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Abstract: This paper expresses integrals of the normal distribution function and its cumulative function as a single series. Basically, to
obtain this series, all functions are expanded using Taylorseries and binomial expansions resulting in nested multiple series. Then, by
applying some transformations and changing the order of thesummations, we end up with a single series of special functions. Truncation
of the series can be used to approximate the integrals. Besides, the sum of some infinite series involving Hermite polynomials, that
correspond to integrals with known closed forms, are now obtained.

Keywords: Normal distribution function, Gamma function, Hypergeometric function, Hermite polynomial, Taylor series

1 Introduction

The integrals of the normal distribution function and its
cumulative function appear in many applications such as:
the cumulative bivariate normal integral in statistics for
biometric and financial data, computation of bit error
probabilities in communication [1,2,3], the study of
transient heat conduction and diffusion [4] and Gaussian
process modeling in machine learning ([5]).
Unfortunately there is no closed form for such integrals.
However, the cumulative bivariate normal integral has
different representations as infinite single series
containing special functions such as incomplete Gamma
function and/or Hermite polynomials [1,2,3]. In this
paper, we derive a generalized form of the scheme
proposed in [3] to evaluate some other integrals and their
related series. The main advantage of the resultant series
is their efficient computation using the recurrence
formulas of the special functions.

2 Integrals and the Proposed Scheme

In this section, we describe a methodology that can be used
to prove the following formulas (ford > 0, a2 < d and

c2 < d):

I(a,b,d,k,x) =

x
∫

0

tk exp
(

−dt2)er f (at + b)dt

= sign(x)k

{

sign(x)d− k+1
2

2
γ(

k+1
2

,x2d)er f (b)

+
exp(−b2)√

π

∞

∑
u=0

[

a2u+1d−u− k
2−1

(2u+1)!
γ(u+

k
2
+1,x2d)H2u(b)

− sign(x)a2u+2d−u− k
2− 3

2

(2u+2)!
γ(u+

k
2
+

3
2
,x2d)H2u+1(b)

]}

,x ≥ 0,k >−1 or x < 0,k ∈ Z+

(1)

K(a,b,d,c,x) =

x
∫

0

e−dt2

t
[er f (at + b)− er f (ct + b)]dt =

e−b2

√
π

∞

∑
u=0


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sign(x)
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d
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d
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γ(u+

1
2
,x2d)H2u(b)
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−
( a√

d
)2u+2− ( c√

d
)2u+2

(2u+2)!
γ(u+1,x2d)H2u+1(b)







(2)

Proof. The integral in (1) can be expressed as an infinite
series of the incomplete Gamma function and Hermite
polynomial as follows.

Using Taylor series expansions of the exponential and
error functions, we get:

I(a,b,d,k,x) =

2√
π

x
∫

t=0

tk
∞

∑
q=0

(−d)q

q!
t2q

∞

∑
n=0

(−1)n

n!(2n+1)
(at + b)2n+1dt

Using the binomial expansion of(at + b)2n+1 and
integrating, we get:

I(a,b,d,k,x) =

2√
π

∞

∑
q=0

∞

∑
n=0

2n+1

∑
m=0

(−1)n+q2n!a2n−m+1dqx2n+k+2q−m+2bm

(2n+ k+2q−m+2)q!n!m!2n−m+1!

Let us divide the inner summation into two summations
for even and odd values ofm as follows:

I(a,b,d,k,x) =
2√
π

∞

∑
q=0

∞

∑
n=0

n

∑
m=0

(−1)n+qdqΓ (2n+1)
q!Γ (n+1)

·
{

a2n−2m+1x2n+k+2q−2m+2b2m

(2n+ k+2q−2m+2)Γ(2m+1)Γ (2n−2m+2)

+
a2n−2mx2n+k+2q−2m+1b2m+1

(2n+ k+2q−2m+1)Γ(2m+2)Γ (2n−2m+1)

}

=
2√
π
(I1+ I2)

I1 can be written with the interior summation changed to
start fromm = −∞ (this would not change the sum since
the added terms are all zeros), then, using the
transformationu = n−m leads to:

I1=
∞

∑
q=0

∞

∑
n=0

∞

∑
u=0

(−1)n+qΓ (2n+1)a2u+1dqx2u+k+2q+2b2n−2u

(2u+ k+2q+2)q!n!(2u+1)!Γ(2n−2u+1)

By changing the order of summation and using the
transformationv = n− u, we get:

I1=
∞

∑
u=0

∞

∑
q=0

∞

∑
v=0

(−1)u+v+q(2u+2v)!a2u+1dqx2u+k+2q+2b2v

(2u+ k+2q+2)q! (2v)!(2u+1)!(u+ v)!

where the inner summation counter is changed to start
from 0 rather thanu since for v < 0 the terms vanish.
Using the duplication formula of Gamma function ([6] p.
256) and the series expansion of the incomplete Gamma
function ([6] p. 260, 262):

Γ (2x) =
22x−1
√

π
Γ (x)Γ (x+

1
2
)

γ(a,x) =
∞

∑
q=0

(−1)qxq+a

q!(q+ a)

we get:
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∞

∑
u=0

∞
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∞
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2

∞

∑
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k
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2,

1
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1)

where (α)v = α(α + 1) · · · (α + v − 1), (α)0 = 1 and
1F1(α,β ;x) is the confluent hypergeometric function
given by:

1F1(α,β ;x) =
∞

∑
v=0

(α)v

v!(β )v
xv

Following a similar procedure,I2 can be expressed as:

I2 =
∞

∑
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∞
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∞
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=
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2
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∑
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Therefore:

I(a,b,d,k,x) =

x
∫
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tke−t2 er f (at + b)dt =
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=
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√
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∞

∑
u=0

[

(−1)ua2u+1d−u− k
2−1

u!(2u+1)
γ(u+

k
2
+1,x2d)·

1F1(u+
1
2,

1
2;−b2)

+ sign(x)
(−1)uba2ud−u− k

2− 1
2

u!
γ(u+

k
2
+ 1

2,x
2d)·

1F1
(
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3
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This formula can be expressed in terms of the Hermite
polynomial and the incomplete Gamma function using the
following relations ([7] p. 309, p.313),

∞
∫

0

t2u cos(2xt)exp(−t2) dt =
1
2

Γ (u+ 1
2)1F1(u+

1
2,

1
2;−x2)

=
√

π
(−1)u

22u+1 exp(−x2)H2u(x)

∞
∫

0

t2u+1sin(2xt)exp(−t2) dt = xΓ (u+ 3
2)1F1(u+

3
2,

3
2;−x2)

=
√

π
(−1)u

22u+2 exp(−x2)H2u+1(x)
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whereH j(x) is the other standard form of the Hermite
polynomial given by:

H j(x) = (−1) jex2
D je−x2

= j!
[ j/2 ]

∑
k=0

(−1)k

k!( j−2k)!
(2x) j−2k

where

[ j/2 ] =

{

j/2 j is even
( j−1)/2 j isodd

1F1(
1
2,

3
2;−x2) =

1
x
√

π

∞
∫

0

sin(2xt)
t

exp(−t2) dt =
er f (x)

2x

γ(1
2,x

2) =
√

πer f (x)

Therefore,

I(a,b,d,k,x) =

x
∫

0

tk exp
(

−dt2)er f (at + b)dt

= sign(x)k

{

sign(x)d− k+1
2

2
γ(

k+1
2

,x2d)er f (b)

+
exp(−b2)√

π

∞

∑
u=0

[

a2u+1d−u− k
2−1

(2u+1)!
γ(u+

k
2
+1,x2d)H2u(b)

− sign(x)a2u+2d−u− k
2− 3

2

(2u+2)!
γ(u+

k
2
+

3
2
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Convergence of the above series is studied below.

I(a,b,d,k,x) = const.+[S1− S2]

|S1| ≤
d− k

2−1e−b2

√
π

∞

∑
u=0

a2u+1d−u

(2u+1)!
γ(u+

k
2
+1,x2d) |H2u(b)|

≤ d− k
2−1exp(− b2

2 )√
π

∞

∑
u=0

22u+1u!a2u+1d−u

(2u+1)!
γ(u+

k
2
+1,x2d)

= d− k
2−1exp(−b2

2
)

∞

∑
u=0

a2u+1d−u

Γ (u+ 3
2)

γ(u+
k
2
+1,x2d)

≤ d− k
2−1exp(−b2

2
)

∞

∑
u=0

a2u+1d−u

u!
γ(u+

k
2
+1,x2d)

=
ad− k

2−1exp(− b2

2 )

(1− a2

d )
k
2+1

γ(
k
2
+1,x2(d − a2))

wherea2 < d and we have used the following relations ([6]
p. 787, [8] p. 646):

|H2n (x)| ≤ exp

(

x2

2

)

22nn!

[

2− 1
22n

(

2n
n

)]

∞

∑
u=0

tu

u!
γ(u+ r,x) =

1
(1− t)r γ(r,x− tx)

Similarly, using ([6] p. 787):

|H2n+1(x)| ≤ |x|exp

(

x2

2

)

(2n+2)!
(n+1)!

,x ≥ 0

we get:

|S2| ≤
d

−k−3
2 e−b2

√
π

∞

∑
u=0

a2u+2d−u

(2u+2)!
γ(u+

k+3
2

,x2d) |H2u+1(b)|

≤ d
−k−3

2 |b| exp(− b2

2 )√
π

∞

∑
u=0

a2u+2d−u(2u+2)!
(2u+2)!(u+1)!

γ(u+
k+3

2
,x2d)

≤ d
−k−3

2 |b| exp(− b2

2 )√
π

∞

∑
u=0

a2u+2d−u

u!
γ(u+

k+3
2

,x2d)

=
d

−k−3
2 a2 |b|exp(− b2

2 )

√
π(1− a2

d )
k+3

2

γ(
k+3

2
,x2(d− a2))

ThereforeS1 andS2 converge.
Following the same procedure and using the following

upper bound for the incomplete Gamma function [9]:

γ (a,x)≤ xa

a(a+1)
(1+ aexp(−x))

it is easy to prove the other formula (2).
The above integrals can be computed efficiently using

the above series representations and the recurrence
formulas of the incomplete Gamma function and the
Hermite polynomials ([6] p. 262, 782):

γ (a+1,x) = aγ (a,x)− xae−x

Hu+1(x) = 2xHu (x)−2uHu−1(x)

Some special cases of the above integrals are listed in the
appendix.

3 Summation of Some Series

Using the above series expressions of the integrals, the
summation of some series could be obtained. For
|a|< 1,|z|< 1, s > 0, we have:

2e−b2

√
π

∞

∑
u=0

( a
2)

2u+2

(u+1)!
H2u+1(b) =er f (b)− er f (

b√
1+ a2

)

(3)

2
∞

∑
u=0

( a
2)

2u+2

(u+1)!
H2u(b) =

√

1+ a2exp

(

a2b2

1+ a2

)

−1

−
√

πbexp(b2)

[

er f (b)− er f (
b√

1+ a2
)

]

(4)
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2exp
(

s− b2
)

√
π

∞

∑
u=0

(−1)uzu+1

u+1!
γ
(

u+3
2

,s

)

Hu(b) =

er f (b)− er f
(

z
√

s+ b
)

+
zexp

(

b2z2

z2+1

)

√
z2+1

·
[

er f

(

√

s(z2+1)+
zb√

z2+1

)

− er f

(

zb√
z2+1

)]}

(5)

∞
∑

u=0

(−1)u( z
2)

u

Γ ( u
2+1)

Hu(b) = 1√
z2+1

exp
(

b2z2

z2+1

)

er f c

(

bz√
z2+1

)

(6)
Proof. From (1),

∞
∫

−∞

exp
(

−t2)er f (at + b)dt

=
√

πer f (b)− 2exp(−b2)√
π

∞

∑
u=0

a2u+2

(2u+2)!
Γ (u+

3
2
)H2u+1(b)

Using the fact that [10]:
∞
∫

−∞

exp
[

−(αt +β )2
]

er f (at + b)dt =

√
π

α
er f

[

αb−β a√
α2+ a2

]

leads to (3).
Differentiating with respect tob and using the

following formula ([8], p. 708):

∞

∑
u=0

( a
2)

2u

u!
H2u(b) =

1√
1+ a2

exp

(

a2b2

1+ a2

)

, |a|< 1

leads to (4).
From (1) and forx > 0,

I(a,b,d,1,x) =

x
∫

0

t exp
(

−dt2)er f (at + b)dt

=
1
2d

(

1−exp
(

−x2d
))

er f (b)+

exp(−b2)

d
√

π

∞

∑
u=0

(−1)u
(

a√
d

)u+1

u+1!
γ
(

u+3
2

,x2d

)

Hu(b)

However, the closed form of this integral is ([8], p. 32):
x

∫

0

t exp
(

−dt2)er f (at + b)dt =

=
aexp

(

−db2

a2+d

)

2d
√

a2+ d

[

er f

(

x
√

a2+ d+
ab√

a2+ d

)

−er f

(

ab√
a2+ d

)]

− 1
2d

[

e−x2der f (ax+ b)− er f (b)
]

So by comparison and putting
√

dz = a,s = x2d, we get
(5). By taking the limit ass → ∞, we get (6).

4 Conclusions

In this paper, a scheme of transformation of variables and
interchanging multiple series is incorporated that
successfully leads to expressing some integrals involving
the normal distribution function and its cumulative
function as a single series of special functions. Truncation
of the obtained series can be used efficiently to evaluate
the integrals. Moreover, the summations of some infinite
series involving Hermite polynomials are obtained.

5 Appendix

In the sequel, we report some special cases for the studied
integrals.

I(a,b,d,k,∞) =

∞
∫

0

tk exp
(

−dt2)er f (at + b)dt

=
1
2

d
−k−1

2 Γ (
k+1

2
)er f (b)

+
exp(−b2)√

π

∞

∑
u=0

(−1)uau+1d− u+k+2
2

(u+1)!
Γ (

u+ k
2

+1)Hu(b)

,k >−1,a2 < d

I(a,b,1,0,∞) =

∞
∫

0

exp
(

−t2)er f (at + b)dt

=

√
π

2
er f (b)+

e−b2

√
π

∞

∑
u=0

(−1)uau+1

(u+1)!
Γ (

u+2
2

)Hu(b)

, |a|< 1

K(a,b,d,c,∞) =

∞
∫

0

e−dt2

t
[er f (at + b)− er f (ct + b)]dt

= e−b2
∞

∑
u=0

(−1)u
( a

2
√

d
)u+1− ( c

2
√

d
)u+1

(

u+1
2

)

Γ
(

u
2 +1

) Hu(b)

,a2 < d,c2 < d

For x > 0,

K(a,b,d,c,x) =

x
∫

0

e−dt2

t
[er f (at + b)− er f (ct + b)]dt

=
e−b2

√
π

∞

∑
u=0

(−1)u
( a√

d
)u+1− ( c√

d
)u+1

(u+1)!
γ(

u+1
2

,x2d)Hu(b)

,a2 < d,c2 < d

K(a,b,0,c,x) =

x
∫

0

1
t
[er f (at + b)− er f (ct + b)]dt

=
2exp(−b2)√

π

∞

∑
u=0

(−1)u

[

(ax)u+1− (cx)u+1
]

(u+1)(u+1)!
Hu(b)
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K(a,b,1,0,x) =

x
∫

0

e−t2

t
[er f (at + b)− er f (b)]dt

=
e−b2

√
π

∞

∑
u=0

(−1)uau+1

(u+1)!
γ(

u+1
2

,x2)Hu(b) , |a|< 1
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