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Abstract: A New Modified Generalized Linear Failure Rate Distribution (NMGLFRD) with five parameters which
generalizes the exponential-Weibull distribution, generalized Rayleigh distribution, modified Weibull distribution, Weibull
distribution, generalized exponential distribution, exponential distribution, modified generalized Linear failure rate
distribution, generalized linear failure rate distribution and linear failure rate distribution is proposed. Various properties of
this new distribution are considered and expressions for its moments and moments of the order statistics are obtained. We
derive the cumulative distribution function, reliability function, hazard function and stress-strength reliability function. The
estimation of the model parameters is performed by the maximum likelihood method. The use of the proposed model is
illustrated by application to real data.
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1 Introduction

In many of the applied sciences such as finance, engineering and medicine, amongst others, analyzing and modeling
lifetime data are crucial. Several lifetime distributions have been proposed in the literature (such as exponential, Rayleigh,
Weibull, Modified generalized linear failure rate distribution) and used to model such kinds of data. Still there remain many
important problems where the real data does not follow any of the standard or classical probability models. The quality of
the procedures used in a statistical analysis depends heavily on the assumed probability model or a distribution. This is the
reason why considerable effort has been expended in the development of large classes of standard probability distributions
along with relevant statistical methodologies. Adamidis and Loukas [10] introduced the two parameter exponential-
geometric distribution with decreasing failure rate. Kus [6] introduced the exponential-Possion distribution with the
decreasing failure rate and discussed its various properties. Jain et al. [12] introduced the generalized inverse generalized
Weibull distribution and studied its properties. Adamidis et al. [11] proposed the extended exponential- geometric
distribution which generalizes the exponential geometric distribution and discussed several of its statistical properties along
with its reliability features. The hazard function of the extended exponential- geometric can be monotonic decreasing,
increasing or constant.

Reliability has always been a key role for the functionality of the system and safety of people using the products. Lots of
research and applications have been carried out in order to understand and explore the applications and methodologies of
reliability analysis for the product enhancements and many researchers have investigated statistically and stochastically
complex phenomena of real systems to improve their reliability. Survival function (reliability function) and hazard function
(failure rate function) are the most frequently used functions in reliability engineering and life time data. The hazard
function of the exponential function is constant whereas the hazard functions of linear failure rate, Rayleigh and generalized
exponential distribution (Gupta and Kunda, [13]) are monotonic. One of the most frequently used lifetime distribution is
Weibull distribution introduced by Fisher and Tippett [14] which is very flexible in modeling lifetime distribution with
monotone failure rate. For describing the lifetime of components with variable failure rate Swedish physicist Wallodi
Weibull [16] used Weibull distribution to represent the distribution of the breaking strength of materials. Surles and Padgett
[8] introduced generalized Rayleigh (two parameter Burr type X) and showed that it could be used in modeling strength
data and lifetime data. Khan and Jan [4] discussed the stress-strength problem of the system where the strength follows
finite mixture of two parameter Lindley distribution and stress follows exponential, Lindley distribution and mixture of
two parameter Lindley distribution and obtained general expressions for the reliabilities of a system. Khan and Jan [3]
obtained Bayes estimators of the parameters of the Geeta, Consul and Size-biased Geeta distributions and associated
reliability function. Sarhan and Zaindin [2] introduced Modified Weibull Distribution with three parameters. This
distribution generalizes generalized exponential distribution, exponential distribution, generalized Rayleigh distribution
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and linear failure rate distribution. Sarhan and Kundu [1] introduced generalized linear failure rate distribution with can have
decreasing, increasing and bath tub shaped hazard functions. Ezzatallah [5] introduced Modified generalized linear failure
rate distribution. This distribution generalizes linear failure distribution, generalized exponential distribution, exponential
distribution, generalized Rayleigh distribution, exponential Weibull distribution, Weibull distribution, generalized linear
failure rate distribution and modified Weibull distribution.

2 The New Modified Generalized Linear Failure Rate Distribution
Let X be lifetime random variable whose probability density function with five parameters(a, B,v, 8, 8) is

6-1
@, B,y,8,6) = 08(a + fyx~")(ax + fa )P~ [1 — e~ (@t -laxtpx)? (2.1)

;x>0,2020y=>0,6>060>0

By the introduction of fifth parameter ‘5’ the above pdf is the generalization of Modified Generalized Linear Failure Rate
Distribution given by Ezzatallah [5] and will be called new modified generalized linear failure rate distribution (NMGLFRD).

Figure 1, 2, 3 and 4 shows the possible shapes of the NMGLFRD for selected values of the parameters involved in
the pdf. In fig. 1 for blue colour shape(a = 1.3,8 = 1.5,y = 1.5,6 = 0.9,6 = 1.6), for red colour shape(a = 1.3,8 =
0.5,y =1.5,6 = 0.8,6 = 1.6) and for green colour shape(a = 1.3,8 = 0.5,y = 2.5,8 = 0.4,0 = 1.6). In fig. 2 for blue
colour shape (¢ = 1.3, =0.7,y = 1.5,6 = 0.6,6 = 1.6), for red colour shape (¢ = 1.3, = 0.5,y = 1.5,6§ = 0.5,0 =
1.6) and for green colour shape (¢ = 1.3, = 0.5,y = 0.5,§ = 0.4,0 = 1.6).
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Fig. 1: Possible shapes of NMGLFRD
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In fig.3 for blue colour shape(a = 0.7,8 = 0.5,y = 0.9, = 2.1,0 = 1.4), for red colour shape(a = 0.7, = 0.5,y =
0.9,6 = 2.1,0 = 1.6) and for green colour shape(a = 0.7, = 0.5,y = 0.9,6 = 2.1,0 = 1.8) and in fig.4 for blue colour
shape(a = 1.1, = 0.5,y = 0.9,6 = 2.1,6 = 1.6), for red colour shape(a = 1.2, = 0.5,y = 09,6 = 2.1,8 = 1.6) and
for green colour shape(a = 1.3, = 0.5,y = 0.9,6 = 2.1,0 = 1.6).

For different values of parameters involved in NMGLFRD, the distribution has the following distributions as special cases.
1. Exponential Weibull distribution (EWD), « = 0,8 =1

fG.y,6) = 6pyxr {1 —e ] e BT x>0,4,7,6 >0
2. Generalized Rayleigh distribution (GRD), a =0, y =2, § =1

-1
] e Bx? ;x>0,8,6>0

f(x,8,6) = 26Bx[1 — e~F**

3. Modified Weibull distribution (MWD), 0 =1, § =1
fO,a,By) = (a+ Byx? De @)+ x> 0,0>0,8,y>0

4. Weibull distribution (WD), a = 0,6 =0 =1
fo,By) = ByxY e P x> 0,8,y >0
5. Generalized Exponential distribution (GED), 8 =0, § =1
flx,a,0) = ab[1—e ]9 1e=% ;x> 0,a,0 >0

6. Exponential distribution (ED), § =0, § =0 =1
fx,a) =ae ™™ ; x>0,a>0

7. Modified Generalized Linear Failure Rate Distribution (MGLFRD), § = 1
fx,a,B,v,0) =0(a+ Byx’ H[1- e_(““ﬁxy)]e_le‘(““ﬁxy)
;x>0,>2020y2=20,,0>0
8. Generalized Linear Failure Rate Distribution(GLFRD) ,y =2,§ =1

9_
flx,a,B,0) = 0(a+ Z,Bx)[l _ e—(ax+/3x2)] 1e_(ax+[3x2)
;x>0,>20,2>2060>0
9. Linear Failure Rate Distribution (LFRD),y =2,6 =6 =1

fl,apB) =(a+ Z,Bx)e'("‘“ﬁxz) ;x>0,a=0,=0
3 Statistical Properties of the NGMLFRD

In this section we study the statistical properties of the NGMLFRD, specifically distribution function, moments, moment
generating function, quartile function, skewness and kurtosis.

Let X follows NMGLFRD with parameters @, 8,y,6,6 . In the sequel, the distribution of X will be referred to
F(x,a,pB,v,8,0) and given as

2]
F(x,a,8,y,6,0) = [1 — e~ @ |, x> 0,6 20,20,y 20,6 >0,0 >0 (3.1)

The possible shapes of the cdf for selected values of parameters involved in the distribution function are shown in Fig. 5 and
6. In fig.5 for blue colour shape(a = 1.4, = 1.9,y = 1.6,6 = 1.5,0 = 1.7), for red colour shape(a = 1.3,8 = 2.4,y =
1.4,6 = 1.3,6 = 1.5) and for green colour shape(a = 1.5, = 2.3,y = 1.8,§ = 1.4,6 = 1.6) and in fig.6 for blue colour
shape(a = 1.4, =19,y = 1.6,6 = 0.5,0 = 1.7), for red colour shape(a = 1.3, = 2.4,y = 1.4,6 = 0.3,6 = 1.5) and
for green colour shape(a = 1.5, = 2.3,y = 1.8,6 = 0.4,0 = 1.6).

In statistical analysis, moments are important and necessary. These can be used to study the most important features and
characteristics of a distribution (e.g., dispersion, kurtosis and skewness).
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Theorem 3.1: If X has the NGMLFRD, then the k" order moment about zero is given by

k o o

o T (§+ 1) D)
k

Bl = @yt

) p ;a=0,>0

_ Ok o (-1 8- 1\ [T W0 F(’%)
é i=0 ( ) !:1[/120 Al (a(1+i)%)k+p

;a>0,=20andp =4y —1)+AS

Proof: We know from the definition of the k* moment of the random variable X with probability density function f (x) is
given by

p® = J xkf (x)dx (3.2)
0
Substituting (2.1) into (3.2), we get
6-1
#(k) — f x"HS(a +,8)/xy'1)(ax + Bxy)z?—l [1 _ e—(ax+5x1’)5] e—(ax+BxV)5 dx
0

-1 X .
Using, [1 - e'(““ﬁ"y)&] = Z‘;‘;O(—l)‘(Gzl)e“(“"””‘y)g, we obtains

[oe]

M(k) — HZ(_l)i (9 - 1)( k )f xk—le—(1+i)(ax+[3’xy)6 dx
— i 1+
i=

0

i) Fora=0,3>0

QF(:—S-F 1) had (_1)1'(9;1)
B & e

o o 5
p = 62(‘1)i (9 - 1)( k )f Pe-1g-rDadxd (1br=1)”
i=0

u® =

ii) Fora>0,=0

i 141
0
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w0 =0 () (s

and by the definition of Taylor expansion

© [ o W ]
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(k) — _ 1\ k-1,-(1+i)(ax) A](y—1)+16
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That completes the proof.

Theorem 3.2: The moment generating function of NMGLFRD is given by

THF +1 6-1
0) MX(t)—Zzt (1)() a=0,>0

N e
T —1)¢ — 5
o mo-SEEEEC Y 5 e M

;a>0,=20andp =4j(y —1) + A8
Proof: We know from the definition of the My (t) of the random variable X with probability density function f (x) given by

oo

My (t) =Jet"f (x)dx =jz( 2 f(x,a,B,y, 8, 0)dx

z Jrf(xaﬁ%(?Q)dx = Z:‘_T!H(k)
=0

and by using theorem 3.1 proof is completed.

3.1 Quartiles, Skewness and Kurtosis

The " quartile of the NMGLFRD (2.1) is given by
Xq

6-1
q= f 05 (a + Byxr 1) (ax + fx?)° 1 [1 = e~ @HB T o=@t gy

0 o
q= <1 - e—(axq+Bx};) )

If y =1 then
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1

[ln 1 — qe)_lr

X,
a= a+p

(3.1.1)
If y = 2 then

—193
a+ a2+4ﬂ[ln 1—q9) ]
Xy =— 2 (3.1.2)
Substituting g = % in (3.1.1) and (3.1.2), we get the distribution median fory = 1and y = 2.
The Bowley’s skewness [7] is based on quartiles

SKZ

Go.7s — 2405 + Go2s

qo.75 — qo.25

And the Moor’s kurtosis [9] is based on octiles

K, _ Qo125 — q0375 — o625 T Qo.s7s

qo.75 — qo.25

3.2 Distribution of order statistics

LetX;,i =1,2,...,n be a random sample from the probability density function (2.1). Let¥; <Y, < --- <Y,, be the order
statistics obtained from the sample, then probability density function of Y; is given by

|

9:0) = 7= &n Y
|

= n—f(y' a, B' Y, 6' 9) Z (n l_ t) (—1)1[1:(}’. a, ,8' Y, 6' 9)]l+t_1

f,a,B,v.8,0)[F(y,apBv.60)] ' [1-F(apy660)] "

t-D!n -1
i ;m(n ! t>( Ulf(y'a ﬁtif Ocen)
= nz_f ki, O f (3, @, 8,7, 8, 0c4p)
where, k;(n,t) = )t(+ l)(n 1)

Lemma 3.2.1: If X;,i=1,2,..,n is a random sample from NMGLFRD («a,B,y,6,0). ThenY, follows
NMGLFRD (a,B,y,8,n0).

Lemma 3.2.2: Let ; denote the it" order statistics, then the k" moment of ¥; (1) is given as follows

) a=0,8>0

_ " t o (-1 9(l+t) 1)
u s k/y I=0 Zo: 1+ l)V
ii) a>0,=20
n-t o i _ © ® W(A)(O) r (ke
u® = gzz ky(n, )0 41 ((1 i)) (9 i 1) nz ( (_sl) k+p
1=0 i=0 =1 =0 (a(l + 1)5)

ip=4F -1+
4 Reliability function
Let variable T be the lifetime or time to failure of a component having probability density function (2.1) and distribution

function (3.1). The probability that the component survives beyond sometime t is called the reliability R(t, a, 8,y, 6, 0) of
the component. Thus,
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R(t,a,B,v,6,0) =P(T >t)
=1-F(a/pB,y6,0), t>0
0
=1-[1—e @’ £>0,02020y20,6>06>0

From this expression it is clear for higher values of 6, reliability decreases and also for constant &,y and @, reliability
increases when increase in the values of a and f8 take place at a particular period of time.

Lemma 4.1: If in a parallel system the k components have NMGLFRD with reliability function R(t, a, 8,7, 6, 8), then the
reliability of the whole system isR(¢t, a, 8,7, 8, kO).

The hazard rate function or failure rate of NMGLFRD is given by

ft,a,pB,y.6,6)
h(t,a,B,v,6,8) = R a,5,7.5,0)

06 (a + yt? 1) (at + 1) [1 - e—(at+ﬁty>5]9_1 o—(at+pr)?

1-[1- e—(m:+ﬁty)5]9
In fig. 7 the hazard function of NMGLFRD can be non-decreasing, non-increasing or bathtub shaped for particular values of
the parameters involved in the hazard rate function, for example, fora = 1.5, = 0.6,y = 0.6,6 = 0.5, 68 = 1.5, the hazard
rate function is non-increasing (red curve), for « = 0.5, = 0.6,y = 1.2,8 = 1.1,6 = 1.2, the hazard rate function is non-
decreasing (green curve) and fora = 0.8, = 0.1,y = 3.2,6 = 0.7,6 = 1.3, the hazard rate function is bathtub shaped (blue
curve).

Ife=1andd =1
h(t,a,B,y) = a+ pyt' !
In fig. 8, the graph of hazard rate function is a straight line (blue) parallel to time axis for y = 1 i.e. constant. Fory = 2, the

graph of hazard rate function is a straight line (red) with constant slope 23 i.e. increasing. For y > 2, the graph of hazard rate
function is a increasing curve (green) with positive slope.

|
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T T1.58
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|
o6 - +1,16
|
%"'I':’“ P %»e 9
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T 8,11
a,3l B, 72 1,13 i,%4 1,05 2,56 2,77 3,18 3,59 @11 .32 a.353 a.74 8.93 1.16 1.37 1.58 1.79
t .y 1 + " r t 1 t + } } } } 4 t ; ; }
Fig. 7: Shapes of hazard function of NMGLFRD Fig. 8: Shapes of hazard functionfor6 = 1and § =1
The reversed hazard rate function of NMGLFRD is given by
ft apB,y,6,0)
tl TPy Y 6: 9 = ST 5 e N
rta by 8.0) = G5 5.0)

_08(a + Byt ) (at + pt)S e~ (@B’
- 1 — e-(at+ptr)®

_ _ftapBy,81)
= rtapyen Eebrol)

4.1 Stress —Strength Reliability

The term “stress- strength reliability” refers to the quantity P(X > Y), where a system with random strength X is subjected
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to a random stress Y such that a system fails, if the stress exceeds the strength. Suppose X and Y are two independent random
variables both having the pdf (2.1) with parameters («, 8,v,8,6;) and (a, 8,v, 8, 8;) respectively and let Y represents the
‘stress’ which is applied to a certain appliance and X represents the ‘strength’ to sustain the stress, then the stress-strength
reliability is denoted by

[ee]

R=P(Y<X)= f P(Y < X/Y = yfy(y)dy

0

= f(l _FX(y!alﬁfy!5191))fY(y!a!ﬁ!y'6!92)dy
0

[oe]

01+6,-1
=1- f 828(cc+ By ™) ey + By") 7 [1 — e W oy
0
0,
0, +6,
8,096 __-—-"'________ B.uE
] T - L. vz
- i
+o.68s -n:',m
! |

W g
e T,
b7 [ o Y
pd-—o?é?s Fc:-—n_sis \

-—gl-.zre e ;

-r.:.ua . L6 - -

' ' Stréﬂgl:‘tl= - ' ' TStress ' ; '

Fig. 9: Variation in R for constant Stress

Fig. 10: Variation in R for constant Strength

Fig. 9 shows with increase in strength parameter (6,) and keeping stress constant the reliability of system increases, for
example, for 6; = 0.5,0.7 and 0.9 the increase in reliability is shown by green, red and blue curves respectively. Also, fig.
10 shows with increase in stress parameter (0, ) the reliability of the system decreases, for example, for 6, = 0.5,0.7 and 0.9
the decrease in reliability is shown by green, red and blue curves respectively.

5 Estimation

Let x = x4, x5, ..., X, be a random sample of the NMGLFRD with unknown parameter vector ¢ = (a, 8,7, 6,6)". The log

likelihood for [ = I(¢; x) for ¢ is
“ S5
> 1og (1 - el

i=1

n
l = nlogh + nlogs + Z log(a + Byx!™") + (6 — 1)

i=1

z log(ax; + px]) + (6 — 1)

- Z(axi + ,Bxiy)a

i=1
al al ar a1 ol

T
The score function U(p) = (£ T Rr AT ,5) has components

n

Z(a + ,Byxl?’—l)-l + (65— 1)2(0%:(_—1'3%) +68(6-1)

n

8 5—
e o 1)
S (1-erternd))

ol

da

i=

n
- Sin(axl- + ,8xiy)6_1
i1
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Te ~(ax; +ﬁx) (ax; +,8xy)
0 Z(ax + 6raT) )an Ly o ”Z (1= s
- 62 x) (ax; +,8xy)5 !
x] (1 +ylogxl logx; x] logx;e ~(ax+pa])’ (ax; +,Bxy)5 !
+ 6600 -1
z (axl + Bx y) )Z( x; + fx 7) B( )Z (1_6_(axi+ﬁx3/) )

- [?62 Vlogx; (ax; + ,Bxy)5 !
i=1

~(axep])” (ax; + ﬁ’xy) log(ax; + px])
<1 _ e—(axﬁﬁx}’) )

n n
— = log(ax; + Bx/) + (@ - 1)
RS %

n

- Z(axi + ﬁx}’)alog(axi + Bxl)

i=1

al
" _ p—(axi+Bx] " )
69 + Z log (1 e

The maximum |Ike|lh00d estlmate (MLE) @ of ¢ can be obtained by solving non-linear equations U(®) = 0. These equations
cannot be solved analytically but statistical software can be used to solve them numerically, for example, through the R-
language or any iterative methods such as the BFGS (Broyden-Fletcher-Goldfarb-Shanno), NR (Newton-Raphson), NM
(Nelder-Mead), BHHH (Berndt-Hall-Hall-Hausman), L-BFGS-B (Limited-Memory Quasi-Newton code for Bound-
Constrained Optimization) and SANN (Simulated-Annealing).

The observed 5 x 5 information matrix for the interval estimation and hypothesis testing for parameters in ¢ is given by
Ka,a Ka,[f Ka,y Ka,S Ka,@
Kep Kpy Kps Kpeo
K=K(p)=- Kyy Kys Kye
Kss Ksp
Ko

K (¢) is observed and not the expected information matrix because the expressions turn out to be very complicated for writing
the elements of the expected information matrix. The expressions for the elements of K are given in appendix. Under certain
regularity conditions (fulfilled for parameters in the interior of the parameter space but not on the boundary),

V(@ — )~Ns(0,1(9)™")

I(¢) is the expected information matrix used for construction of tests of hypotheses and appropriate confidence regions for
the parameters and can be replaced by the observed information matrix K (¢). The asymptotic normality is useful for testing
goodness of fit of GIGW distribution versus some of its sub models.

6 Application

In this section we compare the results of fitting the New Modified Generalized Linear Failure Rate Distribution
(NMGLFRD), Exponential Weibull distribution (EWD), Generalized Rayleigh distribution (GRD), Modified Weibull
distribution (MWD), Weibull distribution (WD), Generalized Exponential distribution (GED), Exponential distribution (ED),
Modified Generalized Linear failure rate distribution (MGLFRD), Generalized Linear failure rate distribution (GLFRD), and
Linear failure rate distribution (LFRD) to the data set studied by Meeker and Escobar [13], which gives the times of failure
and running times for a sample of devices from a eld-tracking study of a larger system. At a certain point in time, 30 units
were installed in normal service conditions. Two causes of failure were observed for each unit that failed: the failure caused
by normal product wear and failure caused by an accumulation of randomly occurring damage from power-line voltage
spikes during electric storms. The times are:

2.75,0.13,1.47,0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47,
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0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.

In order to compare the distribution models, we consider criteria like —2log(L), AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion) and CAIC (Corrected Akaike Information Criterion) for the data set. The better
distribution corresponds to smaller —21, AIC and CAIC values:

2k(k+ 1)
n—k-—1

Where, n the sample size, k is the number of parameters in the statistical model, and [ is the maximized value of the log-
likelihood function under the considered model.

Table 1: The ML estimates, standard error, AIC, BIC and CAIC of the models based on data set

AIC = 2k — 2log(L), BIC = k(logn) — 2log(L) and CAIC = AIC +

Model —2log(L) Estimates St. Error AIC BIC CAIC
NMGLFRD @ =0.101539 0.0111931
£ = 0.019350 0.0714287
69.34327 7 = 3.138587 3.3239828 79.34327 86.34926 81.84327
8§ =5.431130 0.0098645
EWD £ = 0.003129 0.0022435
80.07011 7 = 4.992084 0.6304445 86.07011 90.2737 86.99319
6 = 0.184281 0.0406443
GRD 87.56398 £ = 0.139866 0.0413616 91.56398 94.36637 92.00842
6 = 0.485812 0.1027996
MWD a =0.246418 0.0735728
77.09773 £ = 0.007050 0.0039493 83.91758 87.30132 84.84066
7 = 4.474707 0.5997677
WD 92.31747 £ = 0.449800 0.1156533 96.31747 99.11986 96.76191
7 = 1.265047 0.2044284
GED 93.91389 a =0.616110 0.1369297 97.91389 100.7163 98.35833
0 = 1.154287 0.2733672
ED 94.27007 a = 0.564864 0.1031293 96.27007 97.67127 96.41293
MGLFRD a = 0.726295 0.1714571
91.12194 f = 2581178 1.5422796 99.12194 104.7267 100.7219
7 = 0.064292 0.0522157
0 =27.92919 43.760853
GLFRD a = 0.130047 0.1542428
86.86245 B =0.131477 0.0452863 92.86245 97.06604 93.78553
6 =0.721135 0.2398295
LFRD 87.94711 @ = 0.274949 0.1205749 91.94711 94.7495 92.39155
£ =0.116322 0.0488434

0.5 0.6 0.7 0.8

Density
04

03

—_
=i

o 0.5 1 1.5 2 2.5 3
Data Set

Fig. 11: The estimated NMGLFRD density superimposed on the histogram for the data set.

Table 1 shows parameter MLEs to each one of the two fitted distributions for data set, values of —2log (L), AIC, BIC and
AICC. The values in Table 1 indicate that the New Modified Generalized Linear Failure Rate Distribution model performs
signicantly better than its sub-models used here for fitting data set. Also, it can be easily seen in figure 9 that fitted density
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for the New Modified Generalized Linear Failure Rate model is closer to the empirical histogram.

7 Conclusion

A new model so called the New Modified Generalized Linear Failure Rate Distribution (NMGLFRD) has been introduced.
It is shown that various existing distribution can be obtained from this new distribution. We have derived some mathematical
properties and plots of pdf, cdf and hazard functions are presented to show the versatility of new distribution. It is observed
that NMGLFRD can have non-increasing, non-decreasing and bathtub shaped hazard function which are quite desirable for
data analysis purposes. The model parameters are estimated by maximum likelihood. We prove that the proposed model can
be superior to some models generated from other know families in terms of model fitting by means of an application to a real
data set.
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