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Abstract: The paper introduces a new integral operator which gezesathe Prabhakar integral operator. The boundedness on the
space of continuous functions and on the space of Lebestpgraible functions on an interval is studied. In additit, left inverse
operator is constructed. The properties of compositioih wie k-Riemann-Liouville fractional operators are aradizFinally, as an
application, a fractional generalization of the Cauchybpem associated with free electron laser equation is pexhos
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1 Introduction

In recent years, one focus of study in the field of fractionalcelus was the generalization of integration and
differentiation operators. In many generalizations of thiegral operators appear special functions such as Gauss
hypergeometric function, Mittag-Leffler type functionsright function, Meijer's G-function and Fox’s H-functiom i

the kernel of these operators. A very interesting work thaets many of these results @perators of fractional
integration and their applicationby Srivastava and Saxend][ It is not mentioned in this work, the integral operator
introduced by Prabhakag], which contains in its kernel a Mittag-Leffler type funatiof three parameters. In 2004,
Kilbas et. al. B] have studied this operator noting that generalizes thenRmn-Liouville fractional integral and
proposed its left inverse operator, as a generalizationeoRiemann-Liouville fractional derivative. In 2014, Gaat. al.

[4] turned to the study of that operator using it to construatagtional differential operator that generalizes the étilf
fractional derivative.

Moreover, a crucial role in the field of fractional calculssthe Euler's Gamma function, which generalizes the
factorial function and appears in the definitions of intégmerators of non-integer order and at the definitions otispe
functions. Several generalizations of this function hagerbstudied (see e.@][ [6]). One of these generalizations was
introduced in 2007 by Diaz and Parigudf, [namely the k-Gamma function. Since the k-Gamma functias imtroduced,
many authors have presented extensions of some of thelso-spkcial functions, such as the k-Mittag-Leffler funatio
[8], k-Wright function [10], and k-Bessel function®[11]. In addition, also they have introduced generalizaticinhe
classical fractional operators, (se€e], [13], [14], [15], [16], [17]). In this paper, we introduces a new generalization of
the following integral operator due to Prabhakar:

(E) o )09 = [ (- 0FEL folx 0P8 )dt (x> ). @

a
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whereE,’,”u[w(x—t)P], the Mittag-Leffler function defined in2], will be replaced by the k-Mittag-Leffler function
defined in B], and given by

z

Blasl? ZI'k an+B n! @

whereke R*; a,B,y € C; Rega) > 0,RgB) > 0; I (x) it is the k-Gamma function given by and(y)nk W
it is the Pochhammer k-symbol.

In the following, we will highlight some points needed foethequel.

In 2012 Mubeen and Habbibulahd] introduced the k-Riemann-Liouville fractional integgaven by

Definition 1. Leta € R* and ne N such thatn-1 < a < n, f € L([0,%)). Then the k-Riemann-Liouville fractional
integral of f is

17f(t) = = /t(t—r)%*lf(r)dr: th xf(t),t>0 3)
kl'k(a) 0 kl'k(a) ’ ’
where
a):/omt"*le*%?dt, k> 0. (4)

is the k-Gamma function introduced ifi][and whose relationship with the classical Gamma funcson i
a a
—kx (=
M) = k&2 (). (5)

Since the k-Gamma function is such tiigta) — I (a) whenk — 1, it follows thatl? — 19.
The k-integral 8) also satisfies the semigroup property

Proposition 1. Leta,B € R*, f € L1([0,»)) and k> 0, then

KIET©) =1 PEe) = 12181 (o). (6)
For the proof, we remit tof5] formula (10) p. 91.
The left inverse operator o8 was defined and studied by the authorig][ and it is given by the following

Definition 2. Letk a € R* and ne N such that n= %] +1, f € L}([0,)) and P9 f(t) € W™[0, 0); the k-Riemann-
Liouville fractional derivative is given by
a d n k o
@0 = () o, @

where W[, b] denotes the Sobolev spac&¥a,b] = { f € L[a,b]: f(V € L1[a,b]}.
Remark. If k=1 (7) coincides with the classical Riemann-Liouville fract@bulerivative.

Remark. In Definitions 1.1 and 1.2 is to possible considee C (O(a) > 0). Therefore, in the Definition 1.2 must be
— {qu
n= I +1.

2 Results

Definition 3.(k-Prabhakar integral) Leta,B,w,y,€ C, ke R*; O(a) >0; O(B) >0and¢ < L1([0,b]), (0 < x <
b < ). The k-Prabhakar integral operator is defined as

X (v t\E-1 ]
(kPZ{,p,w‘P)(X):/O %E{aﬁ[ w(x—t)k]g(t)dt, (x>0) -
= (k@@!@w* f) (), o
where E
kg"y’ﬁ’w(t):{:T Sag(h) 1> 0 (10)
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Remark. Note here that foy = 0 we have

(P .09 () = (X)) (11)
i.e. the operatorg) generalizes the k-Riemann-Liouville fractional intdgtefined by B8).

It is interesting to study the boundedness of the k-Prabhiakagral on different spaces, namely, on the space of
Lebesgue integrable functions and on the space of contgfuogtions on a closed interval. Indeed, we have the foligwi
two Propositions.

Proposition 2. The k-Prabhakar integral is bounded oh([0,b]), (0 < x < b < o).
Leta,B,w,y,e C, ke R"; O(a) >0; 0(B) >0and¢ € Ll([O b]) hence

||(kPa5w YX) 11 < B¢, (12)
where
DU : [(Ynieb” (B
5 (13)
“o {nm 4y 40 ( )} IM(an+B)[nt
Proof.
First, we will prove that the series i1 ) it is convergent.
Denoting bycy, the nth term of the series, and usirky and the following relations
4
— k(L
Wk =K"() - (14)
and
F(Z+ ,D) _ P i _ _ —2
r(zﬂl)—zp 1+ 5 (p=Hp+H—-1)+0(z") (15)

for |7 — oo, |arg(2)| < m—¢, |argz+p| < TM—€,0< €< T,
we finally obtain

X

[n0(g)+0(})] .
|w|bD(p) ~ o
[(n+1)m(%)+m(§)} (| &m0
which means that the right-hand side ©8)is convergent and thus B is finite.

Now, we will prove (L2). We considerp < L1([0,b]) then by using &), interchanging the order of integration and
takingt = x—t result

b a
16PY 5 o) = [ [ -0 F Y, glotc—0f19)d] x

%/b Ub(x—t)m(g)l‘EKmﬁ[w(x—t)%]

:k/ [/ 7000~ ‘Ekyaﬁ[wm]\dr} FIGIEL

IN

o o0t

</b E/brm%—l‘EV jwrk][dr| g(0)|dt (16)
= Jo k Jo k.a,B

Q
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We note that

| (Wnkll@" /b O(En+0(B) -1, _
< k “_k an—+ B)j! T dr =B. (17)

Then, from (6) and (L7) we have (2).

Proposition 3. The k-Prabhakar integral is bounded orf[G, x]), (0 < x<b < ). Leta,B,w,y,€ C,ke R™; O(a) >
0; J(B) > 0and¢ € C([0,b]) hence

1(PY p.w?)Xlc <B[¢llc. (18)

where
[¢llc =max{|¢[:0<x<b} (19)

and B is given byX3).

Proof.
Let us¢ € C([0,b]) andx € [0,b], and taking into accouni.@) we have

6Ph g )00 < [ x—0)f 1Ekyap[ w(x—t) ]| (1)/dt
<180l || 070 Y, gleotx—1 . (20)

Repeating what was done ifi§) and (L7) and considering that € x < b, the integral in 20) is less than or equal to
B. This completes the proof o18).

We now calculate the operator applied to certain functiach s potential function and k-Mittag-Leffler function.
To this end, first we demonstrate the following lemmas.

Lemmal. Leta,B,w,y,€ C,keR"; O(a)>0; O(B)>0.Then

9[- D% p(wt—DF)] = t—1) % Y (0t - D)F). (21)

Proof. Starting on the left-hand side, using) @nd @), the uniform convergence of the ser) énd taking into account
([158], f. 12) we have 21).

121t =Dk Y (ol - r>€>1=krk1(a)/ot<t—r>%l<t Dk, gt - 1f)dr (22)
nkwn 1 t pn+B a
- z kl'k o B )/(t—r)_k_ Lt—1)fdr 23)
e (Whko" 1 n+p a
_nZO T )|P [(t—r)F} (24)
— - TR (0t —1)k). (25)

Lemma 2. Leta,B,w,y,€ C, ke R"; O(a)>0; O(B) >0and¢ € LY(R]) and ‘wk(ks)*%‘ < 1. Then
L{UPY 5 o)X} = L1, 5 o (OHL{B}H(S) (26)
= (k% (1- wk(ks)*l‘%)%z{qs}(s). (27)

Proof. It is sufficient to calculate the Laplace transform of thenai(10). For this purpose, taking into accou®) @nd
the generalized binomial theorem, we have

im:;;“”n = (1—kw) K, |ko| <1. (28)
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L{Y 5 ot k/ e Stk 1Y, o(wtf)dt (29)

Y)nk® g st any B g
- tk"Tk T dt

Tk Zjl‘k an+B)n'/

an+ﬁ)

(V)nxe” ’_( ;
Solk(an+ B)nt - o8

<1 (30)

Proposition 4. Letp,B,w,y€ C, ke RT andUO(p) > 0,0(B) > 0,0(a) > 0. Then

(WPY ; J[F Y1) = Rt e, (wtf). (31)

k.p.B+a
Proof.
Taking into account (9], f.11) we have

— -1 P a
(kpkpﬁw)[a%_l](t) Z/(:%E{pﬁ( (t—o)x)ox ldo

pn+pB a
00 nkwn t— )Tflo-]zfl

t
i Rt
(

y)n’kw” 1 t B pntB 4 a_q
. n! krk(pn+ﬁ)/(t o) ToxTdo

(V):]:(w Ipn+B [ 1} (t)

(V)nkw" N(a) tpn+ﬁ+a .
& N k(pn+B+a)

= Rat e e, o, platf).

k.p,a+pB
Proposition 5. Letp,B,u,d,w,ye C, ke RT; O(p) > 0,0(8) > 0and (kkﬁ < 1. Then
S
ok-1 P -1 5+ L
(P! o) | Epu(@x=0)8) | () = ——EY s(wx—1)). (32)
Proof.
The left hand side 0f32), according to 8) can be written as
(k@@pﬁw*kéapyw)()' (33)

Now, taking Laplace transform and applying the convoluttweorem for the Laplace transform abemma 2

LY oK) (OIS = z{kéb,,ﬁ RONCEZPEIMONC

— (k95 (1 wk(ks) ™ ﬁ)

Then because the inverse Laplace transform, the resultsecachieved.
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2.1 Compositions of k-Fractional Calculus Operators wlike k-Prabhakar Integral Operator

We now consider composition with the k-Riemann-Liouvilladtional integral.

Proposition6. Let a € C,(0(a)), and p,B,w,y € C,(O(p) > 0,00(B) > 0). Then relation for any function
f € LY([0,b]),(0 < x < b < ) hold

ll?(kpgﬁwa (t)) = kPZ,B-s-mwf( ) ka B, w(l ¢ f (t)) (34)

Proof.
We will start proving the first equality ir34),

klk(a) k kp-p
By inverting the order of integration,
_ P
ity y J, e e o
—#/tun/t(x—r)%—l(t— X E1EY [w(x—1)EJdxdr (35)
~ K2h(a) Jo T Kp.p

making the change of variabke- 7 = £ we have

t t—1 a P
wria b 10 [ r-of ek ey ogfagar
k/'k [ JEEY ot - 0f]] t(r)dr (36)
and by @1) finally obtains
1/t +a
R/O(t_ )EEY gl - D HO)AT = Pp g gt (D). 37)

To prove the second equality, with an analogous procedakimgo = 1 — &, we have

P 0 E10) = o [ (Posolot ) - O (@0

Taking into account31) we get

krkl(o,) /Ot (kpp,ﬁ,w(a%_l)) (t—&)f(&)dE = k,I_Elf(O;)) /Ot(t— E)ﬁﬁ—lE&”pﬁw[w(t— £)R]F(8)dE
=Phpaf(0): (38)

Then, from 87) and @38), (34) is obtained.
Now we study the composition with the k-fractional diffeti@hoperatof 03,

Proposition 7. Leta,p,B,y,we C; ke R*, O(a) > 0,0(p) > 0,0(B) > 0; then for fc L1([0,b]) and0 < x < b <
hold

(@© 2016 NSP
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Proof.
Let us supposa = [%} + 1, then by 7) and @4) we have:

d _
OGP, 5 o1 (1) = (a) QI t)

n d "

n—1 d not B+ﬂk a_q y a
—K (S /O(t—x) EY g a (@ X ©)f(x)dx

k/ (t—x"C EL 5 (-0 Txdx=P’ ;5 ,F(). (40)
Another important property of the operat@) (s the semigroup property.

Proposition 8. Let ke R* and p,B,y,v,d,w € C, O(p) > 0,0(B) > 0,00(v) > 0; then for any¢ < L*([0,b]) and
0 < x < b < we have

3

kPY 5o (Pouw®)(®) = (P59 (1) =kPDu (kP 5 ,$)(1). (41)

As particular case
Pl 5.o(kPob®) () =1 (1). (42)
Proof.
Interchanging the order of integration, taking= 1 — x, and finally the formula32) is
_ fe) P
P! 5okPou )t = / (t—0 5 152 (w(t—x)f)p (0dx
5
= @Pﬁmv,wwa).

2.2 The Inverse Operator

We here construct the left inverse operator. To do that, vepgse the following Volterra integral equation of the first
kind.

(P 5 o) %) = T3, 9(X) € L([0,0)). (43)

Taking into account¥2) we have thaf < L1([0,)), then giverv € C,0(v) > 0, by composition with the operator
kP;X,,w and by the property4@) we have,

Pl wkPY 5 w9 = Pl wf (X (44)

87800 = kPpY of (X). (45)

Sincel(B + V) > 0 andf € L(]0,)), then by Definition 6 of 3], we can apply the k-Riemann-Liouville fractional
derivative {7) of orderf3 + v, and we obtain

() = kDB kP o f (), (46)

which is the solution of43).
In conclusion, the left inverse operatork@fzﬁvw is k@ﬁkaP;X,,w, ie.

-1 3
[kpp 5. w} = @ﬁf"kaK,w- (47)
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Remark. Note here that putting = 1, we have that47) coincides with the inversion formula given in Theorem 93jf |

To obtain an equivalent expression &), we introduce the following

Definition 4.(The k-Prabhakar derivative) Letke R™, p,B,y,we C, O(p) > 0,0(B8) >0, m= [%} +1land fe
L1([0,b]). We define the k-Prabhakar derivative by

d\" _
kDg’B!wf(X):<&> kmka"r’nkiﬁ’wf(x). (48)

We note that 47) and @8) are equivalent. Indeed, proceeding analogously to what d@ne in fi], taking
veC, O(v)>0,p= [W} +1, by (I.9) of [13] we have

d\" _
R e T L
T (9N o (p-mik
~ (@) (@) T s
p
= kpkpiy f(X)

p,mk—B+pk—mk w

X

kkap};kip!wf (x)

e

KPP ok (1v).wokPov.f(X), v € C,0(v) >0

x

o Zla o Zla o
N—— — 7
©

|
/?A/-\/-\/-\

p
KPP PPy (%)

= DR kPo o (X).
Therefore, 48) is the left inverse operator o8).

Remark. If y=0in (48) then the k-Prabhakar derivative coincides with the k-RiemLiouville derivative given in3].
Indeed,

0850l = (5) Km0l 9 (49)
d\™ i

- (&) K™ £ () (50)

= k@’éLf(x). (51)

3 A Generalization of the Free Electron Laser Equation

In this section we consider an equation that generalizesutar (1.1) of [L4], in the case a = 0, and that contains, as a
particular case, the free electron laser equation.

Theorem 1. Given the following Cauchy problem

KDY 5 V() =AkPS, oY)+ F(), f € L1[0,00); o
(kPP,Kfﬁ,wy) (0) =G, c>0.
where[f] +1=m=1,w,A €C,p>0,v>0,y>0,5 >0, we have that the solution is
e (S+y)n+y o WHBINEBK g _(§4y)nty 5
y(x) = nZD)\ nkpp,(v+l3)n+ﬁ,wf (x) + ano)\ "k Ek,p,(v+B)n+/37k (wx?) . (53)
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To prove the theorem the following lemma is required.
Lemma 3. The Laplace transform of the k-Prabhakar derivative ford:hee[%] +1=m=1,is

P

LD g Y} = (k9 F (1- wk(ke §) 2Ly 1o~k (P, Y 4., (©) (54)
with ‘a)k(ks)‘{%‘ <1

Proof.
It is sufficient to calculate the Laplace transform 48). To do that, we use the Laplace transform of the derivative
of orderm= 1 and Lemma 2.

Proof. Applying the Laplace transform to both sides 62

ks (1 wk(ks) )QE—A

(k¥ (1_ a)k(ks)‘{%)%

Y(s) =F(s)+ck (55)

(k¥ (1— wk(ks) ¥
Y(S) = 5 F (5)7 (56)

(k9 " (1 wk(ks)~ )

(ks k (1_ wk(ks)

+ck 5 : (57)
(kg %" (1_ wk(ks)ﬂg) o
_y
(k9 ¥ (1 - wk(ks)—ﬁ) .
Y(9) = — | F. (58)
1 wk(ks)~ ) -
P\ K
1 wk(ks)~ u)
5 (59)
1- Ak 1 wk(ks) ™ wz) -
q(_a
Taking |2 (ks % (1 wk(ks)~ < 1, we have
@ (VBB o — QY
Y9 = 3 A"k~ E (1 wkiky F) F(s), (60)
n=0
_ ek o — QMY
+c ZO/\ (1_ wk(ks)*u) . (61)
Finally, by the inverse Laplace transform, we have the ddgiesult.
Remark. We note thatik=1,y=0,p=08=10=v=2f(X) =0,w=ir,A = —imp,(r,pe R) (52 is
d . X i (x
Y00 = i /O (x— )" Vy(t)dt, y(0) = 1. (62)

which is the free electron laser equation wixen (0, 1], and its solution is given in term of the k-Mittag-Leffler fuian

Ef an (irX)
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4 Conclusion

Fractional differential operators introduced representraéieresting generalization of the Riemann-Liouville giers
from the point of view of k-Fractional Calculus generateshfrthe k-Gamma function and the Pochhammer k-symbol.
These operators may be useful from a physical point of viewsictering the origin of these generalizations of the Gamma
function and Pochhammer’s symbol set by Diaz and Pariguane®Ver, also allows us to give a new generalization of a
Cauchy problem associated with the free electron lasertequa

Acknowledgements

The author wishes to acknowledge the valuable assistanibe &ubén Cerutti regarding the writing of the manuscript
and to the Dr. Federico Polito of the Universit degli Studidrino for his willingness to answer some questions, which
helped to give a fair presentation of certain results.

References

[1] H. M. Srivastava and R. K. Saxena, Operators of fractioriagration and their application8pp. Math. Comp118 1 - 52 (2001).
[2] T. R. Prabhakar, A singular integral equation with a gafized Mittag-Leffler function in the kerne¥okohama Math. ,J19,
171-183(1971).
[3] A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittagfler function and generalized fractional calculus opans Int.
Transf. Spec. Funcl5, 31 - 49 (2004).
[4] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, HilferaBhakar derivative and some applicatiodgpl. Math.Comput242,
576-589 (2014).
[5] C. M. Aslam and S. M. Zubair, Extended Gamma and digammatfans, Fract. Calcul. Appl. Anal.4, 303-326 (2001).
[6] H. M. Srivastava, A. Cetinkaya and I. O. Kiymaz, A certgeneralized Pochhammer symbol and its applications torggpenetric
functions,Appl. Math. Comput226, 484 - 491 (2014).
[7] R. Diaz and E. Pariguan, On hypergeometric functiorsskeRochhammer symbdDivulg. Matem.15 (2), (2007).
[8] G. Dorrego and R. Cerultti, The k-Mittag-Leffler functiah Contemp. Math. Sc¥, 705 - 716 (2012).
[9] R. Cerutti, On the k-Bessel functionsit. Math. Forum 7, 1851 - 185 (2012).
[10] G. Romero and R. Cerutti, Fractional calculus of a k-gfkititype function)nt. J. Contemp. Math. Sc¥.(31), 1547 - 1557 (2012).
[11] G. Romero, G. Dorrego and R. Cerutti, The k-Bessel fionst of the first kindJnt. Math. Forum7 (38), 1859 - 1864 (2012).
[12] G. Dorrego and R. Cerutti, k-fractional Hilfer deriag, Int. J. Math. Anal.7, 543 - 550 (2013).
[13] G. Dorrego, Alternative definition for the k-Riemaniebville fractional derivativeAppl. Math. Sci9, 481 - 491 (2015).
[14] A. Kilbas, M. Saigo and R. K Saxena, Solution of Volteimgegro-differential equations with generalized Mittagfler function
in the kernels,). Int. Equ. Appl14, 377 - 396 (2002).
[15] S. Mubeen, G. M. Habibullah, k-Fractional integralsl@pplication|nt. J. Contemp. Math. ScT, 89 - 94 (2012).
[16] G. Romero, G. Dorrego and R. Cerutti, k-Weyl fractiomaégral,Int. J. Math. Anal 6 (34), 1685 - 1691 (2012).
[17] G. Romero, L. Luque, G. Dorrego and R. Cerutti, On thei&rRann-Liouville fractional derivativdnt. J. Cont. Math. Sci8, 41
- 51 (2013).

(@© 2016 NSP
Natural Sciences Publishing Cor.



	Introduction
	Results
	 A Generalization of the Free Electron Laser Equation
	Conclusion

