
Applied Mathematics & Information Sciences 5(2) (2011), 148-170

– An International Journal
c©2011 NSP

An approach to RAID-6 based on cyclic groups

Robert Jackson1, Dmitriy Rumynin2 and Oleg V. Zaboronski3

1Arithmatica, ltd., Haseley Business Centre, Warwick, CV35 7LS, UK

Email Address: robert.jackson@arithmatica.com

2Department of Mathematics, University of Warwick, Coventry, CV4 7AL, UK

Email Address: D.Rumynin@warwick.ac.uk

3Department of Mathematics, University of Warwick, Coventry, CV4 7AL, UK

Email Address: O.V.Zaboronski@warwick.ac.uk

Received June 22, 200x; Revised March 21, 200x

As the size of data storing arrays of disks grows, it becomes vital to protect data against

double disk failures. A popular method of protection is via the Reed-Solomon (RS)

code with two parity check symbols. In the present paper we construct alternative ex-

amples of linear block codes protecting against two erasures. Our construction is based

on an abstract notion of cone. Concrete cones are constructed via matrix representations

of cyclic groups of prime order. In particular, this construction produces EVENODD

code. Interesting conditions on the prime number arise in our analysis of these codes.

At the end, we analyse an assembly implementation of the corresponding system on a

general purpose processor and compare its write and recovery speed with the standard

DP-RAID system.

Keywords: RAID-6, Artin’s conjecture, Mersenne prime, Reed-Solomon Code

2000 Mathematics Subject Classification: 94B60

1 Introduction

A typical storage solution targeting a small-to-medium size enterprise is a networked

unit with 12 disk drives with total capacity of around 20 TB [9, 13]. The volume of infor-

mation accumulated and stored by a typical small-size information technology company

amounts to fifty 100-gigabyte drives. The specified mean time between failures (MTBF)

for a modern desktop drive is about 500,000 hours [14]. Assuming that such an MTBF is

actually achieved and that the drives fail independently, the probability of a disk failure in

Oleg V. Zaboronski was partially supported by Royal Society Industrial Fellowship



An approach to RAID-6 149

the course of a year is1− e−12/57 ≈ 0.2. Therefore, even a small company can no longer

avoid the necessity of protecting its data against disk failures. The use of redundant arrays

of independent disks (RAIDs) enables such a protection in a cost efficient manner.

To protect an array ofK disks against a single disk failure it is sufficient to add one

more disk to the array. For everyK bits of user data written onK disks of the array, a parity

bit equal to an exclusive OR (XOR) of these bits is written on the(K + 1)-st disk. Binary

content of any disk can be then recovered as a bitwise XOR of contents of remainingK

disks. The corresponding system for storing data and distributing parity between disks of

the array is referred to as RAID-5 [8]. Today, RAID-5 constitutes the most popular solution

for protected storage.

As the amount of data stored by humanity on magnetic media grows, the danger of

multiple disk failures within a single array becomes real. Maddock, Hart and Kean argue

that for a storage system consisting of one hundred8+P RAID-5 arrays the rate of failures

amounts to losing one array every six months [8]. Because of this danger, RAID-5 is

currently being replaced with RAID-6, which offers protection against double failure of

drives within the array. RAID-6 refers to any technique where two strips of redundant data

are added to the strips of user data, in such a way that all the information can be restored if

any two strips are lost.

A number of RAID-6 techniques are known [4, 8, 10].A well-known RAID-6 scheme

is based on the rate-255/257 Reed-Solomon code [1]. In this scheme two extra disks

are introduced for up to 255 disks of data and two parity bytes are computed per 255

data bytes. Hardware implementation of RS-based RAID-6 is as simple as operations in

F̃ = GF (256), which are byte-based. Addition of bytes is just a bitwise XOR. Multiplica-

tion of bytes corresponds to multiplication of boolean polynomials modulo an irreducible

polynomial. Multiplication can be implemented using XOR-gates, AND-gates and shifts.

Some RAID-6 schemes use only bitwise XOR for the computation of parity bits by

exploiting a two-dimensional striping of disks of the array. Examples are a proprietary

RAID-DP developed by Network Appliances [7] and EVENODD [2]. Some other RAID-6

methods use a non-trivial striping and employ only XOR operation for parity calculation

and reconstruction. Examples include X-code, ZZS-code and Park-code [8,11,12].

In all the cases mentioned above, the problem dealt with is inventing an error correct-

ing block code capable of correcting up to two erasures (we assume that it is always known

which disks have failed). In the present paper we describe a general approach to the so-

lution of this problem, which allows one to develop an optimal RAID-6 scheme for given

technological constraints (e.g. available hardware, the number of disks in the array, the

required read and write performance). We also consider an assembly implementation of an

exemplary RAID-6 system built using our method and show that it outperforms the Linux

kernel implementation of RS-based RAID-6.

The paper is organised as follows. In Section 2 we discuss RAID-6 in the context of



150 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

systematic linear block codes and construct simple examples of codes capable of correct-

ing two errors in known positions. In Section 3 we identify an algebraic structure (cone)

common to all such codes and use it to construct RAID-6 schemes starting with elements

of a cyclic group of a prime order. Section 3.3 is of particular interest to number theorists

where we discuss a new condition on the prime numbers arising in the context of RAID-6

schemes. In Section 4 we compare encoding and decoding performances of an assembly

implementation of RAID-6 based onZ17 with its RS-based counterpart implemented as a

part of Linux kernel.

Let us comment on the relation of the presented material to other modern research

efforts. Section 2 is rather standard [3]. All original theoretical material of this paper is

in Section 3. The notion of a cone is somewhat related to a non-singular difference set

of Blaum and Roth [3] but there are essential differences between them. The cone from a

cyclic group of prime order as in Lemma 3.4.1 gives EVENODD code [2]. Its extended

versions and connections to number theoretic conditions are new.

2 RAID-6 from the viewpoint of linear block codes.

Suppose that information to be written on the array of disks is broken into blocks of

lengthn bits. What is the best rate linear block code, which can protect data against the

loss of two blocks?

Altogether, there are22n possible pairs ofn-bit blocks. In order to distinguish between

them, one needs at least2n distinct syndromes. Therefore, any linear block code capable

of restoring2 lost symbols in known locations must have at least2n parity check bits.

Suppose the size of the information isKn bits orK blocks. In the context of RAID,K is

the number of information disks to be protected against the failure. Then the code’s block

size must be at least(2 + K)n and the rate is

R ≤ K

K + 2

This result is intuitively clear: to protectK information disks against double failure, we

need at least2 parity disks.

In the following subsections we construct explicit examples of linear codes for RAID-

6 for small values ofn and K. These examples both guide and illustrate our general

construction of RAID-6 codes presented in Section 3.

2.1 Redundant array of four independent disks, which protects against the failure
of any two disks.

We restrict our attention tosystematiclinear block codes. These are determined by the

parity matrix. To preserve a backward compatibility with RAID-5 schemes, we require half



An approach to RAID-6 151

of the parity bits to be the straight XOR of the information bits. Hence the general form of

the parity check matrix forK = 2 is

P =
(

In×n In×n In×n 0n×n

H G 0n×n In×n,

)
(2.1)

whereIn×n and0n×n aren × n identity and zero matrix correspondingly;G andH are

somen× n binary matrices. The corresponding parity check equations are

d1 + d2 + π1 = 0 and H · d1 + G · d2 + π2 = 0. (2.2)

Hered1, d2 aren-bit blocks written on disks 1 and 2,π1 andπ2 aren-bit parity check

blocks written on disks 3 and 4; ”·” stands for binary matrix multiplication.

MatricesG andH defining the code are constrained by the condition that the system of

parity check equations must have a unique solution with respect toany pair of variables.

To determine these constraints we need to consider the following particular cases.

(π1, π2) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables: we can compute parity bits in terms of information bits.

(d1, π2) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables: computed1 in terms ofπ1 andd2 using the first equation of (2.2) as in RAID-

5. Then computeπ2 using the second equation.

(d2, π2) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables: computed2 usingπ1 andd1 as in RAID-5. Then computeπ1 using (2.2).

(π1, d1) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables provided the matrixH is invertible.

(π1, d2) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables provided the matrixG is invertible.

(d1, d2) are lost. The system (2.2) always has a unique solution with respect to lost vari-

ables provided the matrix

(
In×n In×n

Hn×n Gn×n

)
is invertible.

As it turns out, one can build a parity check matrix satisfying all the non-degeneracy re-

quirements listed above forn = 2. The simplest choice is

H = I2×2, G =
(

0 1
1 1

)
. (2.3)

Non-degeneracy of the three matricesH, G and (2.1) is evident. For instance1,

det

(
In×n In×n

Hn×n Gn×n

)
= −1 = 1.

1The reader is aware that−1 = 1 6= 0 in characteristic 2



152 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

We conclude that the linear block code with a4 × 8 parity check matrix (2.1, 2.3)

gives rise to RAID-6 consisting of four disks. The computation of parity dibitsπ1, π2

in the described DP RAID is almost as simple as the computation of regular parity bits:

Let d1 = (d11, d12) andd2 = (d21, d22) be the dibits to be written on disks one and two

correspondingly. Then

π11 = d11 + d21, π12 = d12 + d22,

π21 = d11 + d22, π22 = d12 + d21 + d22. (2.4)

The computations involved in the recovery of lost data are bitwise XOR only. As an illus-

tration, let us write down expressions for lost data bits in terms of parity bits explicitly:

d22 = π11 + π12 + π21 + π22, d12 = π11 + π21 + π22,

d11 = π11 + π12 + π22, d21 = π12 + π22.

It is interesting to note that RAID-6 code described here is equivalent to Network Appli-

ances’ horizontal-diagonal parity RAID-DPTM with two data disks [7]. Really, diagonal-

horizontal parity system for two info disks is

A B HP DP1
C D HP2 DP2,

where strings(A,C) are written on information disk 1, strings(B, D) are written on disk

2, (HP,HP2) is horizontal parity,(DP1, DP2) is diagonal parity. By definition,HP =
A+B, HP2 = C +D, DP1 = A+D, DP2 = B +C +D, which coincides with parity

check equations (2.4).

On the other hand, the code (2.1) is a reduction of the RS code based onGF (4) which

we will describe in the next subsection.

2.2 Redundant array of five independent disks, which protects against the failure of
any two disks.

The code (2.1) can be extended to a scheme providing double protection of user data

written on three disks [3, Example 1.1]. The parity check matrix is

P =
(

I2×2 I2×2 I2×2 I2×2 02×2

I2×2 G G2 02×2 I2×2,

)
(2.5)

where2 × 2 matrix G was defined in the previous subsection. The corresponding parity

check equations are

d1 + d2 + d3 + π1 = 0, d1 + G · d2 + G2 · d3 + π2 = 0. (2.6)



An approach to RAID-6 153

The solubility of these equations with respect to any pair of variables from the

set {d1, d2, d3, π1, π2} requires two extra conditions of non-degeneracy in addition

to non-degeneracy conditions listed in the previous subsection. Namely, matrices(
I2×2 I2×2

I2×2 G2

)
and

(
I2×2 I2×2

G G2

)
must be invertible. It is possible to check the

invertibility of these matrices via a direct computation. However, in the next section we

will construct a generalisation of the above example and find an elegant way of proving

non-degeneracy.

The code (2.1) is a reduction of (2.5) corresponding tod3 = 0. Note also that the code

(2.5) is equivalent to rate-3/5 Reed-Solomon code based onGF (4): a direct check shows

that the set of2 × 2 matrices0, 1, G,G2 is closed under multiplication and addition and

all non-zero matrices are invertible. Thus this set forms a field isomorphic toGF (4). On

the other hand, as we established in the previous subsection, the code (2.1) is equivalent to

RAID-DPTM with four disks. Therefore, RAID-DPTM with four disks is a particular case

of the RS-based RAID-6. It would be interesting to see if RAID-DPTM can be reduced to

the RS-based RAID-6 in general.

We are now ready to formulate general properties of linear block codes suitable for

RAID-6 and construct a new class of such codes.

3 RAID-6 based on the cyclic group of a prime order.

3.1 RAID-6 and cones ofGLn(F).

In this subsection we will define a general mathematical object underlying all existing

algebraic RAID-6 schemes. We recall thatF = GF (2) is the field of two elements and

GLn(F) is the set ofn× n invertible matrices.

Definition 3.1.1. A cone2 C is a subset ofGLn(F) such thatg + h ∈ GLn(F) for all

g 6= h ∈ C.

This notion is related tonon-singular difference setsof Blaum and Roth [3]. The cone

satisfies the axioms P1 and P2 of Blaum and Roth but the final axiom P3 or P3’ is too

restrictive for our ends. On the other hand, we consider only binary codes while Blaum and

Roth consider codes over any finite field.

A standard example of a cone appears in the context of Galois fields. If we choose a

basis ofGF (2n) as a vector space overF then we can think ofGLn(F) as the group of

all F-linear transformations ofGF (2n). Multiplications by non-zero elements ofGF (2n)
form a cone. Ifα ∈ GF (2m) is a primitive generator andg is the matrix of multiplication

2This terminology is slightly questionable. If one asksg + h ∈ C thenC ∪ {0} is a convex cone in the

usual mathematical sense. Our choice of the term is influenced by this analogy. Non-singular difference set or

quasicone or RAID-cone could be more appropriate scientifically but would pay a heavy linguistic toll.



154 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

by α then this cone is{gm | 0 ≤ m ≤ 2n − 2}. This cone gives the RS-code with two

parity blocks.

The usefulness of cones for RAID-6 is explained by the following

Lemma 3.1.2.LetC = {g1, g2, . . . gK} ⊆ GLn(F) be a cone ofK elements. Then the

system of parity equations

dK+1 =
K∑

t=1

dt and dK+2 =
K∑

t=1

gtdt (3.1)

has a unique solution with respect to any pair of variables(di, dj) ∈ Fn × Fn, 1 ≤ i <

j ≤ K + 2. Heredi are binaryn-dimensional vectors.

Proof. The fact that system (3.1) has a unique solution with respect to(dK+1, dK+2)
is obvious.

The system has a unique solution with respect to(dK+1, dj) for anyj ≤ K: from the

second of equations (3.1),dj = g−1
j (dK+2 +

∑K
t 6=j gtdt), where we used invertibility of

gj ∈ GLn(F). With dj known,dK+1 can be computed from the first of equations (3.1).

The system has a unique solution with respect to(dK+2, dj) for anyj ≤ K: from the

first of equations (3.1),dj = dK+1 +
∑K

t 6=j dt. With dj known,dK+2 can be computed

from the second of equations (3.1).

The system has a unique solution with respect to any pair of variablesdi, dj for 1 ≤
i < j ≤ K: multiplying the first of equations (3.1) withgi and adding the first and second

equations, we getdj = (gi + gj)−1(gidK+1 + dK+2 +
∑K

t 6=i,j(gt + gi)dt). Here we used

the invertibility of the sumgi + gj for anyi 6= j, which follows from the definition of the

cone. Withdj known,di can be determined from any of the equations (3.1).QED

In the context of RAID-6,di for 1 ≤ i ≤ K can be thought of asn-bit strings of user

data,dK+1, dK+2 - asn-bit parity strings. The lemma proved above ensures that any two

strings can be restored from the remainingK strings.

We conclude that any cone can be used to build RAID-6. The following lemma gives

some necessary conditions for a cone.

Lemma 3.1.3.LetC ⊂ GLn(F) be a cone.

(i) For all g, h ∈ C such thatg 6= h and for allx ∈ GF (2m)n, gx = hx if and only if

x = 0.

(ii) No two elements of the same cone can share an eigenvector inFn.

(iii) The coneC can contain no more than one permutation matrix.

Proof. To prove (i), assume that there isx 6= 0 : gx = hx. Then(g + h)x = 0,

which contradicts the fact thatg + h is non-degenerate. Therefore,x = 0. Let us prove

(ii) now. As elements ofC are non-degenerate, the only possible eigenvalue inF is 1, thus

for any two elements sharing an eigenvectorx, x = hx = gx, which again would imply

degeneracy ofh + g unlessx = 0. The statement (iii) follows from (ii) if one notices that



An approach to RAID-6 155

any two permutation matrices share an eigenvector whose components are all equal to one.

QED

The notion of the cone is convenient for restating well understood conditions for a linear

block code to be capable of recovering up to two lost blocks. Our main challenge is to find

examples of cones with sufficiently many elements, which lead to easily implementable

RAID-6 systems. We will now construct a class of cones starting with elements of a cyclic

subgroup ofGLn(F) of a prime order.

3.2 RAID-6 based on matrix generators ofZK .

We start with the following

Theorem 3.2.1.Let K be an odd number. Letg be ann × n binary matrix such that

gK = Id and Id + gm is non-degenerate for each proper3 divisor m of K. Then the

elements of cyclic groupZK = {Id, g, g2, . . . , gK−1} form a cone.

The proof of the Theorem 3.2.1 is based on the following two lemmas.

Lemma 3.2.2.Let g be a binary matrix such thatId + g is non-degenerate andgK =
Id, whereK is an integer. Then

K−1∑
t=0

gt = 0 (3.2)

Proof. Let us multiply the left hand side of (3.2) with(Id + g) and simplify the result

using thath + h = 0 for any binary matrix:

(Id + g)
K−1∑
t=0

gt = Id + g + g + g2 + . . . + gK−1 + gK−1 + gK

= Id + gK = Id + Id = 0.

As Id + g is non-degenerate, this implies that
∑K−1

t=0 gt = 0. QED

Lemma 3.2.2 is a counterpart of a well-known fact from complex analysis that roots of

unity add to zero.

Lemma 3.2.3.Let g be a binary matrix such thatgK = Id for an odd numberK and

Id + gm is non-degenerate for every proper divisorm of K. Then the matrixgl + gt is

non-degenerate for anyt, l : 0 ≤ t < l < K.

Proof. As gK = Id, the matrixg is invertible. To prove the lemma, it is therefore

sufficient to check the non-degeneracy ofId + gt for 0 < t < K.

The groupZK = {1, g, g2, . . . , gK−1} is cyclic. An elementgt = gt for 0 < t < K

generates the cyclic subgroupZK/d whered is the the greatest common divisor ofK and

3a natural numberm < K that dividesK



156 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

t and the elementgd generates the same subgroup. Since the matrixgd satisfies all the

conditions of Lemma 3.2.2, the sum of all elements ofZK/d is zero. Therefore,

0 =

K
d −1∑
m=0

gm
t = (Id + gt) + g2

t (Id + gt) + . . . + gK−3
t (Id + gt) + gK−1

t = 0. (3.3)

The grouping of terms used in (3.3) is possible asK/d is odd. Assume that matrix1+gt is

degenerate. Then there exists a non-zero binary vectorx such that(1+gt)x = 0. Applying

both sides of (3.3) tox we getgK−1
t x = gt(K−1)x = 0. This contradicts non-degeneracy

of g. Thus the non-degeneracy of1 + gt is proved for all0 < t < K. QED
The proof of Theorem 3.2.1.The matrixg described in the statement of the theorem

satisfies all requirements of Lemma 3.2.3. The statement of the theorem follows from

Definition 3.1.1 of the cone.QED
Theorem 3.2.1 allows one to determine whether elements ofZK belong to the same

cone by verifying a single non-degeneracy conditions imposed on the generator.

The following corollary of Theorem 3.2.1 makes an explicit link between the con-

structed cone and RAID-6:

Corollary 3.2.4. Letg be ann×n binary matrix such thatgK = Id for an odd number

K andId + gm is non-degenerate for every proper divisorm of K. The systematic linear

block code defined by the parity check matrix

P =
(

In×n In×n In×n . . . In×n In×n 0
In×n g g2 . . . gK−1 0 In×n,

)

can recover up to2 n-bit lost blocks in known positions. Equivalently, the system of the

parity check equations

d1 + d2 + . . . + dK + dK+1 = 0

d1 + gd2 + . . . + gK−1dK + dK+2 = 0 (3.4)

has a unique solution with respect to any pair of variables(di, dj), 1 ≤ i < j ≤ K + 2.

Proof. It follows from Theorem 3.2.1. that the firstK powers ofg belong to a cone.

The statement of the corollary is an immediate consequence of Lemma 3.1.2 forgt = gt−1,

1 ≤ t ≤ K. QED.
As a simple application of Theorem 3.2.1, let us show that the parity check matrix (2.5)

does indeed satisfy all non-degeneracy requirements. The matrixG =
(

0 1
1 1

)
is non

degenerate and has order3. Also, the matrixId + G =
(

1 1
1 0

)
is non-degenerate.

Hence in virtue of Corollary 3.2.4, the parity check matrix (2.5) determines a RAID system

consisting of five disks, that protects against the failure of any two disks.



An approach to RAID-6 157

3.3 Extension ofZK-based cones for certain primes.

We will now show that for certain primes, the cone constructed in the previous sub-

section can be extended. The existence of such extensions give some curious conditions

on a prime number, one of which is new to the best of our knowledge. We start with the

following

Lemma 3.3.1.Let K > 2 be a prime number. Then the group ringR = FZK of the

cyclic group of orderK is isomorphic toF ⊕ F̂t whereF̂ = GF (2d), d is the smallest

positive integer such that2d = 1 mod K, t = (K − 1)/d.

Proof. By the Chinese Remainder Theorem,R ∼= ⊕k
j=0F[X]/(fj) whereXK − 1 =

f0 · f1 · · · ft is the decomposition into irreducible overF polynomials andf0 = X − 1.

Let α be a root offj for somej > 0. Thend = deg fj is the smallest number such that

α ∈ GF (2d) ∼= F[X]/(fj). Hence,α2d−1 = 1 andd is the smallest with such property.

As K is prime,α is a primitiveK-th root of unity. Hence,K divides2d − 1 andd is the

smallest with such property.

It follows that for j > 0 all fj have degreed and allF[X]/(fj) are isomorphic to

GF (2d). QED.

One case of particular interest ist = 1 which happens when2 is a primitiveK − 1-th

root of unity moduloK. This forcest = 1 andd = K−1. Such primes in the first hundred

are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 [15]. If a generalised Riemann’s hypothesis

holds true then there are infinitely many such primes [5].

Lemma 3.3.2. Let K > 2 be a prime number such that2 is a primitive

K − 1-th root of unity moduloK. Let g be an n × n binary matrix such that

Id + g is non-degenerate andgK = Id. Then the set of2K−1 − 1 matrices

S = {ga1 + ga2 + . . . + gas | 0 ≤ a1 < a2 . . . < as < K, 1 ≤ s ≤ K−1
2 is

a cone.}

Proof. Matrix g defines a ring homomorphismφ : R → Mn(F), φ(
∑

k αkXk) =∑
k αkgk from the group ring to a matrix ring. Since1 + g is invertible,

1 + g + g2 + . . . + gK−1 = (1 + gK)(1 + g)−1 = 0

and1 + X + . . . + XK−1 lies in the kernel ofφ. SinceR/(1 + X + . . . + XK−1) ∼=
F[X]/(f1) ∼= F̂, the imageφ(R) is a field andS is a subset ofφ(R). Finally, asf1 =
1 + X + . . . + XK−1 is the minimal polynomial ofg, all elementsga1 + ga2 + . . . + gas

listed above are distinct and nonzero andS = φ(R) \ {0}. QED.

Notice that forK = 3, the setS consists only ofId andg.

The coneS in Lemma 3.3.2. may be difficult to use in a real system but it contains

a very convenient subcone as soon asK > 3. This subcone consists of elementsgi and

Id+gj . The following theorem gives a condition on the primep for these elements to form

a cone. This condition is new to the best of our knowledge.



158 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

Theorem 3.3.3. The following conditions are equivalent for a prime numberK >

2.

(1) For anyn× n binary matrixg such thatId + g is non-degenerate andgK = Id the

set of2K − 1 matricesS = {Id, g, g2, . . . , gK−1, Id+ g, Id + g2, . . . , Id+ gK−1}
is a cone.

(2) For no primitiveK-th root of unityα in the algebraic closure ofF, the elementα+1
is anK-th root of unity.

(3) For any0 < m < K the polynomialsXK +1 andXm +X +1 are relatively prime.

(4) No primitiveK-th root of unityα in the algebraic closure ofF satisfiesαm+αl+1 =
0 with K > m > l > 0.

Proof. First, we observe that (1) is equivalent to (4). If (4) fails, there exists anK-th

root of unity α such thatαm + αl + 1 = 0. Let f(X) be the minimal polynomial of

α. The matrixg of multiplication by the coset ofX in F[X]/(f) fails condition (1) with

gm + gl + 1 = 0.

If (4) holds andg is a matrix as in (1) then the elements ofS are all invertible matrices

by Theorem 3.2.1. Moreover, it only remains to establish that each matrixgm + gl + Id,

K > m > l > 0 is invertible. Suppose that it is not invertible. It must have an eigenvector

v ∈ Fn with the zero eigenvalue. It follows thatfv(X), the minimal polynomial ofg with

respect tov, divides bothXK +1 andXm +X l +1. Since 1 is not a root ofXm +X l +1,

any rootα of fv(X) in the algebraic closure ofF is a primitiveK-th root of unity and

satisfiesαm + αl + 1 = 0.

Equivalence of (4) and (3) is clear:β = αl is also a primitive root, hence condition (4)

can be rewritten as no rootβ satisfiesβs + β + 1 = 0 with K > s > 0. Thus,XK + 1 and

Xm +X +1 do not have common roots in the algebraic closure ofF and must be relatively

prime.

Equivalence of (3) and (2) comes from rewritingαm + α + 1 = 0 asαm = α + 1 and

observing thatαm is necessarily a primitiveK-th root of unity.QED.

This theorem allows us to sort out whether any particular primeK is suitable for ex-

tending the cone.

Corollary 3.3.4. A Fermat primeK > 3 satisfies the conditions of Theorem 3.3.3. A

Mersenne prime fails the conditions of Theorem 3.3.3.

Proof. A Fermat prime is of the formK = 2t + 1. Hence, for a primitiveKth root of

unity α

(α + 1)K = (α + 1)2
t

(α + 1) = (α2t

+ 1)(α + 1) = α−1 + α.

If this is equal 1, thenα2 + α + 1 = 0, forcingK = 3. A Mersenne prime is of the form

K = 2t − 1. Hence,

(α + 1)K = (α + 1)2
t

(α + 1)−1 = (α2t

+ 1)(α + 1)−1 = (α + 1)(α + 1)−1 = 1.



An approach to RAID-6 159

QED.

In fact, most of the primes appear to satisfy the conditions of Theorem 3.3.3. In

the first 500 primes, the only primes that fail are Mersenne and 73. Samir Siksek has

found several more primes that fail but are not Mersenne. These are (in the bracket we

state the order of 2 in the multiplicative group ofGF (p)) 73 (9) 178481 (23), 262657

(27), 599479 (33), 616318177 (37), 121369 (39), 164511353 (41), 4432676798593 (49),

3203431780337 (59), 145295143558111 (65), 761838257287 (67), 10052678938039 (69),

9361973132609 (73), 581283643249112959 (77). It would be interesting to know whether

there are infinitely many primes failing the conditions of Theorem 3.3.3.

Utilising the cone in Theorem 3.3.3., we start with a matrix generator of the cyclic

group of an appropriate prime orderK to build a RAID-6 system protecting up to2K − 1
information disks. The explicit expression for Q-parity is

Q =
K−1∑
t=0

gtdt +
2K−2∑

t=K

(Id + gt−K+1)dt, (3.5)

whered0, d1, . . . , d2K−2 are information blocks.

3.4 Specific examples of matrix generators ofZK and the corresponding RAID-6
systems.

Now we are ready to construct explicit examples of RAID-6 based on the theory of

cones developed in the above subsections. The non-extended code, based on the Sylvester

matrix, is known as EVENODD code [2].

Lemma 3.4.1.LetSK be the(K − 1)× (K − 1) Sylvester matrix,

SK =




0 0 0 · · · 1
1 0 0 0 · · 1
0 1 0 0 0 · 1
· · · · · · ·
0 0 0 · 1 0 1
0 0 0 · · 1 1




.

Then

(i) SK has orderK.

(ii) Matrix Id + SK is non-degenerate ifK is odd and is degenerate ifK is even.



160 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

Proof. (i) An explicit computation shows, that for any(K − 1)-dimensional binary

vectorx and for any1 ≤ t ≤ K,

St
K




xK−1

xK−2

xK−3

·
·
·
·

x1




=




xt

xt

xt

·
·
·
·
xt




+




xt−1

xt−2

·
x1

0
xK−1

·
xt+1




. (3.6)

In the above formulaxj ≡ 0, unless1 ≤ j ≤ (K − 1). Therefore,St
K 6= Id, for any

1 ≤ t ≤ K − 1. Settingt = K in the above formula, we getSK
K x = x for anyx, which

implies thatSK
K = Id. Therefore, the order of the matrixSK is K.

(ii) The characteristic polynomial ofSK is f(x) =
∑K−1

t=0 xt. (In order to prove this

it is sufficient to notice that the matrixSK is the companion matrix of the polynomial

f(x) [6]. As such,f(x) is both the characteristic and the minimal polynomial of the matrix

SK .) Therefore,

f(SK) =
K−1∑
t=0

St
K = 0.

Notice that the matrixSK is non-degenerate as it has a positive order. IfK is odd, we can

re-write the characteristic polynomial as

f(SK) = (Id + SK)(1 + SK + S3
K + . . . + S

(K−3)
K ) + SK−1

K

Therefore, the degeneracy ofId + SK will contradict the non-degeneracy ofSK . If K is

even, the sum of all rows ofId + SK is zero, which implies degeneracy.QED
Lemma 3.4.1 states that the matrixSK generates the cyclic groupZK and that the

matrixId+SK is non-degenerate for any oddK. Given thatK is an odd prime, Corollary

3.2.4 implies that using parity equations (3.4) withg = SK , it is possible to protectK data

disks against the failure of any two disks. Furthermore, ifK > 3 is a Fermat prime or 2

is a primitive root moduloK, 2K − 1 data disks can be protected against double failure

thanks to the results of section 3.1.

We will refer to the RAID-6 system based on Sylvester matrixSK asZK-RAID. Let

us give several examples of such systems.

(1) Z3-RAID has been considered in subsections 2.1, 2.2. It can protect up to3
information disks against double failure. AsK = 3, protection of5 information

disks using extendedQ-parity (3.5) is impossible.

(2) UsingZ17-RAID, one can protect up toK = 17 disks usingQ-parity (3.4) and

up to2K − 1 = 33 disks using extendedQ-parity (3.5).



An approach to RAID-6 161

(3) UsingZ257-RAID, one can protect up toK = 257 disks usingQ-parity (3.4) and

up to2K − 1 = 513 disks using extendedQ-parity (3.5).

It can be seen from (3.6), that the multiplication of data vectors with any power of the

Sylvester matrixSK requires one left and one right shift, onen-bit XOR and one AND

only. Thus the operations of updatingQ-parity and recovering data withinZK-RAID does

not require any special instructions, such as Galois field look-up tables for logarithms and

products. As a result, the implementation ofZK-RAID can in some cases be more efficient

and quick than the implementation of the more conventional Reed-Solomon based RAID-

6. In the next section we will demonstrate the advantage ofZK-RAID using an example of

Linux kernel implementation ofZ17-RAID system.

4 Linux Kernel ZK-RAID Implementation

4.1 Syndrome Calculation for the Reed-Solomon RAID-6.

First, let us briefly recall the RAID-6 scheme based on Reed-Solomon code in the

Galois field F̃, see [1] for more details. LetD0, . . . , DK−1 be the bytes of data from

K information disks. Then the parity bytesP andQ are computed as follows, using4

g = {02} ∈ F̃:

P = D0 + D1 + . . . + DK−1, Q = D0 + gD1 + . . . + gK−1DK−1. (4.1)

The multiplication byg = {02} can be viewed as the following matrix multiplication.




y0

y1

y2

y3

y4

y5

y6

y7




=




0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0







x0

x1

x2

x3

x4

x5

x6

x7




=




x7

x0

x1 ⊕ x7

x2 ⊕ x7

x3 ⊕ x7

x4

x5

x6




(4.2)

Given (4.2), parity equations (4.1) become similar to (3.4). Indeed, the elementg

generates a cyclic group, so a 2-error correcting Reed-Solomon code is a partial case of a

cone based RAID. However,ZK-RAID has several advantages. For instance, using

Sylvester matrices one can achieve a simpler implementation of matrix multiplication.

4Algebraically, we use the standard representation in electronics:F̃ = GF (2)[x]/I where the idealI is

generated byx8 + x4 + x3 + x2 + 1 andg = x + I



162 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

4.2 Linux Kernel Implementation of Syndrome Calculation

To compute theQ-parity, we rewrite (4.1) as

Q = D0 + g(D1 + g(. . . + g(DK−2 + gDK−1) . . .))) (4.3)

which requires(K − 1) multiplications byg = {02}.
The producty of a single bytex andg = {02} can be implemented as follows.

uint8 t x, y; y= (x<<1) ˆ ((x & 0x80) ? 0x1d : 0x00);

Notice that(x & 0x80) picks outx7 from x, so

((x & 0x80) ? 0x1d : 0x00)

selects between the two bit patterns00011101 and00000000 depending onx7. Since the

carry is discarded from(x << 1) ,

(x << 1) = [x6, x5, x4, x3, x2, x1, x0, 0]((x & 0x80) ? 0x1d : 0x00)

= [0, 0, 0, x7, x7, x7, 0, x7].
(4.4)

We can also implement the multiplication as follows.

int8 t x, y; y = (x +x) ˆ (((x < 0)? 0xff : 0x00) & 0x1d);

Here we treat the values as signed, rather than unsigned. Whilst this implementation

appears more complex than the first (since it uses addition and comparison), it can

efficiently be implemented using SIMD instructions on modern processors, such as

MMX/SSE/SSE2/AltiVec.

In particular, we will use the following four SSE2 instructions, which store the result in

place of the second operand:

pxor x, y : y = x ˆ y; pand x, y : y = x & y;

paddb x, y : y = x + y; pcmpgtb x, y : y = (y > x) ?

0xff : 0x00;

We implement a single multiplication with the following pseudo SSE2 assembler code.

We assume that the variablesy andc are initialised asy = 0 andc = 0x1d .

pcmpgtb x, y : y = (x < 0) ? 0xff : 0x00; // (x < 0) ? 0xff

: 0x00

paddb x, x : x = x + x; // x + x

pand c, y : y = y & 0x1d; // ((x < 0) ? 0xff : 0x00) & 0x1d

pxor x, y : y = x ˆ y; // (x + x) ˆ (((x < 0) ? 0xff :

0x00) & 0x1d)



An approach to RAID-6 163

The comparison operation overwrites the constant 0 stored iny . Therefore, when we

implement the complete algorithm we must recreate the constant before each

multiplication. We can do it as follows.

pxor y, y : y = y ˆ y; // y ˆ y = 0

Besides the five instruction above we need three other instructions to complete the inner

loop of the algorithm. They are multiply, fetch a new byte of dataD and update the parity

variablesP andQ:

P = D + P, Q = D + gQ. (4.5)

The complete algorithm requires the following eight instructions.

pxor y, y : y = y ˆ y; // y ˆ y = 0

pcmpgtb q, y : y = (q < 0) ? 0xff : 0x00; // (q < 0) ?

0xff : 0x00

paddb q, q : q = q + q; // q + q

pand c, y : y = y & 0x1d; // ((q < 0) ? 0xff :

0x00) & 0x1d

pxor y, q : q = q ˆ y; // g.q = (q + q) ˆ (((q < 0) ?

0xff : 0x00) & 0x1d)

movdqa d[i], d : d = d[i] // d[i]

pxor d, q : q = d ˆ q; // d[i] ˆ p

pxor d, p : p = d ˆ p; // d[i] ˆ g.q

We can gain a further increase in speed by partially unrolling the ’for’ loop around the

inner loop.

4.3 Reconstruction

We consider a situation that two data disksDx andDy have failed. We must reconstruct

Dx andDy from the remaining data disksDi (i 6= x, y) and the parity disksP andQ, see

(4.1). Let us definePxy andQxy as the syndromes under an assumption that the failed

disks were zero:

Pxy =
∑

i 6=x,y

Di, Qxy =
∑

i 6=x,y

giDi. (4.6)

Rewriting (4.1) in the light of (4.6),

Dx + Dy = P + Pxy, gxDx + gyDy = Q + Qxy. (4.7)



164 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

Let us define

A = (1 + gy−x)−1, B = g−x(1 + gy−x)−1. (4.8)

Now we eliminateDx from equations (4.7):

Dy = (1 + gy−x)−1(P + Pxy) + g−x(1 + gy−x)−1(Q + Qxy)

= A(P + Pxy) + B(Q + Qxy).
(4.9)

Finally, Dx is computed fromDy by the back substitution into (4.7):

Dx = Dy + (P + Pxy). (4.10)

4.4 Linux Kernel Implementation of Reconstruction

We compute the following values iñF:

A = (1 + gy−x)−1, B = g−x(1 + gy−x)−1 = (gx + gy)−1,

Dy = A(P + Pxy) + B(Q + Qxy), Dx = Dy + (P + Pxy).
(4.11)

It is worth pointing out that for specificx andy, we only need to computeA andB once.

The Linux kernel provides the following look-up tables:

raid6 gfmul[256][256] : xy raid6 gfexp[256] : gx

raid6 gfinv[256] : x−1 raid6 gfexi[256] : (1 + gx)−1

Using this, we computeA andB as follows:

A = raid6 gfexi[y-x] and B = raid6 gfinv[raid6 gfexp[x] ˆ
raid6 gfexp[y]]

To reconstructDx andDy we start by constructingPxy andQxy using the standard

syndrome code. Then we execute the following code.

dP = P ˆ Pxy; // P + Pxy

dQ = Qˆ Qxy; // Q + Qxy

Dy = raid6 gfmul[A][dP] ˆ raid6 gfmul[B][dQ]; //

A(P + Pxy) + B(Q + Qxy)
Dx = Dy ˆ dP; // Dy + (P + Pxy)



An approach to RAID-6 165

4.5 Z17-RAID Implementation

The multiplication by the Sylvester matrixg looks like



y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15




= B ×




x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15




=




x15

x0 ⊕ x15

x1 ⊕ x15

x2 ⊕ x15

x3 ⊕ x15

x4 ⊕ x15

x5 ⊕ x15

x6 ⊕ x15

x7 ⊕ x15

x8 ⊕ x15

x9 ⊕ x15

x10 ⊕ x15

x11 ⊕ x15

x12 ⊕ x15

x13 ⊕ x15

x14 ⊕ x15




. (4.12)

where

B =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




(4.13)

We implement the multiplication of a double bytey = gx as follows:



166 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

int16 t x, y; y = (x + x) ˆ ((x < 0) ? 0xffff : 0x0000);

We can implement this in assembler using the following seven instructions.

pxor y, y : y = y ˆ y; // y ˆ y = 0

pcmpgtw q, y : y = (q < 0) ? 0xffff : 0x0000; // (q < 0) ?

0xffff : 0x0000

paddw q, q : q = q + q; // q + q

pxor y, q : q = q ˆ y; // g.q = (q + q) ˆ
// ((q < 0) ? 0xffff : 0x0000)

movdqa d[i], d : d = d[i] // d[i]

pxor d, q : q = d ˆ q; // d[i] ˆ p

pxor d, p : p = d ˆ p; // d[i] ˆ g.q

Below are the results of the Linux kernel RAID-6 algorithm selection programs, aimed to

select the fastest implementation of the algorithm. Algorithms using

CPU/MMX/SSE/SSE2 instructions with various levels of unrolling are compared. The

results were obtained from a 2.8 GHz Intel Pentium 4 (x86).

DP-RAID Z17-RAID

int32x1 694 MB/s 766 MB/s

int32x2 939 MB/s 854 MB/s

int32x4 635 MB/s 838 MB/s

int32x8 505 MB/s 604 MB/s

mmxx1 1893 MB/s 2117 MB/s

mmxx2 2025 MB/s 2301 MB/s

sse1x1 1200 MB/s 1284 MB/s

sse1x2 2000 MB/s 2263 MB/s

sse2x1 1850 MB/s 2357 MB/s

sse2x2 2702 MB/s 3160 MB/s

Comparing the above results against the standard Linux kernel results shows an average of

14.5% speed increase and an increase of16.9% for the fastest sse2x2 implementation.

This is consistent with the theoretical increase of14.3% for seven instructions instead of

eight instructions. It is worth mentioning that no look-up tables have been used to

implementZ17-RAID.



An approach to RAID-6 167

4.6 ZK RAID Reconstruction

We need to compute the following matrices and vectors:

A = (1 + gy−x)−1, B = g−x(1 + gy−x)−1 = (gx + gy)−1

Dy = A(P + Pxy) + B(Q + Qxy), Dx = Dy + (P + Pxy).
(4.14)

We rewrite them as follows:

z = y − x, ∆P = P + Pxy, ∆Q = Q + Qxy

Dy = (1 + gz)−1∆P +g−x(1 + gz)−1∆Q, Dx = Dy + ∆P.
(4.15)

Using the standard identitiesg−k = g17−k and(1 + g)−1 = 1 + g2 + . . . + g16, we derive

new identities:

(1 + gz)−1 = 1 + g2z + g4z + . . . + g16z,

g−x(1 + gz)−1 = g17−x(1 + gz)−1 = g17−x(1 + g2z + g4z + . . . + g16z).
(4.16)

Consequently, we need to compute

(1 + gz)−1∆P = (1 + g2z + g4z + . . . + g16z)∆P =

= 1 + g2z(1 + g2z(1 + g2z(1 + g2z(1 + g2z(1 + g2z(1 + g2z(1 + g2z∆P )))))))
(4.17)

and

g−x(1 + gz)−1∆Q = g17−x(1 + g2z + g4z + . . . + g16z)∆Q

= g17−x(1 + g2z(1 + g2z(1 + g2z(1 + g2z

× (1 + g2z(1 + g2z(1 + g2z(1 + g2z∆Q))))))))

(4.18)

Both (4.17) and (4.18) require only one principle operation, multiplication bygt.

The multiplication of a single blocky = gtx for 1 ≤ t ≤ 16 can be implemented as

follows.

int16 t x, y;

y = (x << t) ˆ (x >> (17 - t)) ˆ (((x << (t - 1)) < 0) ?

0xffff : 0x0000);

We precomputem = t− 1 andn = 17− t as they remain constant during reconstruction.

This leads to the following assembler implementation.

pxor y, y : y = 0 movdqa x, z : z = x

psllw m, z : z = x << (t-1)

pcmpgtw z, y : y = (((x << (t-1)) < 0) ? 0xffff : 0x0000



168 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

paddw z, z : z = x << t

pxor z, y : y = (((x << (t-1)) < 0) ? 0xffff : 0x0000) ˆ (x

<< t)

psrlw n, x : x = x >> (17-t) pxor x, y : y = g ˆ t x

Below is a table showing benchmark results of complete reconstruction algorithm

implemented using SSE2 assembler and the standard Linux kernel look-up table

reconstruction implementation, for the cases of double data disk failure, double disk

failure of one data disk and the P-parity disk, and double parity disk failure. Note the data

represents time taken to complete benchmark, so lower is better.

Failure DD DP PQ

DP-RAID 2917 2771 905

Z17-RAID 2711 1274 809

Comparing the complete reconstruction algorithm implemented using SSE2 assembler

against the standard Linux kernel look-up table implementation, shows approximately7%
speed increase forDD failure,54% speed increase forDP failure and11% speed

increase forPQ failure.

5 Conclusions.

In this paper we have demonstrated thatconesprovide a natural framework for the

design of RAID. They provide a flexible approach that can be used to design a system. It

is worth further theoretical investigation what other examples of cones can be constructed

or what the maximal possible size of a cone is.

We have also demonstrated that cyclic groups give rise to natural and convenient to

operate examples of cones. One particular advantage is thatZK-RAID does not require

support of the Galois field operations.

On the practical side,Z17-RAID and Z257-RAID are breakthrough techniques that

show at least 10% improvement during simulations compared to DP-RAID.

Acknowledgements

The authors would like to thank Arithmatica, Ltd. for the opportunity to use its research

facilities. The authors would also like to thank Robert Maddock and Igor Shparlinski for

valuable information on the subject of the paper. Finally, the authors are indebted to Samir

Siksek for the interest in the prime number condition that appears in this paper and compu-

tation of several primes satisfying it.



An approach to RAID-6 169

References

[1] H. P. Anvin, The mathematics of RAID-6, online paper,

http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf, Accessed 6 June 2008.
[2] M. Blaum, J. Brady, J. Bruck, J. Menon, EVENODD: An Efficient Scheme for Tol-

erating Double Disk Failures in RAID Architectures,IEEE Trans. Computers44
(1995), 192-202.

[3] M. Blaum, R. Roth, On lowest density MDS codes,IEEE Trans. Inform. Theory45
(1999), 46-59.

[4] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, D. A. Patterson, Coding tech-

niques for handling failures in large disk arrays,Algorithmica12 (1994), 182-208.
[5] C. Hooley, On Artin’s Conjecture,J. Reine Angew. Math.226(1967), 209-220.
[6] R. Lidl and H. Niederreiter,Finite Fields, Second Edition, Cambridge University

Press, 1997.
[7] C. Lueth, RAID-DP TM : NetApp implementation of RAID double parity for

data protection,online paper, http://www.netapp.com/library/tr/3298.pdf, Accessed

6 June 2008 .
[8] R. Maddock, N. Hart, T. Kean, Surviving two disk failures. Introducing

various ’RAID-6’ implementations, white paper, Xyratex Ltd., May 2005,

http://www.xyratex.com/technology/white-papers.aspx, Accessed 6 June 2008.
[9] D. Reine, IBM Introduces the DS3000 Series for the SMB Lowering Cost, Increas-

ing Storage Capacity,The Clipper Group Navigator, TCG2007005, January 2007,

http://www.clipper.com/research/TCG2007005.pdf, Accessed 17 March 2010.
[10] K. Srinivasan, C. J. Colbourn, Failed disk recovery in double erasure RAID arrays,J.

Discrete Algorithms5 (2007), 115-128.
[11] L. Xu, J. Bruck, X-code: MDS array codes with optimal encoding,IEEE Trans. In-

form. Theory45 (1999), 272-276.
[12] G. V. Zaitsev, V. A. Zinovev, N. V. Semakov, Minimum-check-density codes for cor-

recting bytes of errors, erasures, or defects,Problems Inform. Transmission19(1983),

197-204
[13] NETGEAR Extends Leadership in SMB Storage with Two High-Performance Rea-

dyNAS Solutions for Virtualized Environments,Netgear press release, March 2010,

http://www.readynas.com/?p=3610, Accessed 17 March 2010.
[14] Next Generation Mobile Hard Disk Drives,white paper, Fujitsu Inc.,

http://www.fujitsu.com/downloads/COMP/fcpa/hdd/sata-mobile-ext-dutywp.pdf,

Accessed 6 June 2008.
[15] Primes with primitive root 2,The On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/ njas/sequences/A001122, Accessed 6 June 2008.



170 Robert Jackson and Dmitriy Rumynin and Oleg V. Zaboronski

Robert Jackson is a Senior Engineer at Imagination Technolo-

gies, Ensigma Communication group. His research interests include

information theory, cryptography and computer arithmetic, targeting

practical and efficient VLSI implementations. In 2008 he earned a

Ph.D. in Mathematics from the University of Warwick.

Dmitriy Rumynin earned his MSc in Mathematics from Novosi-

birsk State University in 1994 and PhD in Mathematical from Uni-

versity of Massachusetts at Amherst in 1998. He is a reader at the

Department of Mathematics, University of Warwick, Coventry, UK.

His research interests are Algebra, Geometric Representation Theory

and Computer Arithmetic.

Oleg Zaboronski was born in 1968 in Moscow. He earned his MSc

in Theoretical Physics from Moscow Engineering Physics Institute in

1993 and PhD in Mathematical Physics from University of California

at Davis in 1997. He is a reader at the Department of Mathematics,

University of Warwick, Coventry, UK. Currently he is research leave

with Siglead Inc. (Yokohama, Japan). His research interests are Statis-

tical Physics, Turbulence, Data Detection and Decoding Algorithms.


