2 x2

i −1

)

]

.

(20)
The maximum likelihood estimates of the parameters are obtained by Differentiating the log-likelihood function L with
respect to the parametersα,a,b andβ and setting the result to zero

∂L
∂β

=
n
β
+

n

∑
i=1

ln

[

1−e
−α
(

eaxi+
b
2 x2

i −1

)

]

= 0, (21)

∂L
∂α

=
n
α
−

n

∑
i=1

[ϕ(xi ,a,b)−1]+ (β −1)
n

∑
i=1

[ϕ(xi ,a,b)−1]
ψ(xi ,α,a,b)

= 0, (22)

∂L
∂a

=
n

∑
i=1

1
a+bxi

+
n

∑
i=1

xi −α
n

∑
i=1

ϕ(xi ,a,b)xi +(β −1)α
n

∑
i=1

ϕ(xi ,a,b)xi

ψ(xi ,α,a,b)
= 0, (23)

∂L
∂b

=
n

∑
i=1

x
a+bxi

+
1
2

n

∑
i=1

x2
i −

α
2

n

∑
i=1

ϕ(xi ,a,b)x
2
i +

(β −1)α
2

n

∑
i=1

ϕ(xi ,a,b)x2
i

ψ(xi ,α,a,b)
= 0, (24)

where the nonlinear functionsψ(xi ,α,a,b) andϕ(xi ,a,b) are given by

ϕ(xi ,a,b) = eaxi+
b
2x2

i , ψ(xi ,α,a,b) = e
α
[

eaxi+
b
2 x2

i −1

]

−1.

From equation (21), we obtain the maximum likelihood estimate ofβ in a closed form as follow

β̂ =
−n

∑n
i=1 ln

[

1−e
−α
[

eaxi+
b
2 x2

i −1

]

]
. (25)

Substituting from (25) into (22), (23) and (24), we get the MLEs ofα,a,b by solving the following system of non-linear
equations

n
α̂
−

n

∑
i=1

[

ϕ(xi , â, b̂)−1
]

+(β̂ −1)
n

∑
i=1

[

ϕ(xi , â, b̂)−1
]

ψ(xi , α̂ , â, b̂)
= 0,

n

∑
i=1

1

â+ b̂xi
+

n

∑
i=1

xi − α̂
n

∑
i=1

ϕ(xi , â, b̂)xi +(β̂ −1)α̂
n

∑
i=1

ϕ(xi , â, b̂)xi

ψ(xi , α̂ , â, b̂)
= 0,

n

∑
i=1

x

â+ b̂xi
+

1
2

n

∑
i=1

x2
i −

α̂
2

n

∑
i=1

ϕ(xi , â, b̂)x
2
i +

(β̂ −1)α̂
2

n

∑
i=1

ϕ(xi , â, b̂)x2
i

ψ(xi , α̂ , â, b̂)
= 0.

There is no closed form solution to these equations, so statistical software or numerical technique must be applied.
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5.2 Asymptotic confidence bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parametersα,a,b andβ . As the sample
sizen−→ ∞, then(α̂ −α, â−a, b̂−b, β̂ −β ) approaches a multivariate normal vector with zero means andthe variance
I−1
0 (α̂ , â, b̂, β̂ ), whereI−1

0 (α̂ , â, b̂, β̂ ) is the inverse of the observed information matrix which defined as follows

I−1
0 =−













∂ 2

∂α2
∂ 2

∂α∂a
∂ 2

∂α∂b
∂ 2

∂α∂β
∂ 2

∂a∂α
∂ 2

∂a2
∂ 2

∂a∂b
∂ 2

∂a∂β
∂ 2

∂b∂α
∂ 2

∂b∂a
∂ 2

∂b2
∂ 2

∂b∂β
∂ 2

∂β ∂α
∂ 2

∂β ∂a
∂ 2

∂β ∂b
∂ 2

∂β 2













−1

=









Var(α̂) cov(α̂, â) cov(α̂, b̂) cov(α̂, β̂ )
cov(â, α̂) Var(â) cov(â, b̂) cov(â, β̂ )
cov(b̂, α̂) cov(b̂, â) Var(b̂) cov(b̂, β̂ )
cov(β̂ , α̂) cov(β̂ , â) cov(β̂ , b̂) Var(β̂ )









. (26)

The second partial derivatives included inI−1
0 are given as follows

∂ 2L
∂β 2 =

−n
β 2 ,

∂ 2L
∂β ∂α

=
n

∑
i=1

ϕ(xi ,a,b)−1
ψ(xi ,α,a,b)

,

∂ 2L
∂β ∂a

= α
n

∑
i=1

xiϕ(xi ,a,b)
ψ(xi ,α,a,b)

,
∂ 2L

∂β ∂b
=

α
2

n

∑
i=1

x2
i ϕ(xi ,a,b)

ψ(xi ,α,a,b)
,

∂ 2L
∂α2 =

−n
α2 − (β −1)

n

∑
i=1

[ϕ(xi ,a,b)−1]2 [ψ(xi ,α,a,b)+1]

[ψ(xi ,α,a,b)]2
,

∂ 2L
∂α∂a

= −

n

∑
i=1

xiϕ(xi ,a,b)+ (β −1)
n

∑
i=1

xiϕ(xi ,a,b)h(xi ,α,a,b)

[ψ(xi ,α,a,b)]2
,

∂ 2L
∂α∂b

= −
1
2

n

∑
i=1

x2
i ϕ(xi ,a,b)+

(β −1)
2

n

∑
i=1

x2
i ϕ(xi ,a,b)h(xi ,α,a,b)

[ψ(xi ,α,a,b)]2
,

∂ 2L
∂a2 = −

n

∑
i=1

1

(a+bxi)
2 −α

n

∑
i=1

x2
i ϕ(xi ,a,b)+ (β −1)α ×

n

∑
i=1

x2
i ϕ(xi ,a,b)τ(xi ,α,a,b)

[ψ(xi ,α,a,b)]2
,

∂ 2L
∂a∂b

= −

n

∑
i=1

xi

(a+bxi)
2 −

α
2

n

∑
i=1

x3
i ϕ(xi ,a,b)+

(β −1)α
2

n

∑
i=1

x3
i ϕ(xi ,a,b)τ(xi ,α,a,b)

[ψ(xi ,α,a,b)]2
,

∂ 2L
∂b2 = −

n

∑
i=1

x2
i

(a+bxi)
2 −

α
4

n

∑
i=1

x4
i ϕ(xi ,a,b)+

(β −1)α
4

n

∑
i=1

x4
i ϕ(xi ,a,b)τ(xi ,α,a,b)

[ψ(xi ,α,a,b)]2
,

where the nonlinear functionsψ(xi ,α,a,b), ϕ(xi ,a,b), h(xi,α,a,b) andτ(xi ,α,a,b) are given by

ϕ(xi ,a,b) = eaxi+
b
2x2

i , ψ(xi ,α,a,b) = e
α
(

eaxi+
b
2 x2

i −1

)

−1,

h(xi ,α,a,b) = e
α
(

eaxi+
b
2x2

i −1

)

[

1−α
(

eaxi+
b
2x2

i −1
)]

−1,

τ(xi ,α,a,b) = e
α
(

eaxi+
b
2 x2

i −1

)

[

1−αeaxi+
b
2x2

i

]

−1.

The above approach is used to derive the(1− δ )100% confidence intervals for the parametersα,a,b andβ as in the
following forms

α̂ ±Zδ
2

√

Var(α̂), â±Zδ
2

√

Var(â), b̂±Zδ
2

√

Var(b̂), β̂ ±Zδ
2

√

Var(β̂),

whereZδ
2

is the upper (δ2 )th percentile of the standard normal distribution.
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6 Data analysis

Now we use a real data set to show that the OGE-LFR distribution can be a better model, comparing with many known
distributions such as the Exponential(E), Generalized Exponential(GE), Linear Failure Rate(LFR), New Generalized
Linear Exponential (NGLE) and Transmuted Linear Exponential (TLE). Consider the data have been obtained from
Aarset [1], and widely reported in many literatures. It represents the lifetimes of 50 devices, and also, possess a
bathtub-shaped failure rate property, Table2.

Table 2: The data from Aarset [1].
0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18
18 18 18 18 21 32 36 40 45 46 47 50 55 60
63 63 67 67 67 67 72 75 79 82 82 83 84 84
84 85 85 85 85 85 86 86

The MLEs of the unknown parameters and the corresponding Kolmogorov–Smirnov(K–S) test statistic for the six models
are given in Table3.

Table 3: The MLES of the parameters, the K–S values and p-values.
The model MLE of the parameters K–S P-value(K-S)
E α̂ = 0.0219 0.1911 0.0519
GE α̂ = 0.0212,β̂ = 0.9012 0.1940 0.0514
LFR â = 0.014,b̂ = 2.4×10−4 0.1955 0.0370

NGLE
â = 0.0012,b̂ = 0.0127,
ĉ =1.0682,β̂ = 0.7231

0.2030 0.0276

TLE
â = 0.0145,b̂ = 2.4186×10−4,

λ̂ = -0.0948
0.1740 0.0855

OGE-LFR
α̂ = 472.404, ˆa = 8.218×10−6,
b̂ = 6.427×10−7, β̂ = 0.529

0.1627 0.12830

The values of the log-likelihood functions (-L), AIC (Akaike Information Criterion), the statistics AICC (Akaike
Information Citerion with correction), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn information
criterion) are calculated in Table4 for the six distributions in order to verify which distribution fits better to these data.

Table 4: The –L, AIC, AICC, BIC and HQIC for devices data.
The model –L AIC AICC BIC HQAIC
E 241.090 484.1792 484.2625 486.0912 484.908
GE 240.3855 484.7710 485.0264 488.5951 486.227
LFR 238.064 480.128 480.383 483.952 481.584
NGLE 239.49 486.98 487.869 494.6281 489.892
TLE 238.01 482.02 482.54 487.756 484.204
OGE-LFR 232.865 473.730 474.618 481.378 476.642

Based on Tables3 and4, it is shown that OGE-LFR(α,a,b,β ) model provide better fit to the data rather than other
distributions which we compared with because it has the smallest value of (K-S), AIC, AICC, BIC and HQIC test.

To show that the likelihood equation have unique solution, we plot the profiles of the log-likelihood function ofα,a,b
andβ in Figures1-2.

The nonparametric estimate of the survival function using the Kaplan-Meier method and its fitted parametric
estimations when the distributions is assumed to be E, GE, LFR, NGLE, TLE and OGE-LFR are computed and plotted
in Figure3.
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Fig. 1: The profile of the log-likelihood function ofα,a.

Fig. 2: The profile of the log-likelihood function ofb,β .

Fig. 3: The Kaplan-Meier estimate of survival function and fitted survival functions.
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Figures4 and5, give the form of the probability density functions and the hazard functions for the ED, GED, LFRD,
NGLED, TLED, OGE-LFRD distributions which are used to fit thedata after replacing the unknown parameters included
in each distribution by their MLE.

Fig. 4: The Fitted hazard functions for the data.

Fig. 5: The Fitted probability density functions for the data.

7 Conclusions

In this article, we studied the odd generalized exponentiallinear failure rate distribution. We refer to the new model as
the OGE-LFR distribution and study some of its mathematicaland statistical properties. We provide the pdf, the cdf,
the hazard rate function and the reversed hazard function for the new model also we provide an explicit expression for
the moments. The model parameters are estimated by maximum likelihood method. We use application on set of real
data to compare the OGE-LFR with other known distributions such as Exponential (E), Generalized Exponential (GE),
Linear Failure Rate (LFR), New Generalized Linear Exponential (NGLE) and Transmuted Linear Exponential (TLE).
Applications on set of real data showed that the OGE-LFR is the best distribution for fitting these data sets compared with
ED, GED, LFRD, NGLED and TLED distributions.
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