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1 Introduction integersN then the natural density &f is defined by,

The idea ofi-convergence in real numbers was introduced O(K) = limn_e ‘K—n”‘ where

by Kostyrko,Salat and Wilezyhskiq in 2000 anditisan ' ry < n: ke K} and|Ky| is the number of elements
interesting generalization of statistical convergendee T of K

notion of statistical convergence was introduced in 1951°
by Fast p] and Schoenberdlf] independently and it was L )
discussed and developed by several authors @0  Definition 2.2. ([S]) A sequence{x,} of real numbers is
15. Many authors 4,8,13,16,17,18,19,20] developed said to be statistically convergentto some nunmfaef for
the concept of -convergence based on the notion of ideal 2"Y€ > 0,

| of subsets of the sé¥ of natural numbers in different S({keN:|x—&|>¢€})=0.

spaces. , o )
Recently the concept of statistical convergence has beelf {Xn} is statistically convergent t¢, then we write
studied in a linearly ordered additive system associatedt— liMnXn = ¢.

with the order convergence with respect to a particular . ,
metric in [3]. We now mention the idea of order convergence and a

The order convergence is one of the main concept used iRarticular metricy in a linearly ordered additive systeim
this paper and it was described and developed by manyﬁtrpduced in the papel[l] and also recall definition of
authors including1,2,7,12]. an ideal.
The main purpose of this paper is to examine whether the
concept of I-convergence is extendable in a linearly Definition 2.3.LetL be a set of the elementsy,z, ... and
ordered metric additive system mentioned 8 énd we < is a binary relation defined for all pairgy) for
introduce the concept @édl-convergence and study some X,y € L.
basic properties of this convergence. We say that is partially ordered set with respect4q if
forall x,y,ze L
(i) x<xforall xe L,
2 Definitions and notations (i) x<yandy < ximpliesx=y and
(i) x <yandy < zimplies thatx < z
First we recall the definition of natural density of a subsetlf x <y andx #y, we writex < y. The relationx <y is
of natural numbersN and the idea of statistical also written asy > x. Similarly, x < y is also written as
convergence. y> X
Definition 2.1.([11]) If K is a subset of the set of positive A partially ordered sett is said to be a lattice if every two
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elementsx,y € L possess a least upper bouxdy € L
and a greatest lower boumd\y € L.

L is said to be an additive system if for every two (A)

elementsqy € L there exists a least upper bouxady in
L andL is said to be a multiplicative system if for every

Result 2.9.1f D(a) is a real valued function defined on an
additive systent, then

A(a,b,c) > 0 for every a,b,c € L implies the
following equivalent statements .

(i) y(ave,bvce) <y(ab)forallabel

two elements,y € L there exists a greatest lower bound (ii) y(avc,bvc) <y(ab)forallb<a

XAyinL.

An elementd in L is the null element ok if xVv 68 = x for
allxe L.

If L is a partially ordered set, we say that a sequexce
is increasing (decreasing)¥f < x; (a > a;) fori < j.

(
(iii) D(avc)+D(b) <D(a)+D(cvb)forb<a
(iv) y(ave,bvd) < y(a,b)+y(c,d)

(B) If D(a) is monotone increasing, thel(a,b,c) > 0 if
and only if one of the equivalent statemert$ — (iv)
holds.

Here we mention the concept of order statistical

Note 2.4.To denote a monotone increasing (decreasingonvergence in the metric additive systeimy).

sequencgxy} € L we use the notatior, T (X, |). The
notation X, | x means thatx, | and infx, = x. The
meaning of the notatior, 1 X is similar.

Definition 2.5.([7]) A sequencgx, } in an additive system
L is said to be order converge@<{convergent) t& < L if
there exists a sequen¢g,} of elements ot with y, | 6
such that

[Xn — &| < yn for eachn € N,

where inL, x| =x" +x~ andxt =xVv 6,x = (—x) V6.
Definition 2.6.[21] (i) Let L be an additive system ariai
be a real valued function defined &nThen a functiory
is defined orL by

y(a,b) =2D(aVb) —

D(a) — D(b).

Definition 2.10.[3] A sequence x,}n in @ metric additive
system(L, y) is said to be order statistically convergent (i.e
ost-convergent) tox € L if, there exists a sequend®n }n

in L with y,, | 8 such that

S({ke N:y(x,x) >D(¥)}) =0,

whereD is a real valued monotone increasing function on
L with D(8) =0 andA(a,b,c) > 0 for alla,b,c € L.

We now recall the concept of an ideal and filter of a
non-empty set antkconvergence of a sequence.

Definition 2.11.[9] Let X # 0. A family of setsl C 2% is
said to be an ideal iX provided! satisfies the following
conditions:

a)pel,

D(a) is said to be monotone increasing (decreasing) Wherfb) AUBElifABel

D(a) < D(b)(D(a) > D(b)) fora < b.

(i) LetL be an additive system anda, b) be real valued
function defined for every paiia,b) € L; then define

A(a7 b7 C) = %{y(av b) + y(b7 C) -
The following proposition is immediate.

y(a,c)} fora,b,ce L.

Proposition 2.7.([21]) If D(a) is a real valued function
defined on an additive systelmthen fora,b € L
(i) D(a) —D(b) = y(a,b)ifa>b
(i) If D(a) is monotone
D(a) —D(b)| < y(a.b)
y(ab)=y(b.a),
A(a,avb,b)=
D(a)is monotone increasing if and onlyyfa,b) >0
D(a) is properly monotone increasing if and only if
a,b) > 0fora#h.

increasing, then

y(a,a)=0

@
(vi)

Note 2.8. If D(a) is monotone increasing and
A(a,b,c) > 0 for everya,b,c € L, theny(a,b) is a metric
onL.

In this connection we mention the following result from
the papef21].

(c)If Acl andBC AthenBell.

Definition: 2.12. [9] Let X be a non-empty set. A
non-empty familyF C 2% is said to be a filter oiX if the
following conditions are satisfied:

(@) 9 ¢ F,

(b) ANBeFif ABeF,

(c)If Ac FandACBC XthenBe F.

An ideall is said to be non-trivial if £ @andX ¢ 1.
A non-trivial ideal | is said to be admissible iX if
{x} € for eachx € X.

Lemma 2.13.[9] | is a non-trivial ideal inX if and only if
the family of sets(I) = {M C X : X —M € |} is a filter
in X.

Itis called the filter associated with the idéal

Definition 2.14.[9] Let | be a non-trivial ideal of subsets
of N, the set of natural numbers ari¥, p) be a metric
space. A sequence= {x,} of elements oK is said to be
I-convergent toé € X if for each ¢ > 0 the set
Ale)={neN:p(xn&)>¢e}el.
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If x={x,} is I-convergent to, then ¢ is called the
I-limit of the sequencex and we denote it by
I - Iimn*)ooXn - E

Definition 2.15.[9] Let | be a non-trivial ideal of subsets
of N and (X, p) be a metric space. A sequence- {xn}
of elements ofX is said to bel*-convergent ta € X if
there exists a set M e F() with
M={m< m<m< ..} €N such that
||mn_>oop(Xm1,E) = 0

Definition: 2.16.[9] An admissible ideal of subsets of
N is said to haveAP-property if for any sequence
{A1,A2,As, ...} of mutually disjoint sets of, there exists
a sequencgB;,B;,Bs...} such that for each € N the
symmetric differencéAB; is finite andu ; Bj € I.

3 Order ideal convergence

Following the idea ofost-convergence we introduce the

concept of order ideal convergence in the metric additive

system(L,y) wherey is a metric defined inZ1] and

sense.

Example 3.5.Consider the idedls and letL = R with D
as the identity mapping. Then clear(l, y) becomes the
usual metric space.

Consider a sequendan} in R as follows:

-

1, if nis a square

0, otherwise
Let {yn} be a sequence iR such thaty, = % Then
{neN: y(X,0) > D(yn)} €1. SoOIl —limx, = 0, but

{Xn} is not convergent with respect to the metyic

Theorem 3.6.If | is a non-trivial ideal, ther®I-limit of
any sequence if exists, is unique.

Proof: Let x = {X,} be a sequence ih such thatx is
Ol-convergent tc¢ as well asv and supposé # v. Let
£ = %V(E,V)- ThenB(&,e)NB(v,&) = @ whereB(&,¢€)
is the open ball with centre §tande as the radius.
Since x is Ol-convergent to botk¥ and v, then there

1 2)y - . 1
study some general properties related to this convergenc&XISts two sequencelgi’} and {yi?'} in L with i | 6

Definition 3.1.Let | be a non-trivial ideal of subsets Bf

and (L,y) be a metric additive system. A sequence

x = {xn} of elements ofL is said to be order ideal
convergent QIl-convergent) toé € L if there exists a
sequencey = {yn} € L with y5 | 8 such that the set
A={neN:yx),&) >D(y)} €1, whereD is a real
valued monotone increasing function defined lomvith
D(6) =0andA(a,b,c) > 0foralla,b,ce L.

The numbei is called the order ideal limit@I-limit) of
the sequence= {x,} and we writeOl — limx, = ¢.
Throughout the paper we considerto be a monotone
increasing real valued function witlD(6) = 0 and
A(a,b,c) > 0foralla,b,ceL.

Note 3.2. From the definition of Ol-convergence it is

clear that an Ol-convergent sequence is I-convergent. |

particular if D be an identity map and. = R, theny
becomes the wusual metric oR. In this case

Ol-convergence is equivalent to the I-convergence of real

numbers.

Example 3.3.1f I is the family of all finite subsets dff
then I is an admissible ideal onN and the

andy§12> L@ suchthafke N: y(x, &) > D(yff))} €l and
{keN:y(x,v) > D(yl(f))} el. Nowyﬁl) 10 andy§12> 10
implies that there existgy € N such thalD(yﬁ”) < €/2
and D(yﬁz)) < €/2 for all n > ng. Then for k > n,
{keN:y(&) < Dy)} C {ke N:y(x &) < £/2}.
So fork>ng, A={ke N: y(x, &) < £/2} € F(l) since
{KeN:y(x.&) < DY)} € F(1). Similarly fork > ng,
B={keN:yX.v)<¢€g/2} € F(l). Thus fork > no,
ANB € F(I) andANB # ¢ which is a contradiction and
hence the proof.

Lemma 3.7.1f x = {X,} € L is such that lim_oXy = &
with respect to the metrig, then there exists a sequence
{an} € L with a, | 8 such thaty(x,, &) < D(an), for all
neN.

rbroof: Since limy Xy = &, then fore > 0 there exists

m e N such that/(xn, &) < € foralln>m.

Let {yn} be a sequence ih such thaty, | 8. Then for
eachy; there exists a smallest positive integgrsuch that
y(%n, &) < D(yi) foralln>m;,i=123,...

Ol-convergence coincides with the ordinary convergence.

Example 3.4.1f I = {ACN:6(A) =0} thenls is an
admissible ideal ilN and theOl-convergence coincides
with the order statistical convergence.

We give an example of a sequence which
Ol-convergent but not convergent ifl,y) in ordinary

Choose i IS L such that,
D(z1) > max{D(y1), y(X1,&), V(%2,&), ..o, Y(Xm -1, &) },
Choosez, € L such that,
V(Xmla E) > D(Zz) >
maX{D(y2)7 V(Xm1+17 E)v V(Xm1+2, E)a """ ) V(sz—la E)}'
Choosezz € L such that,

is y(Xm,, €) > D(z) >
maX{D(Y3),V(Xmg+1,f),y(xmg+2,f), """ ay(xn}?,—laf)}'
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and so on.
Now set,
a|_zl;i_1,2, ..... ,m—=1
=yni=m
=2 i=m+1m+2. ... Mmp-1
=Y i=mp

Then
y(*n, &) < D(apn), forallne N andap | 6.

Theorem 3.8.If | is a non-trivial ideal anck = {x,} € L
be such that lim,. X, = & with respect to the metrig,
thenOl —limx, = €.

Proof: Let x = {x,} € L be a sequence such that
limp,0Xn = & with respect to the metrigy. Then by
Lemma 37 there exists a sequenfan} € L with ap | 6
such thaty(xn, &) < D(an), forallne N.

Then {n € N : y(xn,§) > D(an)} = ¢ € I.
Ol —limx, = €.

So,

Theorem 3.9.1f | is a non-trivial ideal and ifx,} and
{yn} are two sequences Insuch thaOIl — limx, = £ and
Ol —limy, = v, thenOl —lim (X, Vyn) = & V V.

Proof: SinceOl —limx, = ¢ and Ol — limy, = v, then
there exists sequencés,} and {3} in L with a, | 8
andp, | 6 such that

A= {n e N yx,¢ > D)} € I
B={neN:y(ynv)=D(B)} €.

Let p € AN B Clearly y(xp,é) < D(ap) and
y(Yp,V) < D(Bp). SinceD is an increasing function, then
by using Result B(B) we have

Y(XpVYp: € VV) < Y(Xp, &)+ V(Yp, V) < D(ap) + D(Bp)-

Sincea, | 6 and 3, | 6 we can consider a sequence
{on} € L with &, | 6 andD(,) > D(an) + D(3y) for all
ne N. Theny(Xp Vyp, & V V) < D(dp).
LetC={neN:y(nVyn,&VV)>D()}. Thenpe C"
and hencédA®N B¢ C C°. This implies thalC C AUB € |
since AB ¢ | and consequently
Ol —Ilim(xa Vyn) =& V.

and

Definition 3.10Let | be a non-trivial ideal of subsets bf

with yn | 8 such that{n e N : y(x,,&§) > D(yn)} € 1. i.e.

A={neN:y(xn&) <D(yn)} € F(l).

Let pe A Theny(xp,&) < D(yp)

i.e., D(XpVE)—D(xp) —D(&) < D(yp). Then

D(xp) <2D(xpV &) —D(xp) < D(yp) +D(§).

Sinceyy | 6, thenD(yy) | 0 and consequentlyD(yn)} is

bounded and we can choose a real numYdesuch that
M = sup{D(yp) : p € A}. ClearlyD(xp) < D(§)+M and

soAC {ke N:D(x) < D(§) + M} € F(I). Hence the
proof.

Theorem 3.12Let | be an admissible ideal of subsets of
N and(L,y) be a metric additive system. Ifcontains an
infinite set, then there exists ddl-convergent sequence
{X»} in L, which has subsequence, which does not
converge to the same limit.

Proof: Let A be an infinite set i andA = {n1,ny, N3, ...}
withny <ny < nz <
Again letB=N—A={m,mp,mg,....} withmy <m, <
mg < ...

Sincel is admissible theB is also an infinite set.

Let us choose), € € L such thatn # & and consider a
sequencéxn} € L such that

x = n;if keA,

=¢;ifkeB.

We choose a sequend®,} of non-null elements irL
such that vy, | 6. This implies  that
{n € Dy, &) > D(yn)} € A € 1. Clearly,
Ol lim x . But
{nk € N1 y(Xn,,n) > D(¥n)} = @ € | and consequently
the subsequendex,, } is Ol-convergent ta.

N

Theorem 3.13.Let | be an admissible ideal of subsets of
natural numbers and each sequeree {X,} in L has a
subsequence which i©I-convergent toé, then x is
Ol-convergent tc .

Proof: Let x = {x,} be a sequence ih such that each
subsequence ofhas a subsequence thatis-convergent
to & butOl —limx, # €.

Then for each {y,} € L with vy, | 6,
A={neN:y(x,&)>D(yn)} ¢1.i.e.Ac F(l) andAis
an infinite set sincé is admissible.

and (L,y) be a metric additive system. A sequence | gt A — {n < ny < nz < ..} and{x, } be a subsequence

X = {X,} of elements inL is said to be order ideally
bounded(i.eOl-bounded) irL if there existsB € R such
that the se{n e N: D(xn) > B} €l.

Theorem 3.11.Let | be a non-trivial ideal of subsets of

of x. Then if we choose any subsequergg, } of {xn,},

then clearly
{pk € N : y(Xp,&) > D(yp)} ¢ | which is

contradiction. Therefore&)!l — limx, = €.

a

N. An Ol-convergent sequence in the metric additive pefinition 3.14.Let | be a non-trivial ideal of subsets of

system(L, y) is Ol-bounded.

Proof: Let x = {xn} be a sequence i such that
Ol —limx, = &. Then there exists a sequenpg} in L

N and (L,y) be a metric additive system. A sequence
x = {xn} of elements oL is said to beDI*-convergent to

§ € L if there exists a setM € F(I) with
M={m <m<m < ..} and lim_eoXm = & with

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theo#, No. 2, 159-164 (2016)www.naturalspublishing.com/Journals.asp NS = 163

respect to the metrig. monotone increasing. Hen@d* —limyp # €.

Theorem 3.15.Let | be a non-trivial ideal of subsets of Theorem 3.17Let| be an admissible ideal of subsets of
N. If {x} is a sequence ih such thatOl* —limx, = &,  Nandl has theAP-property. Then for a sequen¢gn} in
thenOl — limx, = &. (L,y), Ol —limxy, = ¢ if and only if OI* —limx, = &,

¢ L.

Proof: Let OI* —limx, = &. Then there existM € F(I) . .
with M = {m < mp < mg < ... } such that Proof: Since Ol — limx, = &, then we can choose a

iMoo Xm, = . Then we can chooséB,} in L with sequencgy,} of distinct elements ik with y, | 6 such

6 by using Lemma J such that/(x D , that{ne N:y(, &) > D(yn)} € 1.
%}é” k)é N, g Y0, &) < D(Pm) ConsiderA; = {ne N: y(x,,&) > D(y1)} and
Therefore, {k € N : y(x&) > D(BJ)} C N—M e 1. An=1{keN:D(yn) < V(X&) <D(yn-1)}, forn=>2.
Consequentll —limxy, = €. Clearly Ai's are pairwise disjoint. ByAP-property there

exists a sequence of subséB } such that\;AB; is finite

forallie NandB= >, Bj €l
LetM =N—-B={m,mp,mg,...}.
For € > 0 we choose the smallest positive integer N
such that D(Wkt1) < €& Then

{neN:y(x,&)>e} CUTTA.
> 3 AAB;, i =1,2,3,...,k+1 are all finite sets and so there is
Example 3.16LetN, = {p, p7, p°,....}, wherepc P, the  gome m c N such that
SNEt cL)]‘ all erIne Eumbersm?n.blll' ? I\I — ugle\lpgl?\lThen UE(:]:_LBi N{neN:n>m}= Uik=+11Ai N{neN:n>m}.

= Uj=1,jep Nj Wnere eacliN;j IS InTinite anan; i=Q ktlp . .
for i j. Considerl — { AC N : A intersects only a If n>mandn ¢ Bthenn ¢ UZ7 B and this implies that

finite number of s }. n¢ UST A Theny(xn, &) < D(yi1) < €.

Let L has an accumulation poigtin L. Then there exists | herefore,y(xn, &) < £ forn>mandn € M and hence

a sequencéx,} in L so that lim, e Xy = &. liMn_se Xm, = & and consequent@l* — limx, = &.

Using Lemma 3.7 we can choose a sequefg in L The converse follows from Theoreml.

with oy, | 8 so thaty(xn,§) < D(ap) forallne N.

Define a sequenclyn} in L with y, = X if ne Nj, where .

j is either 1 or a prime number. We assert that4 Conclusion

Ol —limy, = £. If not, then for eactB = {B} in L with i

Bnl 6,AB)={neN:yyné&)>D(B)} ¢l.ie.AB) In this paper, two new concepts, namely the concepts of
intersects infinite number of;'s. Then there exists a ©Ol-convergence andOl*-convergence in a linearly
subsequence{p,} of prime numbers such that ordered additive system have been introduced and
y(¥n, &) > D(Bn) whenn € Ny UNp, UNp, UNp, U ... investigated. In this investigation we have also shown by
Since N, is infinite, there exists a natural number @n example thaDl-convergence andI*-convergence

n =gy € Np, such thaty(xp,, &) > D(Bq, ). need not be equivalent. Further we have introduced the
FurtherN,, is infinite, so there exists a natural number idea of Ol-bounded sequences and investigated some
n =g € Np, With dp > gy such thaty(xy,, &) > D(By,)- basic properties. The present paper also contains a
Continuing this process we can construct a subsequencgeneralization of the results of the papepdnd [9]. In-
{an} of natural numbers such thgtxp,, &) > D(fq,) for this perspective we think that these results could provide a
all n € N but in particular if B, = dp,, this contradicts ~More general frame work for the investigation on

The following example ensures that for an iddaka
sequencéxy} in L, Ol —limx, andOI* — lim x, may not
be equal.

the choice of oy} convergence of sequences with respect to order.
Now if possible leOI* —limy, = &. Then there exists a set
M= {m <m<mg<..}€F(l)suchthatlim .x, = Acknowledgement
& with respect to the metrig. Using Lemma 3.7 we can ,
have a sequendg,} in L with 3, | 8 such that The authors are grateful to the reviewers for careful
reading and making some useful corrections which
Y(Xm, &) <D(Bm ) forallke N .. (1) improved the presentation of the paper.

Let H=N—-M, thenH €| and there exists prime

numbers  pg, P2, e Pr such  that References

H € Nt UNp, UNp, U...Np,. Thus,N;;1 CN—-H =M
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which contradicts the relatiofil) since3, | 6 andD is York, (2006).
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