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Abstract: Recently, most of the methods used to measure and analysis signal property are based on the linear transform theory, such
as FFT, STFT, wavelet, etc. Unfortunately, these methods usually cause meaningless results when it is used to analysis nonlinear
signal. In this paper, we use Hilbert-Huang transform (HHT) to review the nonlinear distortion and define a novel nonlinear parameter
named Nonlinear Distortion Degree (NDD) which is based on intra-wave frequency modulation measurement. The loudspeaker model
simulations are used to illustrate the intra-wave frequency modulation caused by nonlinear distortion. The results agree that NDD can
reveal more accurate and physical meaningful nonlinear distortion characteristic.
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1. Introduction

In the signal analysis field, Fourier based analysis meth-
ods such as FFT and STFT take the dominated position.
However, there are some crucial restrictions of the Fourier
spectral analysis: the system must be linear and the data
must be strictly periodic or stationary; otherwise, the re-
sulting spectrum will make little physical sense. By far,
some time-frequency analysis methods, including wavelet
analysis, Wigner-Ville distribution, etc. have been used for
non-stationary signal analysis and achieve excellent result-
s, but they have their respective limitations [1]. Because of
limited length of the basic wavelet function, wavelet may
cause energy leakage. Beside this, wavelet analysis has the
difficulty for its non-adaptive nature when it encounters
nonlinear problem in which deformed wave-profile may
cause spurious harmonics. The difficulty with WVD is the
severe cross terms which will make some frequency ranges
have negative power. On the other hand, limited by sig-
nal analysis principle, researches on the nonlinear distor-
tion phenomenon did not get significant progress. Recent-
ly, nonlinear distortion is measured in term of total har-
monic distortion (THD) which is the ratio of the harmon-
ic wave energy to total signal energy. Obviously, it is too
rough for the interesting details.

Huang et. al. raised a novel signal processing method
named Hilbert-Huang Transform (HHT) based on EMD
(Empirical Mode Decomposition), which is suitable for
analyzing nonlinear and non-stationary signal [2]. Differ-
ent from the traditional signal processing methods, the H-
HT is an adaptive decomposition method and can yield
more physical results. EMD is a complete, approximately
orthogonal and self-adaptive method which has the ability
to decompose signal by time scale. Some numerical exper-
iments show that EMD behaves as a dyadic filter bank [3,
4].

As a strongly nonlinear system, loudspeaker is asso-
ciated with several nonlinear effects such as electronic,
magnetic, mechanical and sound. In the early stage, the
displacement of the diaphragm in the low-frequency range
was found can be described by Duffing equation [5]. Loud-
speaker is considered as a mass/spring device driven by a
Lorentz force and loaded by acoustical impedance. Such a
model was presented in term of equivalent parameters by
Thiele and Small [6].

In this paper, the HHT method and its improvements
was studied firstly. Then, a novel nonlinear distortion pa-
rameter called nonlinear distortion degree (NDD) is pre-
sented based on intra-wave frequency modulation which
is a unique definition in HHT. Finally a Duffing-like loud-
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speaker model is learned and simulated under different
voltages. The simulation results demonstrate that the wave
profile deformation caused by nonlinear distortion should
be represented as intra-wave frequency modulation. It also
verifies NDD is more accuracy and physical for nonlinear
measurement.

2. Hilbert-Huang Transform Method

To analysis the nonlinear and non-stationary signal, the
definition of instantaneous frequency and energy is need-
ed, which must be functions of time. The principle of in-
stantaneous energy and envelop is accepted widely, but the
opinion of instantaneous frequency was under arguments
for a long time until Hilbert Transform was introduced to
define analytic signals by Gabor [7].

2.1. Instantaneous Frequency and Empirical
Mode Decomposition

Gabor’s theory is given as follow: for an arbitrary real-
valued signal, X(t), the Hilbert transform is defined as

Y (t) =
1

π
P

∫ +∞

−∞

X(τ)

t− τ
dτ (1)

where P denotes the Cauchy principal value. X(t) and
Y (t) form the complex conjugate pair, then we can have
the analytic signal, Z(t).

Z(t) = X(t) + jY (t) = a(t)ejθ(t) (2)

in which

a(t) =
√
X2(t) + Y 2(t) (3)

θ = arctan
Y (t)

X(t)
(4)

Here a is the instantaneous amplitude, and θ is the in-
stantaneous phase function. The instantaneous frequency
is simply defined as

ω(t) =
dθ(t)

dt
(5)

With both amplitude and frequency being a function of
time, we can express the amplitude in terms of a function
of time and frequency. However, Cohen point out that only
the ’monocomponent signal’ can be transformed to instan-
taneous frequency by Hilbert transform[8]. The monocom-
ponent signal means that at any given time, there is only
one frequency value. The definition of ’monocomponent’
is not clear before N. E. Huang proposed the definition of
intrinsic mode function (IMF). An IMF is a function that
satisfies two conditions[2]: (1) in the whole data set, the
number of extrema and the number of zero crossings must

either equal or differ at most by one; and (2) at any point,
the mean value of the envelope defined by the local max-
ima and the envelope defined by the local minima is ze-
ro. Unfortunately, most of the practical data are not IMF-
s. Therefore, a method called Empirical Mode Decompo-
sition (EMD) was proposed to decompose a complicated
signal into a group of IMFs. Given a signal x(t), the effec-
tive algorithm of EMD can be summarized as follows:

1.Find out all local extrema of x(t), obtain the upper and
lower envelope which are the cubic spline interpolated
of its local maxima and minima.

2.Calculate the mean function m1(t) of the envelopes.
3.Compute the residue value h1(t) = x(t) − m1(t). If
h1(t) satisfies the two conditions of IMF, it should be
an IMF. Otherwise, treat h1(t) as the signal, repeat the
shifting steps 1-3 on it until the shifting result is an
IMF, we denoted it as c1(t).

4.Obtain the residue r1(t) = x(t) − c1(t). Apply the
above procedure on it to extract another IMFs.

5.The process is repeated until the last residue rn(t) is a
monotonic function or has at most one local extremum.

The shift result is highly determined by the stop criterion.
Different stop criterions make results vary. Although there
are several kinds of stop criterion, Wu et. al. suggest fixed
sifting time criterion[9]. In separate research, Flandrin and
Wu point out that EMD is in fact a dyadic filter bank[3,4].
In the research by Wu and Huang[10], the dyadic property
is available only shift times is about 10. Too many or too
few iterator numbers would decrease the dyadic property.

2.2. Time-Frequency Distribution Spectrum

In order to obtain the time-frequency-energy distribution
of given signal, a naturally step is to apply the Hilbert
transform to each IMF component and calculate the in-
stantaneous frequency by means of Equation (5). Unfortu-
nately, some theoretic condition limit this presumable ap-
plication. A major problem is caused by Bedrosian’s theo-
ry[11].

From Equation (5) we can conclude that the instan-
taneous frequency is only determinate by phase function.
For any IMF x(t), we can express it in terms of

x(t) = a(t) cos θ(t) (6)

The physically meaningful instantaneous frequency require
the signal to satisfy

H [a(t) cos θ(t)] = a(t)H [cos θ(t)] (7)

where H[·] denotes the Hilbert transform. The Bedrosian
theory point out that only if the Fourier spectrum of a(t)
and cos θ(t) are absolutely disjoint in frequency space and
the the frequency range of the cos θ(t) is higher than a(t),
the Equation (7) is valid. Unfortunately, practical data sel-
dom satisfy this condition. To overcome this difficulty, a
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normalization scheme is proposed by Huang et. al.[12].
The algorithm is given as follows: for arbitrary data x(t)
given as Equation (6),

1.Find all of the maximum points of the absolute value
of x(t).

2.Get the upper envelop e1(t) by spline interpolation of
these maximum points

3.Conduct the normalization scheme on the x(t):

f1(t) =
x(t)

e1(t)
(8)

Ideally, f1(t) should be identical to cos θ(t), but the
envelop e1(t) often cut x(t) when a(t) changes sharply.
Under this circumstance, f1(t) may have values higher
than 1.

4.To obtain useful FM part, the normalization is used as
an iterative process

fn(t) =
fn−1(t)

en(t)
n = 2, 3, . . . (9)

until all the maxium values are 1.
5.Then the FM and AM components are defined as

F (t) = fn(t) (10)

A(t) =
x(t)

F (t)
(11)

The combination of the normalization scheme and the ap-
plication of Hilbert transform to the FM component are
called Normalized Hilbert transform (NHT). Then the time-
frequency distribution can be defined as follows:

H(ω, t) = Re

[
n∑

i=1

Ai(t)e
j
∫
Fi(t)dt

]
(12)

3. Intra-wave Frequency Modulation and
Nonlinear Distortion Degree

In the HHT principle, the fluctuating of instantaneous fre-
quency in one oscillation is regarded as intra-wave fre-
quency modulation. The intra-wave frequency modulation
is a unique definition of HHT and based on a common
phenomenon: if the frequency changes from time to time
within a wave, its profile can no longer be a pure sine or
cosine function. Therefore, any wave-profile deformation
from the simple sinusoidal implies the intra-wave frequen-
cy modulation [2]. However, this important nonlinear in-
formation is totally lost in Fourier spectral analysis and
wavelet analysis. In the past, the wave profile deformation
was treated as harmonic distortion. Intra-wave frequency
modulation offers new understanding on nonlinear oscilla-
tion systems in more details.

With the power of HHT, we can discuss the definition
of nonlinear distortion. To quantify the nonlinear distor-
tion, an index is needed to give a quantitative measure of

how far the final outputs of nonlinear system deviates from
original signal.

To define the nonlinear distortion degree, NDD, the
first step is to obtain the marginal spectrum M(ω) of sig-
nal. Marginal spectrum is defined as the integral of HHT
time-frequency spectrum

M(ω) =

∫ ∞

0

H(ω, t)dt (13)

which offers a measure of total amplitude contribution from
each frequency value.

Consequently, the degree of nonlinear distortion is de-
fined as the max deviation from the carrier frequency.

NDD =
max |M(ω)− fc|

fc
(14)

Obviously, for a linear system, the output signal’s marginal
spectrum will concentrate to the carrier signal frequency.
Then, the NDD will be identically zero. Under this condi-
tion, the Fourier spectrum can equal to the marginal spec-
trum and make physical sense. If the marginal spectrum
spreads into a frequency range, this index will no longer
be zero, then the physical sense of Fourier spectrum will
decrease. The higher the NDD value, the more nonlinear
is the signal.

The degree of nonlinear can also be a function of time
implicitly, because the definition depends on the time length
of integration of marginal spectrum as shown in Equation
(13). As a result, a signal can be piecewise linear. There-
fore, the nonlinear distortion degree can be modified to
vary with time. The NDD(t) is defined as

NDD(t) =
max |M(ω)− fc|

fc
(15)

in which the overline indicates average in a short time span
at time t. For based on intra-wave frequency modulation,
the NDD have the potential to reveal more details in non-
linear distortion.

4. Loudspeaker Experimental Results

4.1. The Loudspeaker Model

The large signal behavior in low frequency rang of loud-
speaker can be modeled by a group of simplified nonlin-
ear differential equations[13], such as Equation (16) and
Equation (17).

E(t) = Rebic +
d(L(x)ic)

dt
+ Φ(x)ẋ (16)

Φ(x)ic = Mmsẍ+Rmsẋ+ k(x)x− 1

2

dL(x)

dx
i2c (17)

The Equation (16) is the electrical part of the mod-
el, where E(t) is the voltage, ic is the current and x is
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the loudspeaker diaphragm displacement. ẋ and ẍ denote
the loudspeaker diaphragm velocity and acceleration re-
spectively, where the overdots represent first and second
derivatives of x. The main electrical parameters are the
voice-coil electrical resistance Reb and the voice-coil non-
linear self inductance L(x). The Equation (17) describes
the mechanical part, which is modeled as a damped mass-
spring mechanical system, in which the Mms is moving
mass (including air mass), Rms is mechanical damping
and k(x) is nonlinear stiffness. Beside them, there is an
added reluctance force − 1

2
dL(x)
dx i2c(t) caused by the non-

linear self-inductance. The two equations are connected
by the loudspeaker motor interdependence between them.
Additionally, the nonlinear force factor Φ(x) of Equation
(16) denotes the ratio between the force produced by the
motor and the current.

The nonlinear differential equation that describes the
nonlinear vibration can be derived if we approximate Φ(x),
L(x) and k(x) by a truncated power series:

Φ(x) = ϕ0 + ϕ1x+ ϕ2x
2 + · · ·+ ϕnx

n (18)

L(x) = l0 + l1x+ l2x
2 + · · ·+ lnx

n (19)

k(x) = k0 + k1x+ k2x
2 + · · ·+ knx

n (20)

The nonlinear coefficients ϕi, li and ki can be esti-
mated from experimental results, using the procedure de-
veloped by Park and Hong[14]. Using such a model, the
harmonic distortion of the diaphragm velocity at low fre-
quency range can be predicted with good agreement of real
measurements.

The model simulation and real loudspeaker measure-
ment are studied later. The loudspeaker to be analyzed
is TianAi PW-11C, with the parameters:Reb = 5.87(Ω),
Leb = 207.321(µH), Mms = 2.0144(Ns/m), k0 =

2282(N/m), Φ0 = 4.762(N/A) and E(t) =
√
2A sin(ωt).

The same parameters are also used in the model.

4.2. Model Simulation

The distortion analysis for the loudspeaker was carried out
by means of simulation tests with 1v, 5v, 10v and 15v
at 125Hz, 250Hz and 500Hz stimulate signal respective-
ly.The instantaneous frequency is calculated from the di-
aphragm displacement with different driven voltage and
shown in terms of overlapping the diaphragm displace-
ment diagram with the same time axis.

At the beginning of our simulation, we carried out the
test under small stimulate signal at low frequency. In the
Figure (1), with the 125Hz sinusoidal driven signal at 1v,
the vibration of the diaphragm is almost similar with pure
sinusoidal wave and the instantaneous frequency is fair-
ly close to a horizontal line. We can learn form the figure
that deformation appears at both ends of the instantaneous

frequency curve. In the EMD algorithm, the cubic splines
interpolation creates top and bottom envelopes which are
implemented in the first step of the shifting process. It is
difficult to interpolate data near the beginnings or ends,
where the cubic splines can have swings. Estimation of top
and bottom envelopes is difficult as there are not enough
data [15]. From the diagram, we can reach the conclusion:
with small stimulate voltage, loudspeaker behaves like lin-
ear system.
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Figure 1 loudspeaker model simulate result with 1v and 125Hz
sine signal stimulate

With the increasing of the input signal voltage from
1v to 15v, the nonlinear effect is enhanced notably. In the
traditional Fourier transform analysis, this nonlinear phe-
nomenon is recognized as harmonics in infinite frequency
range. Figure (2) demonstrate that the instantaneous fre-
quency fluctuates in the whole time length. The degree of
the oscillation reflects the nonlinear distortion.
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Figure 2 Instantaneous frequencies of model test results with 1v,
7v, 10v, 15v stimulate at 125Hz
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Under different driven signal voltage, there is a signif-
icant phenomenon: following the increasing of stimulate
voltage, the nonlinear effects grow correspondingly. It is
due to the nonlinear of electrodynamic coil-magnet system
and the large displacements of the rim[16]. In the process
of oscillation, the nonlinear effects make the diaphragm
displacement no longer a pure sinusoidal function, which
is a typical intra-wave frequency modulation phenomenon.
By contrast, due to the nonlinear deformation of diaphrag-
m vibration, in linear analysis methods, it leads to various
phenomena: harmonic, subharmonic and superharmonic
frequency entrainment and chaotic behavior in small range
of control parameters[17–19]. These frequency structures
reveal that the output of loudspeaker have the nonlinear
distortion which is expressed as intra-wave frequency mod-
ulation in HHT principle uniquely. The intra-wave frequen-
cy modulation means the frequency changes within a wave-
length whose wave profile is no longer a pure sinusoidal
function. Therefor, the the wave profile deformation which
is known as nonlinear distortion implies the intra-wave fre-
quency modulation. The nonlinear distortion usually illus-
trate in terms of harmonics in Fourier analysis. However,
these harmonics generally do not have physical meaning
because FFT is not suitable for nonlinear signal. The intra-
wave frequency modulation is a better definition of these
nonlinear phenomena.Furthermore, based on the principle
of HHT, the distortion components do not spread energy
over whole frequency range. It just concentrate into a nar-
row frequency band which match the practical perception
better.

4.3. Experiment Results

The measurements for the loudspeaker was carried out with
137.5Hz, 275Hz, 550Hz, 1100Hz, 2200Hz, 4400Hz and
8800Hz respectively.

The test result of the stimulate signal from 137.5Hz to
4400Hz is shown in Figure (3), in which the instantaneous
frequency of the loudspeaker output fluctuates 2 times in
one wave cycle. Obviously, the structure of the loudspeak-
er output instantaneous frequency is illustrated as intra-
wave frequency modulation. Furthermore, the frequency
deviation varies under different stimulate frequency. From
137.5Hz to 1100Hz, the IF fluctuate range decrease to al-
most zero. On the other hand, from 1100Hz to 4400Hz, the
range raise significantly. This means the smallest nonlin-
ear distortion appears at 1100Hz and increases when stim-
ulates become both higher and lower.

When stimulate frequency increases to 8800Hz, the in-
stantaneous frequency of the loudspeaker output disunite
into 3 IMF. The joint distribution is shown in Figure (4).
From the diagram, we can see that the highest frequency
oscillation mode take the dominate percentage of the en-
ergy. Nevertheless, there are two extra component which
indicate that the nonlinear distortion under 8800Hz stim-
ulate is very high and have the crosstalk distortion with
lower frequency components.
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Figure 3 Instantaneous frequency of loudspeaker output with
137.5Hz, 275Hz, 550Hz, 1100Hz, 2200Hz and 4400Hz stimu-
late.

Figure 4 The time-frequency-amplitude distribution of 8800Hz
stimulate.

4.4. NDD and THD Comparison

Total Harmonic Distortion (THD) is a common parameter
to characterize nonlinear distortion, which is defined as

THD =

√
∞∑
i=2

H2
i

H1
(21)

where H1 denotes the level of fundamental frequency and
Hi denotes the level of ith harmonic. The difficulty of
THD is the Fourier spectrum lost some important nonlin-
ear information which represents the characteristic of sys-
tem. Therefore, the THD offers only an approximation for
the distortion.

The NDD and the THD are measurement for all the
experiment data. The results under different voltages are
shown in Figure (5).
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Figure 5 NDD and THD measurement results for the simulation
data.

Both of NDD and THD reveal the nonlinear character-
istic from different aspect. From the results of NDD and
THD, we can extract the general character: with the in-
creasing of stimulate signal voltage, the distortion of loud-
speaker output decrease notably. On the other hand, the
NDD parameter clearly demonstrate the increasing trend
of distortion with the raise of stimulate voltage. By con-
trast, the THD results fail to show this important charac-
teristic. The difference between the THD and NDD agrees
that NDD can represent more detail of nonlinear system
and have more physical sense.
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Figure 6 NDD and THD measurement results for the experi-
ment data.

Figure (6) compares the NDD and THD on the real ex-
periment measurements with different stimulate frequen-
cy. Both of them agree that the distortion have low level
in middle frequency range. The NDD curve line is more
smooth than THD. The lowest point appears at 1100Hz in

both THD and NDD curve. However, in THD measure-
ment, the distortion in high frequency range do not have
significant increase. Part of the reason is the THD mea-
surement do not consider the sub-harmonic energy. On
the other hand, in NDD diagram, the distortion in high
frequency range increases notably. From Figure (3) we
know that in high frequency range, the intra-wave frequen-
cy modulation degree increases with the rising of frequen-
cy. Therefore, the NDD value render the real trend of loud-
speaker distortion.

The Fourier spectrum uses linear superposition of trigono-
metric functions, therefore, it needs additional harmonics
to simulate the deformed wave shape caused by nonlinear
effects. As a result, the harmonic explanation for nonlin-
ear phenomena just fulfil the mathematical requirements
for fitting the data but not have physical mean. Therefore,
the THD which is based on harmonics level loss some im-
portant information about the nonlinear distortion. In this
way, the NDD is an better alternative to character nonlin-
ear distortion.

5. Conclusion

In this paper a novel nonlinear distortion identification pa-
rameter called nonlinear distortion degree (NDD) is pro-
posed, which is based on Hilbert-Huang transform. The
HHT method absolutely lies on the character of the signal
and have local-adaptive property. Consequently, HHT can
avoid the shortcomings of linear transform methods and
is very applicable to analyze nonlinear and non-stationary
signal. The loudspeaker model was simulated and the re-
sults in terms of diaphragm displacement were obtained.
By applying HHT on the output of the loudspeaker mod-
el, the instantaneous frequency spectrum shows that the
essential of loudspeaker distortion is intra-wave frequen-
cy modulation which relates the deformation of diaphragm
displacement from simple sinusoidal. By way of analyzing
the structure of time-frequency spectrum of model simu-
lation output, NDD demonstrate better performance than
classic THD parameter.
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