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Abstract: Based on compressed sensing, a new bit-plane image coding scheme was presented. Due to different important for different
image bit-plane, the new method is robust to bit error, and has the advantages of simple structure and easy software and hardware
implementation. Because the values of the image bit-plane are 1 or zero, one order difference matrix was chosen as sparse transform
matrix, and the simulation show that it has more sparse presentations. For the general 8-bit images, its have 8 Bit-plane, eighth Bit-plane
is Most Significant Bit-plane, so we can adopt more measure vectors for reconstruction image precision. At the same time, this kind of
image codec scheme can meet many application demands. The method partitioned an image into 8 bit-plane, and made the orthogonal
transform using the one order difference matrix for each bit plane, and then formed multiple descriptions after using local Hadamard
Matrix measurements of each bit plane. At decoding end, it reconstructed the original image approximately or exactly with the received
bit streams by using the Orthogonal Match Pursuit (OMP) algorithms. The proposed method can construct more descriptions with
lower complexity because the process of bit plane data measuring is simple and easy to hardware realize. Experiment results show that
the proposed method can reconstruction image with different precision and it can easily generate more descriptions.

Keywords: bit-plane, random measurements,compressed sensing, image coding.

1. Introduction

Image compression is currently an active research area,as
it offers the promise of making the storage or transmis-
sion of images more efficient. The aim of image com-
pression [1] is to reduce the data size of image and then
make the image stored or transmitted in an efficient form.
Over the last two decades there has been significant re-
search directed toward development of transform codes,
with the discrete-cosine and wavelet transforms [2] consti-
tuting two important examples. The discrete cosine trans-
form (DCT) is employed in the JPEG standard [3], with
wavelets employed in the JPEG2000 standard [4]. Wavelet-
based transform coding [5] explicitly exploits the struc-
ture [6] manifested in the wavelet coefficients of typical
data. Specifically, for most natural data (signals and im-
ages) the wavelet coefficients are compressible, implying
that a large fraction of the coefficients may be set to zero
with minimal impact on the signal reconstruction accuracy.
However, this is an inherently wasteful process(in terms of
both sampling rate and computational complexity), since

one gathers and processes the entire image even though
an exact representation is not required explicitly.This nat-
urally suggests the question: can we sense compressible
signals in a compressible way? In other words, can we
sense only that part of the signal that will not be thrown
away?

Over the past few years, a new framework called as
compressive sampling (CS) has been developed for simul-
taneous sampling and compression. It builds upon the ground
breaking work by Candes et al. [7] and Donoho [8], who
showed that under certain conditions, a signal can be pre-
cisely reconstructed from only a small set of measurements.
The CS principle provides the potential of dramatic reduc-
tion of sampling rates, power consumption and computa-
tion complexity in digital data acquisitions. Due to its great
practical potentials, it has stirred great excitements both
in academia and industries in the past few years [9–11].
Most of the recent papers study two problems of CS. One
is to find the optimal sampling ensembles and study the
methods for fast implementation of the CS ensembles [12–
14]. The other one is to develop fast and practical recon-
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Figure 1 Image codec based on compressed sensing

struction algorithms to recover the signal and suppress the
noise introduced by CS [13–16].However, most of existing
works in CS remain at the theoretical study. In particular,
they are not suitable for real-time sensing of natural image
as the sampling process requires to access the entire target
at once [17]. In addition, the reconstruction algorithms are
generally very expensive.

In this paper, we apply CS to image representation and
propose a new image representation scheme. Different from
the previous works on compressive imaging [18,19], which
treat the whole image as a compressible signal, we decom-
pose an image into 8 bit-planes. For the bit-plane com-
pressed sensing algorithms of natural images proposed by
this paper, the original image is divided into several bit
planes according to pixel depth and each bit-plane is pro-
cessed independently using the same transform operator
and different measure operator. For the general 8-bit im-
ages, its have 8 Bit-plane, eighth Bit-plane is Most Signif-
icant Bit-plane, so we can adopt more measure vectors for
reconstruction image precision. The main advantages of
our proposed system include: (a) Measurement operator
can be easily stored and implemented through a random
under sampled filter bank; (b) bit plane-based measure-
ment is more advantageous for the hardware application
as the encoder does not need to send the sampled data un-
til the whole image is measured; (c) Since each bit-plane
is processed independently, the initial solution can be eas-
ily obtained and the reconstruction process can meet the
different application demand,such as wireless Sensor Net-
works (WSN), remote sensing and compressed imaging.

The rest of this paper is organized as follows:section
2 briefly reviews the basics of compressed sensing. OMP
algorithms are introduced in section 3. Bit-plane coding
scheme based on compressed sensing are presented in Sec-
tion 4. The performance of the methods is then assessed in
Section 5.We conclude our paper and suggest some possi-
ble future directions in Section 6.

2. Compressed Sensing

Compressed sensing acquisition of data might have an im-
portant impact for the design of imaging devices where
data acquisition is expensive. The Image codec system based
compressed sensing was showed in ”Fig.1”. CS theory as-
serts that it is possible to recover certain signals from far
fewer samples than those used by traditional methods. To
make this possible two premises must be met: sparsity,

which refers to the signals of interest, and incoherence,
which refers to the random sensing vectors.compressed
sensing theory mainly include sparse representation, mea-
surement and reconstruction.

1.Sparse representations: Consider a length-N, real-valued
,one-dimensional ,discrete-time signal x indexed as x(n)n ∈
[1, 2, ..., N ].According to the signal processing theory, the
signal x is a linear combination of the sparse basis ΨT =
[ψ1, ψ2, ..., ψN ], that is

f =
N∑

k=1

ψkαk = Ψα (1)

Where αk = ⟨f, ψk⟩ α and f isN1 column vector,and
the sparse basis matrix Ψ is N ×N with the basis vectors
ψn as columns.Since ψ should be orthogonal, we can ob-
tain α from f as

α = ψ∗ (2)

The signal f is K-sparse if it is a linear combination
of only K basis vectors; that is , only K of the αk coeffi-
cients in (1) are nonzero and (N −K) are zero. In general,
most of the signal f have a sparse or nearly sparse repre-
sentation α if we choose ψ as a DCT or wavelet matrix.
For example, one can consider only keeping the largest K
coefficients and discarding the N − K small coefficients
without much perceptual loss. Then the coefficient vector
is sparse in a strict sense since all but a few of its entries are
zero, which meet demand of compressed sensing theory.

The sample-then-compress is transform coding frame-
work. The theory of compressed sensing exploits the sig-
nal sparsity, bypasses the sampling process and directly
acquires a compressed form of the signal by measuring in-
ner products between the signal and a set of functions. By
doing so, measurements are no longer point samples, but
rather random sums of samples taken across the entire sig-
nal.

2.Measurement: In CS, we do not measure or encode
the K significant αk directly. rather ,we measure and en-
code M < N projections ym =

⟨
f, φT

m

⟩
of the signal

using the measure matrix Φ = [φ1, φ2, ..., φM ] , where
ΦT
m denotes the transpose of Φm .

y = ϕf (3)

Where y is an M × 1 column vector, and the measure-
ment basis matrix ϕ is M × N . then, by substituting f in
equation (2) using equation (1), y can be written as

y = ϕf = ϕψα = Θα (4)

Where Θ = ΦΨ is M × N matrix. The measure-
ment process is not adaptive, meaning that Φ is fixed and
does not depend on the signal x. To ensure the stability
of CS, the measurement matrix Φ must be incoherent with
the sparsifying basis Ψ .Surprisingly,the incoherence holds
with high probability between an arbitrary basis and a ran-
domly generated one, e.g., i.i.d. Gaussian or Bernoulli ±1
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vectors. The matrix ϕ(M ×N ) is called the measurement
matrix, and the number of measurementsM is very impor-
tant for CS reconstruction.

3.Reconstruction: in Equation (4), there areN unknowns
but only M equations, with M << N , the solutions for
are infinite. Obviously, it is an ill-posed problem recover-
ing α from y . the strong prior knowledge of sparsity in f
gives us achieved using optimization by searching for the
sparest signal that agrees with the M observed measure-
ments in y. the key observation is that the signal f is the
solution to the L0 minimization

minα ∥α∥L0

subject to y = ϕψα(5)
Unfortunately, solving the L0 minimization is known

to be an NP-complete problem[20]. As a consequence, there
have been a large number of alter optimizations proposed
in recent literature. Perhaps the most prominent of these is
basis pursuit(BP)[21] which applies a convex relaxation to
the L0 problem resulting in an L1 problem.

minα ∥α∥ l1

subject to y = ϕψα(6)
According to the compressive sensing theory, if f is

K-sparse and the condition M >= cKlog(N/K) is satis-
fied, we can exactly reconstruct the K-sparse vector with
probality close to one by solving the following L1 opti-
mization

Compressed sensing theory requires one of two con-
straints for this L1 recovery to be efficient: (1) Sparsity:
the signal f should be sparse in the basis B. It means that f
can be represented using only a small number s << N of
atoms from B. ∥Ψf∥0 ≤ s, The theory extends to signals
that are well approximated with a signal that is s-sparse
in B. (2) Incoherence: When sampling a signal, the coher-
ence of the sensing signals with respect to the transform
domain where the signal has a sparse representation takes
a lot of relevance.

µ(Φ, Ψ) =
√
N •max1≤k,j≤N |⟨φk, ψj⟩| (7)

Where Φ and Ψ are the sensing and transform basis
of RN , from linear algebra it follows that µ(Φ, Ψ) ∈⌊
1,
√
N
⌋

.
There were some iterative greedy algorithms for solv-

ing(6) such as the Primal-Dual Interior-Point Algorithm
[22], Matching Pursuit (MP) algorithm [23], Orthogonal
Matching Pursuit (OMP) algorithm[24], Gradient Projec-
tion for Sparse Reconstruction (GPSR) algorithm [25] etc.

3. Orthogonal matching pursuit

In this paper, OMP(Orthogonal matching pursuit) algo-
rithm is used in the signal reconstruction process. OMP

is a so called greedy algorithm for sparse approximation.
Tropp and Gilbert[24]showed that OMP can reliably re-
construc a signal acquired by compressed sensing. Sup-
pose f is a K-sparse signal in RN ,and letΦ ∈ RN be a
measurement matrix with columns φ1, φ2, ..., φN . Then
the signal f can be represented by an M-dimensional mea-
surement vectory = Φf . Since x has only K non-zero
components, y can be regarded as a linear combination of
K columns from Φ . The reconstruction of f can be re-
cast as the problem of identifying the locations of these K
columns. OMP solves this problem by going through an it-
eration process. At each iteration OMP selects the column
of Φ which is mostly correlated with the residual of mea-
surement y, and then it removes the contribution of this
column to compute a new residual. It is hope that the loca-
tions of allK columns will be identified afterK iterations.
Through basis-pursuit[1] is the classical approach to re-
cover signals acquired via compressed sensing, OMP gives
us a very suitable alternative. the reason why one would
prefer OMP over basis-pursuit is because it is faster and
easier to implement, but its guarantees are not as strong
as those of Basis Pursuit. The OMP algorithm can thus be
described as follows:

Input: Measurement matrix Φ , measurement vector y,
sparsity levelK

Output: index set Λ , measurement estimate ai , resid-
ual ri = y − ai.

procedure:
r0 = y, Λ0 = Φ, t = 1
while
t≤ k
λt = argmax[j=1,2,...,N ] |⟨rt−1, φj⟩|
Λt = Λt−1

∪
{λt}

ϕt = [ϕt−1φλt ]
xt = argminx ∥ϕtx− y∥2
at = ϕtxt, rt = y − a
end while

4. Bit-plane coding scheme

At this moment, the bit-plane (bp) concept is necessary
to be defined. Bit-planes are each one of the different bits
needed to express a number in binary. Since we consider
the first bp is the highest bit, and bp n is the lowest bit for
a number represented with n bits (Fig.2)it is possible to
take profit of processing together the same bp of all the
coefficients of a bit plane ,because by this way we can
make difference between more and less important bits. the
Most significant Bit-plane can captures most significant
information,and has a higher sparsity than the others,so
it requires much fewer measurements for perfect recon-
struction and hence helps to improve reconstruction per-
formance.

At present, for Bit-plane image coding method, gener-
ally the first step in the encoder process is to apply wavelet
transform to obtain the image in a transform domain in
which is expected to be sparse. The transform image is
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divided in smaller blocks in the second step, and then bit-
plane processing is finished in the third step [26]. For these
algorithms, the word lengths of wavelet transform coeffi-
cients affect the complex of the algorithms. In this paper,
the original image can be divided 8 bit-planes firstly, and
then the each bit-plane will be processing using the or-
thonormal transform base. The presented algorithms are
easy to design and hardware implement because the word
length of the original image pixel value is constant.

In this paper, OMP was used for the image reconstruct.
but OMP algorithm are not particularly suitable for two di-
mension image processing, the image data is transformed
into one dimensional data. For the 256×256 image ”lenna”,
We divide it into 32×32small block(Fig.3), so we can take
every 32× 32 block as a length N = 1024 column vector
x(Fig.4). OMP was used in the reconstruction step.

For every block, the bit plane CS method structure shown
in Fig. 3. according to the important of different bit plane,
CS codec can be flexible designed, so the scheme can meet
the demand of different applications.In the presented method,
the cs code part will be implemented as the structure of
Fig.4. Considering that the value of Bit-plane pixel are
”1”or ”0”, one order difference matrix was chosen as sparse
transform matrix. The one order difference matrix was shown
in Fig. 5. when the ”lenna” (256× 256 was used the tested
image, Using the D matrix, the sparse representation of
the 32 × 32 block of the ”lenna” 8th bit plane can be ac-

0 200 400 600 800 1000 1200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5 One dimension sparse representation for the 32*32 im-
age block of the 8th bit plane
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quired(Fig.6). for the image block, sparsity K is 890. after
the sparse transform was finished, K is 81.

Because the hadamard matrix is an nn matrix with en-
tries 1, considering demand of compressed sensing the-
ory, the local hadamard matrix was chose as the measure
matrix for meeting the demand of hardware implementa-
tion of compressed sensing.For the bit-plane image coding
scheme, the researchers can design own CS codec with us-
ing different measure matrix and sparse transform basis.
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5. Experimental results

In order to demonstrated the performance of the algorithms
presented by us, the lenna(256*256) image will chosen
as tested image. We consider eight-bit grayscale images
and denote the least significant bit-plane as the 1st bit-
plane, the most significant bit-plane the 8th bit-plane. In
the commonly used grayscale images the study shows bi-
nary 0s and 1s are almost equally distributed in the lower
bit-planes. The bias between 0s and 1s starts gradually in-
creasing in the higher bit-planes. This kind of bias indi-
cates redundancy, implying that we can compress bits in a
particular bit-plane or more than one bit-plane.

The 256 × 256 image ”lenna” can be divided 256 the
column vector,and each column vector can be seen as 256×
1 one dimension data, so the column vector can be recon-
structed using the OMP algorithms. the number of mea-
surements M for the measurement matrix was choose as
followed rules:

M >= 4K (8)

Regardless of the signal’s dimension N . In order to
evaluate image reconstruction quality, Peak Signal to Noise
Ration(PSNR) are defined as follows:

MSE =
1

MN

M∑
x=1

N∑
y=1

[
f(x, y)− f̂(x, y))

]2
(9)

PSNR = 10log10(255 ∗ 255/MSE) (10)

Adopted the method presented in this paper, the orig-
inal and reconstruction image of the 8th bit plane of the
lenna image were shown in Fig 9. For the presented method,
the reconstruction image were shown in Fig. 10 and Fig.11
when the measurement value M are 180 and 130,and PSNR
were 48.8456 and 36.3046 respectively. The 7th bit plane
of the lenna image were shown in Fig.12.The same opera-
tor was finished, and the reconstruction results were shown
in Fig.13 and Fig.14. PSNR were 38.5599 and 35.3834
when the measurement value M are 200 and 180. Because
the bit-plane image coding scheme are main research con-
tent in this paper, the OMP algorithms used for this paper
can not been optimized by the authors, so the experimental
results can been further improved.

From the simulation results, we know that the image
reconstruction precision can be adjusted with the measure-
ment value M. moreover, because the value are 0 or 1 in
each bit plane, the process of bit plane data measuring
is simple and easy to hardware realize through correctly
adopting measurement and transform matrix.

According to the significant of the different bit plane,
the measurement M can use the different value, so the pro-
posed method can construct more descriptions with lower
complexity. When the different bit plane used different M
value, the reconstruction image was shown in Fig.15, and
PSNR is 28.8811.

Original Image

Figure 9 8th bit-plane of the lenna

Reconstruction Image

Figure 10 8th bit-plane reconstruction for M=180

Reconstruction Image

Figure 11 8th bit-plane reconstruction for M=130

Original Image

Figure 12 7th bit-plane of the lenna

6. Conclusion
We know today that most of existing works in CS remain
at the theoretical study. In particular, they are not suitable
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Reconstruction Image

Figure 13 7th bit-plane reconstruction for M=200

Reconstruction Image

Figure 14 7th bit-plane reconstruction for M=130

Reconstruction Image

Figure 15 Reconstruction lenna using different M in different
bit plane

for hardware implementation. In addition, the reconstruc-
tion algorithms are generally very expensive. The method
proposed in this paper take advantage of property of the
bit plane, and can formulated many description for differ-
ent application. Using the one order difference matrix, the
bit plane can acquire more sparse presentations, and can be
reconstructed for different precision. For the image codec
scheme, most of the sensing process finished integer op-
erator, so it is easy to hardware implementation. When the
OMP algorithms used by this paper were optimized,we can
acqurie better experimental results whcih demonstrate the
image codec scheme.In the future, the fast CS hardware
implementation algorithms based on the bit plane will be
studied.
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