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As the size of data storing arrays of disks grows, it becomes vital to protect data against
double disk failures. A popular method of protection is via the Reed-Solomon (RS)
code with two parity check symbols. In the present paper we construct alternative ex-
amples of linear block codes protecting against two erasures. Our construction is based
on an abstract notion of cone. Concrete cones are constructed via matrix representations
of cyclic groups of prime order. In particular, this construction produces EVENODD
code. Interesting conditions on the prime number arise in our analysis of these codes.
At the end, we analyse an assembly implementation of the corresponding system on a
general purpose processor and compare its write and recovery speed with the standard
DP-RAID system.
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1 Introduction

A typical storage solution targeting a small-to-medium size enterprise is a networked
unit with 12 disk drives with total capacity of around 20 TB [9, 13]. The volume of infor-
mation accumulated and stored by a typical small-size information technology company
amounts to fifty 100-gigabyte drives. The specified mean time between failures (MTBF)
for a modern desktop drive is about 500,000 hours [14]. Assuming that such an MTBF is
actually achieved and that the drives fail independently, the probability of a disk failure in
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the course of a year is— e~ '2/57 ~ 0.2. Therefore, even a small company can no longer
avoid the necessity of protecting its data against disk failures. The use of redundant arrays
of independent disks (RAIDs) enables such a protection in a cost efficient manner.

To protect an array of< disks against a single disk failure it is sufficient to add one
more disk to the array. For evely bits of user data written o’ disks of the array, a parity
bit equal to an exclusive OR (XOR) of these bits is written on(tRe+ 1)-st disk. Binary
content of any disk can be then recovered as a bitwise XOR of contents of rem&ining
disks. The corresponding system for storing data and distributing parity between disks of
the array is referred to as RAID-5 [8]. Today, RAID-5 constitutes the most popular solution
for protected storage.

As the amount of data stored by humanity on magnetic media grows, the danger of
multiple disk failures within a single array becomes real. Maddock, Hart and Kean argue
that for a storage system consisting of one hund@red® RAID-5 arrays the rate of failures
amounts to losing one array every six months [8]. Because of this danger, RAID-5 is
currently being replaced with RAID-6, which offers protection against double failure of
drives within the array. RAID-6 refers to any technique where two strips of redundant data
are added to the strips of user data, in such a way that all the information can be restored if
any two strips are lost.

A number of RAID-6 techniques are known [4, 8, 10].A well-known RAID-6 scheme
is based on the ratg55/257 Reed-Solomon code [1]. In this scheme two extra disks
are introduced for up to 255 disks of data and two parity bytes are computed per 255
data bytes. Hardware implementation of RS-based RAID-6 is as simple as operations in
F= GF(256), which are byte-based. Addition of bytes is just a bitwise XOR. Multiplica-
tion of bytes corresponds to multiplication of boolean polynomials modulo an irreducible
polynomial. Multiplication can be implemented using XOR-gates, AND-gates and shifts.

Some RAID-6 schemes use only bitwise XOR for the computation of parity bits by
exploiting a two-dimensional striping of disks of the array. Examples are a proprietary
RAID-DP developed by Network Appliances [7] and EVENODD [2]. Some other RAID-6
methods use a non-trivial striping and employ only XOR operation for parity calculation
and reconstruction. Examples include X-code, ZZS-code and Park-code [8,11,12].

In all the cases mentioned above, the problem dealt with is inventing an error correct-
ing block code capable of correcting up to two erasures (we assume that it is always known
which disks have failed). In the present paper we describe a general approach to the so-
lution of this problem, which allows one to develop an optimal RAID-6 scheme for given
technological constraints (e.g. available hardware, the number of disks in the array, the
required read and write performance). We also consider an assembly implementation of an
exemplary RAID-6 system built using our method and show that it outperforms the Linux
kernel implementation of RS-based RAID-6.

The paper is organised as follows. In Section 2 we discuss RAID-6 in the context of
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systematic linear block codes and construct simple examples of codes capable of correct-
ing two errors in known positions. In Section 3 we identify an algebraic structure (cone)
common to all such codes and use it to construct RAID-6 schemes starting with elements
of a cyclic group of a prime order. Section 3.3 is of particular interest to number theorists
where we discuss a new condition on the prime numbers arising in the context of RAID-6
schemes. In Section 4 we compare encoding and decoding performances of an assembly
implementation of RAID-6 based af;; with its RS-based counterpart implemented as a
part of Linux kernel.

Let us comment on the relation of the presented material to other modern research
efforts. Section 2 is rather standard [3]. All original theoretical material of this paper is
in Section 3. The notion of a cone is somewhat related to a non-singular difference set
of Blaum and Roth [3] but there are essential differences between them. The cone from a
cyclic group of prime order as in Lemma 3.4.1 gives EVENODD code [2]. Its extended
versions and connections to number theoretic conditions are new.

2 RAID-6 from the viewpoint of linear block codes.

Suppose that information to be written on the array of disks is broken into blocks of
lengthn bits. What is the best rate linear block code, which can protect data against the
loss of two blocks?

Altogether, there arg®>" possible pairs of-bit blocks. In order to distinguish between
them, one needs at least distinct syndromes. Therefore, any linear block code capable
of restoring2 lost symbols in known locations must have at leastparity check bits.
Suppose the size of the informationA%: bits or K blocks. In the context of RAIDK is
the number of information disks to be protected against the failure. Then the code’s block
size must be at leaé? + K)n and the rate is

K

RS ———
T K+2

This result is intuitively clear: to protedt information disks against double failure, we
need at leas? parity disks.

In the following subsections we construct explicit examples of linear codes for RAID-
6 for small values ofr and K. These examples both guide and illustrate our general
construction of RAID-6 codes presented in Section 3.

2.1 Redundant array of four independent disks, which protects against the failure
of any two disks.

We restrict our attention teystematidinear block codes. These are determined by the
parity matrix. To preserve a backward compatibility with RAID-5 schemes, we require half
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of the parity bits to be the straight XOR of the information bits. Hence the general form of
the parity check matrix fof = 2 is

p_< xn Inxn Inxn Onx ) 2.1)
H G Oan Iana

wherel, «, and0,«,, aren x n identity and zero matrix correspondinglgs; and H are
somen x n binary matrices. The corresponding parity check equations are

di+dog+m =0 and H-di+G-dy+m=0. (22)

Hered;, d> aren-bit blocks written on disks 1 and %;; andns aren-bit parity check
blocks written on disks 3 and 4;™stands for binary matrix multiplication.
MatricesG and H defining the code are constrained by the condition that the system of
parity check equations must have a unique solution with respesig@air of variables.
To determine these constraints we need to consider the following particular cases.

(m,m) are lost. The system (2.2) always has a unique solution with respect to lost vari-
ables: we can compute parity bits in terms of information bits.

(d1,m9) are lost. The system (2.2) always has a unique solution with respect to lost vari-
ables: computd;, in terms ofmr; andds using the first equation of (2.2) as in RAID-
5. Then computer, using the second equation.

(d2, o) are lost. The system (2.2) always has a unique solution with respect to lost vari-
ables: computé, usingm; andd; as in RAID-5. Then compute, using (2.2).

(m,dy) are lost. The system (2.2) always has a unique solution with respect to lost vari-
ables provided the matriK is invertible.

(m1,ds) are lost. The system (2.2) always has a unique solution with respect to lost vari-
ables provided the matri& is invertible.

(d1,d>) are lost. The system (2.2) always has a unique solution with respect to lost vari-

I’I’LXTL IT'LXTI

ables provided the matrié > is invertible.

nxn GYLXTL
As it turns out, one can build a parity check matrix satisfying all the non-degeneracy re-
guirements listed above far = 2. The simplest choice is

0 1
H:IM,G:(l 1). (2.3)

Non-degeneracy of the three matridésG and (2.1) is evident. For instarice

I’ﬂ n I’I’L n
det( x x ) =—1=1.
HTIXTL G’VLXH

1The reader is aware thatl = 1 # 0 in characteristic 2
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We conclude that the linear block code withdax 8 parity check matrix (2.1, 2.3)
gives rise to RAID-6 consisting of four disks. The computation of parity dibits m
in the described DP RAID is almost as simple as the computation of regular parity bits:
Letd; = (di1,d12) andds = (dz1,d22) be the dibits to be written on disks one and two
correspondingly. Then

m11 = dq1 + day, T = d12 + daa,
o1 = d11 + d22, 22 = d12 + d21 + d22~ (24)

The computations involved in the recovery of lost data are bitwise XOR only. As an illus-
tration, let us write down expressions for lost data bits in terms of parity bits explicitly:

doo = 11 + T2 + W1 + a2, dyo = T + W21 + T2,

dyy = T + T2 + T2, doy = T2 + 2.

It is interesting to note that RAID-6 code described here is equivalent to Network Appli-
ances’ horizontal-diagonal parity RAID-BP with two data disks [7]. Really, diagonal-
horizontal parity system for two info disks is

A B HP DP1
C D HP2 DP2,

where stringg 4, C) are written on information disk 1, strind®3, D) are written on disk
2, (HP, HP?2) is horizontal parity{DP1, DP2) is diagonal parity. By definitiond P =
A+B,HP2=C+ D,DP1 = A+ D, DP2 = B+ C + D, which coincides with parity
check equations (2.4).

On the other hand, the code (2.1) is a reduction of the RS code bagg# @) which
we will describe in the next subsection.

2.2 Redundant array of five independent disks, which protects against the failure of
any two disks.

The code (2.1) can be extended to a scheme providing double protection of user data
written on three disks [3, Example 1.1]. The parity check matrix is

P:<12x2 Ioxo Inxo Ioxo 02><2)

(2.5)
Liyxs G G* 0Oaxa Ioxo,

where2 x 2 matrix G was defined in the previous subsection. The corresponding parity
check equations are

di +dy+ds+m =0, d1+G~d2+GQ-d3+ﬂ'2=0. (2.6)
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The solubility of these equations with respect to any pair of variables from the
set {di,ds,ds, m,m2} requires two extra conditions of non-degeneracy in addition
to non-degeneracy conditions listed in the previous subsection. Namely, matrices

( Laxz I > and( Iaxz I ) must be invertible. It is possible to check the
Lo G? G G?

invertibility of these matrices via a direct computation. However, in the next section we
will construct a generalisation of the above example and find an elegant way of proving
non-degeneracy.

The code (2.1) is a reduction of (2.5) correspondindste= 0. Note also that the code
(2.5) is equivalent to rat8/5 Reed-Solomon code based Gi#'(4): a direct check shows
that the set oR x 2 matrices0, 1, G, G? is closed under multiplication and addition and
all non-zero matrices are invertible. Thus this set forms a field isomorpltiFtet). On
the other hand, as we established in the previous subsection, the code (2.1) is equivalent to
RAID-DPTM wiith four disks. Therefore, RAID-DP" with four disks is a particular case
of the RS-based RAID-6. It would be interesting to see if RAIDIBPcan be reduced to
the RS-based RAID-6 in general.

We are now ready to formulate general properties of linear block codes suitable for
RAID-6 and construct a new class of such codes.

3 RAID-6 based on the cyclic group of a prime order.

3.1 RAID-6 and cones ofGL, (F).

In this subsection we will define a general mathematical object underlying all existing
algebraic RAID-6 schemes. We recall tliat= GF(2) is the field of two elements and
GL,(F) is the set of x n invertible matrices.

Definition 3.1.1. A con€ C is a subset ot7L,,(F) such thay + h € GL,,(F) for all
g#heC.

This notion is related toaon-singular difference setsff Blaum and Roth [3]. The cone
satisfies the axioms P1 and P2 of Blaum and Roth but the final axiom P3 or P3’ is too
restrictive for our ends. On the other hand, we consider only binary codes while Blaum and
Roth consider codes over any finite field.

A standard example of a cone appears in the context of Galois fields. If we choose a
basis of GF'(2™) as a vector space ov&rthen we can think of7L,,(F) as the group of
all F-linear transformations af F'(2™). Multiplications by non-zero elements 6fF'(27)
form a cone. lfe € GF'(2™) is a primitive generator anglis the matrix of multiplication

2This terminology is slightly questionable. If one agks- h € C thenC U {0} is a convex cone in the
usual mathematical sense. Our choice of the term is influenced by this analogy. Non-singular difference set or
quasicone or RAID-cone could be more appropriate scientifically but would pay a heavy linguistic toll.



154 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

by « then this cone if¢g™ | 0 < m < 2™ — 2}. This cone gives the RS-code with two
parity blocks.
The usefulness of cones for RAID-6 is explained by the following
Lemma3.1.2.LetC = {g1, 92, .. 9k} C GL,(F) be acone oK elements. Then the
system of parity equations

K K
diyr =Y dy and dicy2 =Y gidy (3.1)
t=1 t=1

has a unique solution with respect to any pair of variablés d;) € F* x F", 1 < i <
j < K + 2. Hered; are binaryn-dimensional vectors.

Proof. The fact that system (3.1) has a unique solution with respetq., dx+2)
is obvious.

The system has a unique solution with respedtfte, 1, d;) for anyj < K: from the
second of equations (3.1g, = gj*l(dKJrg + Zf;j g+dt), where we used invertibility of
gj € GL,(F). With d; known,d k1, can be computed from the first of equations (3.1).

The system has a unique solution with respedtiig, 2, d;) for anyj < K: from the
first of equations (3.1}, = dx+1 + Zf;j d;. With d; known, di 12 can be computed
from the second of equations (3.1).

The system has a unique solution with respect to any pair of varidplds for 1 <
1 < j < K: multiplying the first of equations (3.1) witty and adding the first and second
equations, we get; = (g; + g;) " (gidx+1 + dr 42 + Zf;m(gt + ¢:)d;). Here we used
the invertibility of the suny; + g; for any: # j, which follows from the definition of the
cone. Withd; known,d; can be determined from any of the equations (3§D

In the context of RAID-6(; for 1 < ¢ < K can be thought of as-bit strings of user
data,dk 11, dk 12 - asn-bit parity strings. The lemma proved above ensures that any two
strings can be restored from the remainiigstrings.

We conclude that any cone can be used to build RAID-6. The following lemma gives
some necessary conditions for a cone.

Lemma 3.1.3.LetC C GL,(F) be a cone.

(i) Forall g, h € C suchthaty # h and for allz € GF(2™)", gz = ha if and only if
xz=0.
(i) No two elements of the same cone can share an eigenved6r in
(iif) The cone&” can contain no more than one permutation matrix.

Proof. To prove (i), assume that thereis# 0 : gz = hx. Then(g + h)z = 0,
which contradicts the fact thgt+ h is non-degenerate. Therefore,= 0. Let us prove
(i) now. As elements of” are non-degenerate, the only possible eigenvallieis, thus
for any two elements sharing an eigenvectpr: = hx = gz, which again would imply
degeneracy of + g unlessr = 0. The statement (iii) follows from (ii) if one notices that
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any two permutation matrices share an eigenvector whose components are all equal to one.
QED

The notion of the cone is convenient for restating well understood conditions for a linear
block code to be capable of recovering up to two lost blocks. Our main challenge is to find
examples of cones with sufficiently many elements, which lead to easily implementable
RAID-6 systems. We will now construct a class of cones starting with elements of a cyclic
subgroup of5 L, (F) of a prime order.

3.2 RAID-6 based on matrix generators ofZ .

We start with the following

Theorem 3.2.1.Let K be an odd number. Letbe ann x n binary matrix such that
g% = Id and Id + g™ is non-degenerate for each progedivisor m of K. Then the
elements of cyclic grougx = {Id, g, g%, ...,¢% '} form a cone.

The proof of the Theorem 3.2.1 is based on the following two lemmas.

Lemma 3.2.2.Let g be a binary matrix such thatd + ¢ is non-degenerate angl* =
Id, whereK is an integer. Then

K—1
g'=0 (3.2)

t=

Proof. Let us multiply the left hand side of (3.2) wittid + ¢) and simplify the result
using thath + ~» = 0 for any binary matrix:

K-1
(Id+9) Y g" = Id+g+g+g°+...+g" "+ +4¥

t=

= Id+g¢g8 =Id+1d=0.

As Id + g is non-degenerate, this implies thal ' g* = 0. QED

Lemma 3.2.2 is a counterpart of a well-known fact from complex analysis that roots of
unity add to zero.

Lemma 3.2.3.Let ¢ be a binary matrix such that® = Id for an odd numbe#< and
Id + g™ is non-degenerate for every proper divisarof K. Then the matrixy' + ¢* is
non-degenerate foranyl: 0 <t <[ < K.

Proof. As g% = Id, the matrixg is invertible. To prove the lemma, it is therefore
sufficient to check the non-degeneracyldf+ ¢t for 0 < t < K.

The groupZx = {1,g,4¢%,...,g5 '} is cyclic. Anelemeny; = g' for0 < t < K
generates the cyclic subgroufy,; whered is the the greatest common divisor &fand

3a natural numbem < K that dividesK’
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t and the elemeng? generates the same subgroup. Since the mafrigatisfies all the
conditions of Lemma 3.2, the sum of all elements dfx/, is zero. Therefore,

K3
0= g"=Td+g)+g?Id+g)+...+gF2Ud+g)+ 95 =0. (3.3
m=0
The grouping of terms used in (3.3) is possibld&kl is odd. Assume that matrix+ g; is
degenerate. Then there exists a non-zero binary vecoch tha{1+ ¢;)z = 0. Applying
both sides of (3.3) ta: we getg” 'z = ¢*(K~1z = 0. This contradicts non-degeneracy
of g. Thus the non-degeneracy bf+- ¢t is proved for alld < ¢t < K. QED
The proof of Theorem 3.2.1.The matrixg described in the statement of the theorem
satisfies all requirements of Lemma 3.2.3. The statement of the theorem follows from
Definition 3.1.1 of the coneQED
Theorem 3.2.1 allows one to determine whether elemenfgobelong to the same
cone by verifying a single non-degeneracy conditions imposed on the generator.
The following corollary of Theorem 3.2.1 makes an explicit link between the con-
structed cone and RAID-6:
Corollary 3.2.4. Letg be ann x n binary matrix such thag™ = Id for an odd number
K andId + g™ is non-degenerate for every proper diviserof K. The systematic linear
block code defined by the parity check matrix

P — ( ITLXTL IHX'I'L Inxn A Inxn Inxn O >

In><n g 92 gKil 0 Inxna

can recover up t@ n-bit lost blocks in known positions. Equivalently, the system of the
parity check equations

di+de+...+dg +dxg41 =0
dy+gdo+ ...+ g% Vdg +dgy2 =0 (3.4)

has a unique solution with respect to any pair of varialllés d;), 1 <i < j < K + 2.

Proof. It follows from Theorem 3.2.1. that the firéf powers ofg belong to a cone.
The statement of the corollary is an immediate consequence of Lemma 3.3, 2fqf' 1,
1<t < K.QED.

As a simple application of Theorem 3.2.1, let us show that the parity check matrix (2.5)

. . , (0 11,
does indeed satisfy all non-degeneracy requirements. The rﬁh’a&tx( L1 ) is non

. 1 1.
degenerate and has order Also, the matrixid + G = ( 10 > is non-degenerate.

Hence in virtue of Corollary 3.2.4, the parity check matrix (2.5) determines a RAID system
consisting of five disks, that protects against the failure of any two disks.



An approach to RAID-6 157
3.3 Extension ofZ-based cones for certain primes.

We will now show that for certain primes, the cone constructed in the previous sub-
section can be extended. The existence of such extensions give some curious conditions
on a prime number, one of which is new to the best of our knowledge. We start with the
following

Lemma 3.3.1.Let K > 2 be a prime number. Then the group ridg= FZ of the
cyclic group of orderK is isomorphic taF & Ft whereF = GF(29), d is the smallest
positive integer such th&? = 1 mod K,t = (K —1)/d.

Proof. By the Chinese Remainder Theorem =~ @%_ F[X]/(f;) whereX® —1 =
fo - f1--- fi is the decomposition into irreducible ovErpolynomials andfy = X — 1.

Let o be a root off; for somej > 0. Thend = deg f; is the smallest number such that
a € GF(2%) = F[X]/(f;). Hence,a?'~1 = 1 andd is the smallest with such property.
As K is prime,« is a primitive K -th root of unity. Hence< divides2? — 1 andd is the
smallest with such property.

It follows that for j > 0 all f; have degreel and allF[X]/(f;) are isomorphic to
GF(29). QED.

One case of particular interesttis= 1 which happens whefis a primitive K — 1-th
root of unity moduloK. This forceg = 1 andd = K — 1. Such primes in the first hundred
are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 [15]. If a generalised Riemann’s hypothesis
holds true then there are infinitely many such primes [5].

Lemma 3.3.2. Let K > 2 be a prime number such that is a primitive
K — 1-th root of unity moduloK. Let g be ann x n binary matrix such that
Id + g is non-degenerate ang® = Id. Then the set oRX~! — 1 matrices
S={{g"+g2+...+¢g% | 0<a; <az...<a; < K, 1 <s< %is
a cone}

Proof. Matrix g defines a ring homomorphisegh : R — M, (F), ¢(>°, axX*) =
>, arg” from the group ring to a matrix ring. Sinde+ g is invertible,

l+g+g+... 495 '=10+¢5)01+g) "' =0

1%

and1l + X + ...+ XX~!lies in the kernel of. SinceR/(1 + X + ...+ XK-1)
FIX]/(f1) = F, the images(R) is a field andS is a subset ofy(R). Finally, asf; =
1+ X + ...+ X%~lis the minimal polynomial of;, all elementgj®* + g% + ...+ g%
listed above are distinct and nonzero ahe: ¢(R) \ {0}. QED.

Notice that forK” = 3, the setS consists only of d andg.

The coneS in Lemma 3.3.2. may be difficult to use in a real system but it contains
a very convenient subcone as soonkas> 3. This subcone consists of elemeptsand
Id+ ¢’. The following theorem gives a condition on the pripfer these elements to form
a cone. This condition is new to the best of our knowledge.
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Theorem 3.3.3. The following conditions are equivalent for a prime numbBér>

(1) For anyn x n binary matrixg such that/d + g is non-degenerate ang< = Id the
set of2K — 1 matricesS = {Id, g, ¢2,...,g5 ', Id+g,Id+g?, ..., Id+ g%~ 1}
is a cone.

(2) For no primitive K'-th root of unity« in the algebraic closure dF, the element, + 1
is an K -th root of unity.

(38) Forany0 < m < K the polynomials® +1 and X™ + X + 1 are relatively prime.

(4) No primitive K -th root of unitya in the algebraic closure df satisfiesy™ +a! +1 =
Owith K >m > 1> 0.

Proof. First, we observe that (1) is equivalent to (4). If (4) fails, there exist&a
root of unity a such thate™ + o' + 1 = 0. Let f(X) be the minimal polynomial of
«. The matrixg of multiplication by the coset oKX in F[X]/(f) fails condition (1) with
gm+g +1=0.

If (4) holds andg is a matrix as in (1) then the elements®ére all invertible matrices
by Theorem 3.2.1. Moreover, it only remains to establish that each mgtrix ¢ + Id,

K >m > 1> 0isinvertible. Suppose that it is not invertible. It must have an eigenvector
v € "™ with the zero eigenvalue. It follows thgt (X), the minimal polynomial of; with
respect tay, divides bothX* +1 andX™ + X' + 1. Since 1is notaroot ok ™ + X' 41,

any roota of f,(X) in the algebraic closure df is a primitive K-th root of unity and
satisfiesx™ + ol + 1 = 0.

Equivalence of (4) and (3) is cleaf: = o' is also a primitive root, hence condition (4)
can be rewritten as no rogtsatisfies3* + 3+ 1 = 0 with K > s > 0. Thus,X¥ + 1 and
X™4+ X +1 do not have common roots in the algebraic closur® ahd must be relatively
prime.

Equivalence of (3) and (2) comes from rewriting® + o +1 = 0 asa™ = a + 1 and
observing thaty" is necessarily a primitivél'-th root of unity. QED.

This theorem allows us to sort out whether any particular prthis suitable for ex-
tending the cone.

Corollary 3.3.4. A Fermat primeK > 3 satisfies the conditions of Theorem 3.3.3. A
Mersenne prime fails the conditions of Theorem 3.3.3.

Proof. A Fermat prime is of the fornk” = 2! + 1. Hence, for a primitive'th root of
unity o

(a+D)E=(@+1)¥@+1) =02 +)a+1)=a'+a

If this is equal 1, them? + o + 1 = 0, forcing K = 3. A Mersenne prime is of the form
K =2' — 1. Hence,

(@+D¥ =(a+ 1) (a+ 1) =@ + D+ D) =(a+1)(a+1)" =1
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QED.

In fact, most of the primes appear to satisfy the conditions of Theorem 3.3.3. In
the first 500 primes, the only primes that fail are Mersenne and 73. Samir Siksek has
found several more primes that fail but are not Mersenne. These are (in the bracket we
state the order of 2 in the multiplicative group 6fF'(p)) 73 (9) 178481 (23), 262657
(27), 599479 (33), 616318177 (37), 121369 (39), 164511353 (41), 4432676798593 (49),
3203431780337 (59), 145295143558111 (65), 761838257287 (67), 10052678938039 (69),
9361973132609 (73), 581283643249112959 (77). It would be interesting to know whether
there are infinitely many primes failing the conditions of Theorem 3.3.3.

Utilising the cone in Theorem 3.3.3., we start with a matrix generator of the cyclic
group of an appropriate prime ordat to build a RAID-6 system protecting up 8¢ — 1
information disks. The explicit expression for Q-parity is

—1 2K—2
Q=)> gdi+ Y Id+g" 5, (3.5)
t= t=K
wheredy, dy, . .., ds_o are information blocks.

3.4 Specific examples of matrix generators of i and the corresponding RAID-6
systems.

Now we are ready to construct explicit examples of RAID-6 based on the theory of
cones developed in the above subsections. The non-extended code, based on the Sylvester
matrix, is known as EVENODD code [2].

Lemma 3.4.1.Let Sk be the(K — 1) x (K — 1) Sylvester matrix,

0 00 1

1 000 1

0 0 0 O 1
Sk =

0 00 1 01

0 0 O 1

Then

(i) Sk hasorderK.
(i) Matrix Id + Sk is non-degenerate K is odd and is degenerate i is even.
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Proof. (i) An explicit computation shows, that for arf)¢ — 1)-dimensional binary
vectorz and for anyl <t < K,

TK-1 Tt Tt—1
TK—-2 Tt Tt—2
TK-3 Tt
. . :L'l
t
St = + . (3.6)

. . 0
TK-1
T Tt Ti41

In the above formula;; = 0, unlessl < j < (K — 1). Therefore,S% # Id, for any
1 <t < K —1. Settingt = K in the above formula, we g(ﬁf((:c = ¢ for anyz, which
implies thatsfg = Id. Therefore, the order of the matrb is K.

(i) The characteristic polynomial &fx is f(z) = Zfigl 2*. (In order to prove this
it is sufficient to notice that the matrify is the companion matrix of the polynomial
f(z) [6]. As such,f(z) is both the characteristic and the minimal polynomial of the matrix

Sk.) Therefore,
K-1
f(Sk)=>_ Sk =0.
t=0

Notice that the matriXSx is non-degenerate as it has a positive ordeK i odd, we can
re-write the characteristic polynomial as

F(Sk) = (Id+ Sk)(1+ Sk + % + ...+ SEDy 4 gk~

Therefore, the degeneracy b + Sk will contradict the non-degeneracy 8f;. If K is
even, the sum of all rows dfd + Sk is zero, which implies degeneradED

Lemma 3.4.1 states that the mat®% generates the cyclic groufix and that the
matrix Id + Sk is non-degenerate for any odd. Given thatK is an odd prime, Corollary
3.2.4 implies that using parity equations (3.4) wjtk= Sk, it is possible to proteck” data
disks against the failure of any two disks. Furthermordfit> 3 is a Fermat prime or 2
is a primitive root modulak’, 2K — 1 data disks can be protected against double failure
thanks to the results of section 3.1.

We will refer to the RAID-6 system based on Sylvester maffix as Z x-RAID. Let
us give several examples of such systems.

(1) Z3-RAID has been considered in subsections 2.1, 2.2. It can protect 8p to
information disks against double failure. A§ = 3, protection of5 information
disks using extende@-parity (3.5) is impossible.

(2) Using Z17-RAID, one can protect up t& = 17 disks using-parity (3.4) and
up to2K — 1 = 33 disks using extende@-parity (3.5).
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(3) UsingZ,57-RAID, one can protect up t& = 257 disks usingl-parity (3.4) and
up to2K — 1 = 513 disks using extende@-parity (3.5).

It can be seen from (3.6), that the multiplication of data vectors with any power of the
Sylvester matrixSx requires one left and one right shift, onebit XOR and one AND
only. Thus the operations of updatigyyparity and recovering data withifi,-RAID does
not require any special instructions, such as Galois field look-up tables for logarithms and
products. As aresult, the implementationff-RAID can in some cases be more efficient
and quick than the implementation of the more conventional Reed-Solomon based RAID-
6. In the next section we will demonstrate the advantageofRAID using an example of
Linux kernel implementation af;7-RAID system.

4 Linux Kernel Zx-RAID Implementation

4.1 Syndrome Calculation for the Reed-Solomon RAID-6.

First, let us briefly recall the RAID-6 scheme based on Reed-Solomon code in the
Galois fieldF, see [1] for more details. LeDy,..., Dg_1 be the bytes of data from
K information disks. Then the parity bytd2 and @ are computed as follows, usirfg
g={02} e F:

P=Dy+Di+...4Dx_1,Q =Do+gDi+...+¢5 'Dg_,. (4.1)

The multiplication byg = {02} can be viewed as the following matrix multiplication.

Yo 00 0 0 0 0 0 1| |2 T7

Y1 1 0 000 0 0 0Of |21 o

Y 01 0 0 0 0 0 1] |z T B x7

ys| _ 001 0 0 0 0 1| |zs _ |72 b z7 4.2)
Y4 00 01 0 0 0 1 |xg T3 P a7

Ys 00 0 0 1 0 0 0] |zs T4

Y 00 00 0 1 0 0] |=zs 5

K _O 00 0 0 0 1 O_ Ezd .

Given (4.2), parity equations (4.1) become similar to (3.4). Indeed, the elgment
generates a cyclic group, so a 2-error correcting Reed-Solomon code is a partial case of a
cone based RAID. Howevef, i -RAID has several advantages. For instance, using
Sylvester matrices one can achieve a simpler implementation of matrix multiplication.

4Algebraically, we use the standard representation in electrofics: GF(2)[z]/I where the ideal is
generated by8 + 2% + 23 + 22 +1landg=x + I
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4.2 Linux Kernel Implementation of Syndrome Calculation

To compute thé)-parity, we rewrite (4.1) as

Q=Do+g(D1+9g(...+9(Dx—2+9gDr-1)...))) (4.3)

which require K — 1) multiplications byg = {02}.
The producty of a single byter andg = {02} can be implemented as follows.

uint8 _t x, vy; y= (X<<1) “((x & 0x80) ? Ox1d : 0x00);
Notice that(x & 0x80) picks outz; from z, so

((x & 0x80) ? 0x1d : 0x00)

selects between the two bit pattefit®11101 and00000000 depending or:;. Since the
carry is discarded fronfx << 1) ,
x << 1) = [$6,x5,1‘4,$3,$2,$1,5€0,0]((X & 0x80) ? 0Ox1d : 0x00)

(4.4)
= [Oa 07 0) T, X7, X7, Oa $7].

We can also implement the multiplication as follows.
int8 t x, y;y = (X +X) “(((x < 0)? Oxff : 0x00) & 0x1d);

Here we treat the values as signed, rather than unsigned. Whilst this implementation
appears more complex than the first (since it uses addition and comparison), it can
efficiently be implemented using SIMD instructions on modern processors, such as
MMX/SSE/SSE2/AltiVec.

In particular, we will use the following four SSE2 instructions, which store the result in
place of the second operand:

pxor X, y Iy =X "y, pand X, y 1y =X&Yy,
paddb x, y :y =x + vy, pcmpgth X, y ty=((y >x)?
Oxff : 0x00;

We implement a single multiplication with the following pseudo SSE2 assembler code.
We assume that the variablgsindc are initialised ay = 0 andc = 0x1d .

pcmpgth x, y 'y = (x < 0) ? Oxff : 0x00; // (x < 0) ? Oxff
: 0x00

paddb X, X X = X + X II x + X
pand ¢, y : y =y & Oxld; // ((x < 0) ? Oxff : Ox00) & Ox1d
pxor X, y Ty =X "y (X + X) “(((x < 0) ? Oxff :

0x00) & Ox1d)
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The comparison operation overwrites the constant 0 storgd Tinerefore, when we
implement the complete algorithm we must recreate the constant before each
multiplication. We can do it as follows.

pxor y, y Ly =y Y Iy

Besides the five instruction above we need three other instructions to complete the inner
loop of the algorithm. They are multiply, fetch a new byte of datand update the parity
variablesP and@:

P=D+P, Q =D+ 40Q. (4.5)

The complete algorithm requires the following eight instructions.

pxory, y CY =Yy "y Ny "~y=20
pcmpgtb g, y Yy =(q < 0) ? Oxff : 0x00; // (g < 0) ?

Oxff : Ox00

paddb q, g g =9+ q; II g+ ¢

pand c, y Yy =y & 0xld; /I (g < 0) ? Oxff :

0x00) & Ox1d

pxory, g :q=4qg "V I'gq = (@ + q) " ((@<0) 7
Oxff : 0x00) & 0x1d)

movdga d[i], d : d = di] /1 d[i]

pxor d, q :g=d “q; /1 d[i] “p
pxor d, p cp=d “p; /1 d[i] " 0.9

We can gain a further increase in speed by partially unrolling the "for’ loop around the
inner loop.

4.3 Reconstruction

We consider a situation that two data digks and D, have failed. We must reconstruct
D, andD,, from the remaining data diskS; (i # =, y) and the parity disk$ andQ, see
(4.1). Let us define?,, and (@, as the syndromes under an assumption that the failed
disks were zero:

Py = Z D, Quy = Z 9'D;. (4.6)

1£z,y i#z,y

Rewriting (4.1) in the light of (4.6),

Dy + Dy =P+ Py, 9Dy + 9Dy = Q + Quy- (4.7)
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Let us define
A=(1+g"")7 B=g "(14+g¢""")"" (4.8)
Now we eliminateD,. from equations (4.7):

Dy=(1+4g"") " (P+Py)+9g "(1+ ¢ ") HQ+ Quy)

(4.9
= A(P + Ppy) + B(Q + Qqy)-
Finally, D, is computed fromD,, by the back substitution into (4.7):
D, =D, + (P+ Pyy). (4.10)
4.4 Linux Kernel Implementation of Reconstruction
We compute the following values it
A=(1+g""")7" B =g (1+¢"") " =(g"+4") 7,
Dy = A(P + Pyy) + B(Q + Qay); Dy =Dy+ (P + Pyy).
(4.12)

It is worth pointing out that for specific andy, we only need to computd and B once.
The Linux kernel provides the following look-up tables:

raidé _gfmul[256][256] : Ty raidé _gfexp[256] : g*
raidé _gfinv[256] ; z! raidé _gfexi[256] (1+¢°)~1

Using this, we computel and B as follows:

A = raidé _gfexi[y-X] and B = raidé6 _gfinv[raid6 _gfexp[X]
raidé _gfexp[y]]

To reconstrucD, andD,, we start by constructing,,, and@,, using the standard
syndrome code. Then we execute the following code.

dP = P~ Pxy; Il P+ Py
dQ = Q" Qxy; I Q-+ Quy
Dy = raid6é _gfmul[A][dP] " raidé _gfmul[B][dQ]; //

A(P+ Pyy) + B(Q+ Quy)
Dx = Dy " dP; Il Dy+ (P+ Pyy)
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4.5 Z,7-RAID Implementation

The multiplication by the Sylvester matrixlooks like

~—~~

N

-

<

N—r
1
b B B 8 8 8 8 8 8 8§ 8 8 8 8 88
T DD DDDDDDDPDDDDD
O H &N o < o ©v ~ oo o £ - 9 « =
8 8 8 8 8 8 888 8 &5 54548
1

Il
1
O ~ N M < o © I~ oo o 2 = a o < 0
8 8 B 8 8 8 8 8 8 8 § 4§ & & &
1

X

Q

Il
1
Ss5383885535:5584:2%

where

(4.13)

0 000O0OO0OO0OOTO0OOOOOO0OO 01

1000 0O0OOOOOOOO0OOO0OT1
01.000O0O0OO0OO0OOOOOOTG 01
001 00O0OO0OO0OO0OOOOOO0OTQ 01

0001 0O0OO0OO0OO0OO0OO0OO0OO0OO0OOQ 01

0 0001O0O0OO0OOO0OOGOOTO0OTG 01
0 0o0o0O01O0O0OO0OO0OO0OGO0OO0OGO0OTO0OT1
0 000O0O0OT1TO0O0OO0OOGOOO0OTQO0O1

0 000O0O0OO0OT1TO0O0OO0OGO0OOO0OTQ 01

0 000O0O0OO0ODO0OT1IO0UO0O0OO0OO0OTQ 01

0 000 01

1
0 000OO0O0OO0OO0OO0OOT1TTO0OO0OO0OOQO01

0 000 O0O0O0OTO0ODO O

0 000O0OO0OO0OO0OO0OO0OO0OT1ITUO0OO0OTQ 01

0 000O0O0OO0ODO0OO0OO0OOGO0OT11IO0TQO01

0 1

1

0o 0o o000 0OO0OO0OO0OO0OOOOOO0OT11

0 000O0O0OO0OOTOO0OTO0OTQ OO

B =

We implement the multiplication of a double byje= g as follows:
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intlé6 tx,y; y=X=+YX " ((x < 0) ? Oxffff : 0x0000);

We can implement this in assembler using the following seven instructions.

pxor vy, y Y=y Ty iy “y=0
pcmpgtw q, Yy 'y = (q < 0) ? Oxffff : 0x0000; // (g < Q) ?
Oxffff : 0x0000

paddw g, g g =09+ Q; II'gq + q

pxor y, q ra=q Yy, I'g.q = (q + q) ’
/I ((g < 0) ? Oxffff : 0x0000)

movdqga d[i], d : d = d[i] I d[i]

pxor d, g :g=d “q; /1 d[i] “p

pxor d, p cp=d “p; /1 d[i] " 0.9

Below are the results of the Linux kernel RAID-6 algorithm selection programs, aimed to
select the fastest implementation of the algorithm. Algorithms using
CPU/MMX/SSE/SSEZ2 instructions with various levels of unrolling are compared. The
results were obtained from a 2.8 GHz Intel Pentium 4 (x86).

DP-RAID Z17-RAID
int32x1 694 MB/s 766 MB/s
int32x2 939 MB/s 854 MB/s
int32x4 635 MB/s 838 MB/s
int32x8 505 MB/s 604 MB/s
mmxx1 1893 MB/s 2117 MBI/s
mmxx2 2025 MBI/s 2301 MB/s
sselxl 1200 MB/s 1284 MB/s
sselx2 2000 MBI/s 2263 MBI/s
sse2x1 1850 MBI/s 2357 MBI/s
sse2x2 2702 MBI/s 3160 MBI/s

Comparing the above results against the standard Linux kernel results shows an average of
14.5% speed increase and an increase®9% for the fastest sse2x2 implementation.

This is consistent with the theoretical increase ©B8% for seven instructions instead of

eight instructions. It is worth mentioning that no look-up tables have been used to
implementZ,,-RAID.
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4.6 Zx RAID Reconstruction

We need to compute the following matrices and vectors:

A=(14g")7", B =g 1+¢"") " =(¢"+g¢")"
Dy = A(P + Pry) + B(Q + Quy), Dy =Dy + (P + Pyy).
(4.14)
We rewrite them as follows:
=Y -2, AP:P+Pa:ya AQ:Q+Q$y
D,=(1+g¢")"'AP +g "(1+¢°)'AQ, D, =D, + AP.
(4.15)

Using the standard identitigs * = ¢'"* and(1+¢)~! = 1 +¢% +... + ¢'6, we derive
new identities:
(1 +gz)71 -1 +922 +g4z +'”+gl(iz, (4 16)
g—z(l +gz)—1 — gl7—x(1 _|_gz)—1 :gl7—x(1 +g2z _|_g4z +...+gl6z).

Consequently, we need to compute

1+g) AP =(1+¢* +g¥ +...+¢')AP =
=14+ 971+ 971+ 971+ 971+ 97 (1 + 97 (1 + g7 (1 + g7*AP)))))))
(4.17)
and
gfz(l +gz)71AQ —_ 91771(1 +92z +g4z 4. +gle)AQ
_ 917—1(1+92z(1+922(1+92z(1+g2z (418)
X (1+ g1+ g1+ g (1+¢**AQ))))))))

Both (4.17) and (4.18) require only one principle operation, multiplication’by

The multiplication of a single block = gz for 1 <t < 16 can be implemented as
follows.

intlé _t X, v;
y = (x<<t) (x> (17 - 1) “(((x << (t - 1) <0 ?
Oxffff : 0x0000);

We precomputen =t — 1 andn = 17 — ¢t as they remain constant during reconstruction.
This leads to the following assembler implementation.

pxor vy, y cy=0 movdga X, Z : Z = X
psilw m, z 1 Z = X << (t-1)
pcmpgtw z, vy : y = (((x << (t-1)) < 0) ? Oxffff : 0x0000
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paddw z, z 1 Z =X <<t

pxor z, y iy = (((x << (t-1)) < 0) ? Oxffff . 0x0000) " (X
<< 1)

psriw n, X © X = x >> (17-t) pxor X, y Yy =90 “tx

Below is a table showing benchmark results of complete reconstruction algorithm
implemented using SSE2 assembler and the standard Linux kernel look-up table
reconstruction implementation, for the cases of double data disk failure, double disk
failure of one data disk and the P-parity disk, and double parity disk failure. Note the data
represents time taken to complete benchmark, so lower is better.

Failure | DD DP PQ
DP-RAID | 2917 2771 905
Z,7-RAID | 2711 1274 809

Comparing the complete reconstruction algorithm implemented using SSE2 assembler
against the standard Linux kernel look-up table implementation, shows approximigtely
speed increase fdp D failure, 54% speed increase fdp P failure and11% speed

increase forPQ failure.

5 Conclusions.

In this paper we have demonstrated thahesprovide a natural framework for the
design of RAID. They provide a flexible approach that can be used to design a system. It
is worth further theoretical investigation what other examples of cones can be constructed
or what the maximal possible size of a cone is.

We have also demonstrated that cyclic groups give rise to natural and convenient to
operate examples of cones. One particular advantage iihd®AID does not require
support of the Galois field operations.

On the practical sideZ;7-RAID and Z,5,-RAID are breakthrough techniques that
show at least 10% improvement during simulations compared to DP-RAID.
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