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Abstract: In this paper, we introduce a new class of Hermite poly-Gehopolynomials and we give some identities of those

polynomials related to the Stirling numbers of the secomaikiThe concepts of poly-Bernoulli numbeBék)(@ b), poly-Bernoulli

polynomiaIsB,q()

generalized to the on@Gﬁk>

(x,a,b) of Jolany et al, Hermite-Bernoulli polynomialsBn(x,y) of Dattoli et al andy B,<1”>(x7y) of Pathan et al are

(x,y). Some implicit summation formulae and general symmetrptities are derived by using different

analytical means and applying generating functions. Theselts extend some known summations and identities of enoly-

Genocchi numbers and polynomials.
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1 Introduction

The 2-variable Kampe de Feriet generalization of the

Hermite polynomials13] and [15] reads

[%] yrxn—2r

Hn(X,y) = n! ZO fi(n—2r] (1.1)

These polynomials are usually defined by the generatin

function

W _ < v
eXt n;Hn(Xay) n! (12)
and reduce to the ordinary Hermite polynomi&ls(x)
(see [l]) wheny = —1 andx s replaced by 2
The classical Bernoulli polynomialB,(x), the classical
Euler polynomialsEy(x) and the classical Genocchi
polynomials Gp(x), together with their familiar

generalizations3{"’ (x), E\"(x) and G (x) of (real or
complex) ordera are usually defined by means of the
following generating functions (see for detail®],[36],
pp.532-533 and 3§, p.61; see also 41] and the

2 Ve_ggot t 19 -1
a1 —n;nﬁ (Jt|<ml® =1)
(1.4)
and
2 “ _ - (U)tn a_
(e‘—+1) ext_n;)c;n = (Jt|<m1¥=1)
(1.5)

So that obviously the classical Bernoulli polynomials

gBn(x), the classical Euler polynomialg,(x) and the

classical Genocchi polynomialsGn(x) are given
respectively by

Bn(x) = BR” (x). En(x) = EA (X
and L

Gn(x) = G (x) (neN) (1.6)

For the classical Bernoulli numbeB, the classical
Euler number&, and the classical Genocchi numb&;s

B1(0) = Bn(0) = Bn,EN(0) = En(0) = Ey

references cited therein): and
a o n GL(0) = Gy(0) = Gy, (1.7)
(L) ey peOL (Jt|<2m1® =1) . "
g—-1 & nt respectively.
(1.3
* Corresponding author e-maitaseem0&han@rediffmail.com
(@© 2016 NSP

Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jant/040102

8 N S 2 Waseem A. Khan: A new class of Hermite...

H —t 0 n
The history of Genocchi numbers can be traced backw&t = z B (x,a,b, c)t—l, [t] < _en
to Italian mathematician Angelo Genocchi (1817-1889). P —@ = n: [Ina-+Inb|
From Genocchi to the present time, Genocchi numbers (111
have been extensively studied in many different context inOne can easily see that

such branches of Mathematics as, for instance,

(k) _RpK pK) W\ _
elementary number theory, complex analytic number Bn"(0,1,€) =Bn",Bn" (x) = 1+x
theory, Homotopy theory (stable Homotopy groups of 53ng
spheres), differential topology (differential structsiren B (x) = B (&1, &) (1.12)

spheres), theory of modular forms (Eisenstein series),
p-adic analytic number theory (p-adic L-functions), WhereBrQ are generalized poly-Bernoulli numbers. For
guantum physics (quantum Groups). The works ofmore information about poly-Bernoulli numbers and
Genocchi numbers and their combinatorial relations havepoly-Bernoulli polynomials, we refer tdlg] to [23].
received much attentior8[4,5,6,7,8,9,10,11,12,14,16, Very recently, Pathan et aB()] to [35] introduced the
17,29,39,4Q]. generalized Hermite-Bernoulli polynomials of two
_ . variables;BiY (x,y) is defined by
In [25], Kaneko introduced and studied poly-Bernoulli u
numbers which generalize the classical Bernoullinumbers. ( t ) St iHB(O{)( Y)g (113)
e !

poly-Bernoulli numbersqu() with kez andneN, appear in ¢-1 "

the following power series _ : — .
gp which is essentially a generalization of Bernoullinumbers

le(l ot . Bernoulli polynomials, Hermite polynomials and Hermite-
— = z (1.8) Bernoulli polynomialsy By (X,y) introduced by Dattoli et
n=0 al [15, p.386(1.6)] in the form
wherekez and 2 2 t"
M i
(7m5)e " - S omieyy (19
L=V = 1
'k mzl mk’ 2 < The Stirling number of the first kind is given by
n
sofork<1, (9n=x(x=1:(x=n+1)= 3 SODY, (1= 0)
|=
Lik=—In(1-2), Lig(2) = ——, Li 1= ——— .. (1.15)
1-2 (1-2 and the Stirling number of the second kind is defined

Moreover wherk > 1, the left hand side of (1.8) can by generating function to be

be written in the form @ 17— o S )t' 118)
—1)"=n! ,n)— .
1 1 to1 ottt < Lkth IZn I
°a 1/ d 1/ e 1/ g padtdt= %B” nt
TheEs 0F Tl ET n= ' In this paper, we first give definitions of the Hermite
In the special case, one can see poly-Genocchi ponnomiaIﬁ.Gﬁk> (x,y) and we give some
formulae of those polynomials related to the Stirling
Bg]l) — B, numbers of the second kind. Some implicit summation

formulae and general symmetry identities are derived by

Recently, Jolany et aP[l, 22] generalized the concept of Using different analytical means and applying generating

poly-Bernoulli polynomials is defined as follows. functions. These results extend some known summations
Let ab,c > 0 and a 7g b. The generalized and identites of generalized Hermite-Bernoulli

poly-Bernoulli  numbers Bk (a b) the generalized polynomials studied by Dattoli et al, Zhang et al, Yang,

. ) Khan, Pathan and Khan.
poly-Bernoulli  polynomials By’ (x,a,b) and the

polynomialsBﬁk) (x,a,b,c) are appeared in the following
series respectively ) )
2 A new class of Hermite poly-Genocchi

: . —t o .
M _ Zo M (a, b) < o2 polynomials
bt —a & [Ina+Inb| _ _ . _
(1.9) Now, we define the Hermite poly-Genocchi polynomials

Lix(1— (ab)~* ® Kk tn 21 as follows

%eﬂz B()(xab) < e .

bt—a & |Ina+Inbj 2Lik(1—-e- )e"tﬂ"z 6 (x )t_ ke (21)
(1.10) d+1 nZOH n Y '
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Natural Sciences Publishing Cor.



J. Ana. Num. Theo#, No. 1, 7-14 (2016) www.naturalspublishing.com/Journals.asp

so that
n
Hng) (X7 y) = Z (Pn> GE‘Ik—)mHm(Xv y) (22)
m=0

when x =y = 0, Gl = G(0,0) are called the

poly-Genocchi numbers. By (2.1), we easily %'f) =
Fork =1, from (2.1), we have

2lig(1—et)
g1

Thus by (2.1) and (2.3), we get

GY(xy) = HGn(xY), (n > 0).

For y = 0 in (2.1), the result reduces to the
poly-Genocchi polynomials Kim et al [28.,p.Eq.(4)4776]
is defined as

n

e = S Gy (23)

2Li(1—et t
Theorem 2.1.Forn > 0, we have
n
@y v ny) _Bm
aG0y) = 5 (1) mgrGrnley) (29

Proof. Applying Definition (2.1), we have

i g )(X y) t" 2Lik(1 et

yt?
éd+1 e
/e21/e11'e11/e11 z:edz

é+1
In particulark = 2, we have
@ 2 B ) _2t 2
MG (xY) = +yt/ -1 ( m+1>é+1 N
- (z ;Eq) (szenu o )

Replacing n by n-m in above equation, we have

Zo <n) g O )

On equating the coefficients of the like powers of t in the
above equation, we get the result (2.5).

Remark 1. Fory =0 in Theorem (2.1), the result reduces
to known result of Kim et al [28.,p. 4777, Theorem (2.1)].
Corollary 1. Forn > 0, we have

n

n
) vy — n 2
G0= 5 (1) mgCrn0 (@9
Theorem 2.2.Forn > 1, the degree qﬁGEP (x,y) is n-1.
we have
HGn n-1 (k)

ﬂ -3 1(xy) (27)

m+1

-1\ G
() S

Proof. By Definition (2.1) of Hermite poly-Genocchi

polynomials, we have

2Lik(1—e™)
l-et

tn

e AW At
nZOH Gn (Xay) n!

(Zm) (3w

Replacing n by n-m in above equation and comparing
the coefficients of", we get

>

m=0

gt

HGR (x,y) = (”m> Gh Ha-m(xY),(120) (28)

From (2.8), we have
n-1

“2 ()

Therefore by (2.9), we obtain the result (2.7).
Remark 2. Fory =0 in Theorem (2.2), the result reduces
to known result of Kim et al [28.,p. 4778, Theorem (2.2)].

a¥,,
m+1 n-m-1

(k)
WG BY) 1y, (> 1)

(2.9)

Corollary 2. Forn > 1, the degree o6\ (x) is n-1. we
have

(k)
m+1xnfm71

S {ERE

G(k)(

o (2.10)

Theorem 2.3.Forn > 0, we have

n p+l (_

(xy)= p; I;

Proof. From equation (2.1), we have

1HPHNIS(p+1,1)
IkK(p+1)

e

(g) HGn-p(X.y)

(2.11)

® " /Lig(1—et) 2
& oo = (H5) ()
N (2.12)

ow
—le(l—e’t):% - (1]§7t)| :% - (_llg-)l (1_34)'
1= 1=
0 | 00
= fllil( A Z(—l)Pszm,I)%
= p= :
_1_ o p (_1)I+p t_
_tpzllzl Ik lSZ(pjl)p!
B [l p+l( 1)|+p+1 Sz(p+1,|) tp
= pzo<|zl < I o1 ) H (2.13)

From equations (2.12) and (2.13), we get

® [ tn
nZDH ) a (n;HGn(X-,Y)ﬁ>

K LS
G (xy) o

P

(*’f (-1)'*P ) S(pt L)

e [ p+1

(@© 2016 NSP
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Replacing n by n-p in the r.h.s of above equation andRemark 5. Fory =0 in Theorem (2.5), the result reduces
comparing the coefficients of, we get the result (2.11).  to known result of Kim et al [28.,p. 4780].

Remark 3. Fory =0 in Theorem (2.3), the result reduces

to known result of Kim et al [28.,p. 4779, Theorem (2.3)]. Corollary 5. FordeN with d = 1(mod2), we have

Corollary 3. Forn> 0, we have

D'*PHNS(p+1,1) /n
M(p+ 1) (p)G"“’(X)

n p+1 (_

p=0I1=1
(2.14)
Theorem 2.4.Forn> 1, we have

G (X+ 1Y) +1G (xy) = ii —
Proof. Using the Definition (2.1), we have

(3 P C L a®iy b

nZOHGn (X+1,Y)ﬁ+nZOHGn (Xay)ﬁ

2li(1—e)
é+1

e et
00 1\l 2
=3 <2§( }2+p|gsz(p,|>> e

(B (500 ) (e

_ 2li(d-et) QI

+yt2
é+1 ¢

(~27%Gn p(255)

(2.18)

)I+p+1||sz<p+1 |>

f=3 5oy s

3 Implicit summation formulae involving
Hermite poly-Genocchi polynomials

For the derivation of implicit formulae involving
poly-Genocchi  polynomials GEP(X) and Hermite

poly-Genocchi  polynomials HGr&k) (x,y) the same
considerations as developed for the ordinary Hermite and
related polynomials in Khan et al 24] and
Hermite-Bernoulli polynomials in Pathan and Khan [30 to
36] holds as well. First we prove the following results
involving  Hermite  poly-Genocchi  polynomials

Hng) (Xay)'

Theorem 3.1. For x,yeR and n > 0, The following
implicit summation formulae for Hermite poly-Genocchi
polynomialsy Gﬁk) (x,y) holds true:

I.p
w65z = 5 (1) (P) @9 el

mn=0

Replacing n by n-p in the above equation and . (3.1
comparing the coefficients of, we get the result (2.15).  Proof. We replace t byt +u and rewrite the generating
Remark 4. Fory =0 in Theorem (2.4), the result reduces function (2.1) as
to known result of Kim et al [28.,p. 4780, Theorem (2.4)].

2Lik(1— (0" yerwz _ gxtrn) © M (LU
Corollary 4. Forn> 1, we have dtup1 e =€ Z_ HG'+P(X’ y)ﬁ P
I,p=0
® n p (_ I+p (3-2)
GY (x+1)+ Gy z 2 S (p,1) < p> xP Replacing x by z in the above equation and equating

(216 the resulting equation to the above equation, we get

Theorem 2.5.FordeN with d = 1(mod2), we have

Fup t' uP
p+1d 1 I+p+1||sz< +1|) a+x e(z X t+u Z G|+p __| - z H || p|
0 (xy) = Zo( )dnplgbgb—” (-G p( ) (33)
_ _ (217 On expanding exponential function (3.3) gives
Proof. From equation (2.1), we can be written as
, 2 (=Xt d tu
hd tn 2L|k(1— e*t) 2 ’; T Z G'+P Xy>|| I z HG |+P Zy>|| I (34)
G x y)— — gt = p! p!
2 HOn XY €11

which on using formula 7], p.52(2)]

x4yt § z fn+m)—r:£| (3.5)

2Li(1- glarxt? @
:( Ikt e )(ebt+120 +t+yt> ’\Zof(N) 2 3

_ 0 P+1<71)I+p+1| Sz(p+l,|)> i) ( 0 dm—1d71 TR atx E)
(A(é A E VAPl in the left hand side becomes

Replacing n by n-p in above equation and comparing the = ,_gminmp = tup
coefficient oft", we get the result (2.17). m,éoimm! |.pz: MG (% y) Z WG @Y o oo 39

(@© 2016 NSP
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Now replacing | by I-m, p by p-n and using the lemma
[[37], p.-100(1)] in the left hand side of (3.6), we get

S o Z=XN™" Lk t
ng:oLpZ:o min! HGl+p7m7n(X’y)(|—m)! (p—n)!
= t' uP
=3 Hewgzyh,m (3.7

l,p=0

Finally on equating the coefficients of the like powers of t
and u in the above equation, we get the required result.

Remark 1. By taking | 0 in equation (3.1), we
immediately deduce the following result.
Corollary 3.1. The following implicit summation formula

for Hermite poly-Genocchi polynomiaI$G§1k)(z, y) holds
p

true:
(k) _
HG (27 y) - (
=2,

Remark 2. On replacing z by z+x and setting= 0 in
Theorem (3.1), we get the following result involving poly-
Genocchi polynomials of one variable

(m)

p
n

) (2-X)"™GW(xY)  (38)

l,p

2

mn=0

(0 p
G n

0 (24%) = ) @76, 04

(3.9)

whereas by setting z=0 in Theorem 3.1, we get

another result involving poly-Genocchi polynomials of
one and two variables
K I
atm =5 (m)( (xy)
m,n=0
(3.10)

Remark 3. Along with the above results we WI|| epr0|t

I,p P

) (0™

extended forms of poly-Genocchi polynomlﬁg< 2) by
setting y=0 in the Theorem (3.1) to get
0 < (1) (p e me(
Gip@d= 3 (m) (n>(z X)"MMG, (%)
mn=0
(3.11)
Theorem 3.2.Forx,yeRandn > 0. Then
n n .
aipcruy) = 3 (§)uhel ey @14
J:
Proof. Since
XDHGM(Hu y) v 7le(;+< ehxrutin? _ (zb GF(xy) - )(Zo tjl|>
n= =

Now replacing n by n-j and comparing the coefficients
of t", we get the result (3.14).

Theorem 3.3.Forx,yeRandn > 0. Then

>

m=0

a0t uyew = 5 (1 HGnxyHn(uw)

(3.15)

Proof. By the definition of poly-Genocchi polynomials
and the definition (1.2), we have

(xHUtHY(tHw)2 _ t
exu y(t+w (ZDG (xy) ><2HmUW)m

Now replacing n by n-m and comparing the
coefficients ot", we get the result (3.15).

Lik(1—(e)"*
é+1

Theorem 3.4. Forx,yeRandn > 0. Then

n-2j [3]
(xy) = y'x

m=0 |=

n!
m!jl(n—2j—m)!

(3.16)
Proof.  Applying the definition (2.1) to the term

Lik(l*(?ft) and expanding the exponential functiefi-**’

att = 0 yields
e (55) (19 (1)
m/\& n/\& i

é+1
00 n n ) (k) 5 ) tn 00
= Gm/x™ M| —
nZO (rrgo < m) n!

y
2
Replacing n by n-2j, we have

e K
LG
2,
s ”2’ (n 21) V) .
L Z) (n=2j)1j!

(3.17)
Equating their coefficients of", we get the result
(3.16).

n—m-—2j

Gl

m

HGH

tn
(Xa y)ﬁ

Theorem 3.5. Forx,yeRandn > 0. Then

[3] n-2j
HGY (x+1,y) = zo <” 21) 6 (x) (3.18)
Proof. By the definition of Hermite poly-Genocchi

polynomials, we have

Lik(1- (87 iy _ = oK t"
—— e = > HGn (x+1y)— (3.19)
¢+1 & !
S tm © tn @ 12
(£23) (53) (5%
© N n tn © 2] © o n n . 2]
=32, (m) ey (Z ?) =353 (m) vy

(@© 2016 NSP
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Replacing n by n-2j, we have generating function(2.1) and (2.4). The results extend
some known identities of Zhang and Yang3], Yang
[42,Egs.(9)], Khan 26,27] and Pathan and Pathan et al

HZDHGMHy Zo(Za (”Zj)y"GW(x));—! G20 [(30to [39]).

Combining (3.19) and (3.20) and equating their Theorem 4.1.Leta,b> 0 anda # b. Forx,yeRandn > 0.

coefficients ot" leads to formula (3.18). Then the following identity holds true:
o . n
.Theor.em 3.6. The following |mpI!0|t summguon(:)ormula 5 (n ) B, G (b b2y) G (ax, a?y)
involving Hermite poly-Genocchi polynomialgGn” (X,Y) Lo\ m
holds true:

n n) -~ (K) 2 (K 2
n = a"™" My G m(ax,a%y)n Gm’ (bx, by)
G (x+1y) = § (nm>HGf1k)m(x,y) (3.29) n;o<m o '

Proof. By the definition of Hermite poly-Genocchi Proof. Start with
polynomials, we have ) = ( (2Lig(1—e )2 ) ot a2 42)
S a1y - 5 el = 2 ety &+ D+

Then the expression for g(t) is symmetric in a and b and
® ® tn o tm ® ® tn we can expand g(t) into series in two ways to obtain
(x.y) > >

ZHGn

n=0

12 AW 2 @) S (bt)™
. " gt) = ab nZOHGn (bx, b%y) nl mZO HGm’ (ax, aY) ml
ol

= 2 2R i 3 G )

Finally, equating the coefficients of the like powers of:i c <« (N n-mpm . K hx b2y GH 2\\tn
t", we get (3.21). ab Zo a HGn m(bX, b%Y)H G’ (ax, a%y)

Theorem 3.7. The following implicit summation formula On the similar lines we can show that
involving Hermite pon-GenocchipolynomialﬁGﬁk)(x,y) 1 @ bt)n m
(K) (e 20 (BE) (K) (e 20 (L)
. )= — A
holds true: g(t) aanOHGn (ax.a%y)-—; rT;)HGm (bx. by) =
HGR (—x,y) = (1" Gh (x.Y) (322

1< myn-m_ (K 201, G0 (bx B2
Proof. We replace t by -t in (2.1) and then subtract the — ab ZO Z < )a b™h Gn—m(@x. ay)n Gm’ (bx, by)t
result from (2.1) itself finding . ) )
Comparing the coefficients oF on the right hand sides of
a[2Lid-e) w x| e the last two equations we arrive the desired result.
o [T e -] = 5 - arhe o

Remark 1. By settingb = 1 in Theorem 4.1, we

which is equivalent to immediately following result
S LGy = WGM (—xy) = § 1 (—1) G (xy) & n
Bttt - Fuctican’s - 3o () e oy
m=0

3 o

5 WG ) WO (W) = 3 (1 (-1l ()

- z ( )G n(axanexy) @3
Theorem 4.2.Leta,b> 0 anda# b. Forx,yeRandn > 0.
Then the following identity holds true:

4 General symmetry identities for Hermite nopyadthl b 2\ g
poly-Genocchi polynomials ( ) Z) ZOHGn m<b><+ i+],b%z )Gm (ay)b™d

and thus by equating coefficients of like powerghfwe
get (3.22).

m=0

In this section, we give general symmetry identities for n b-la-1 < I
the poly-Genocchi polynomlaI@ ( ) and the Hermite ( ) Z) ZOHG” m<ax+7'+] & Z) m (by)a’b
poly-Genocchi polynom|aI$1Gn (x,y) by applying the (4.4)

(@© 2016 NSP
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