
Appl. Math. Inf. Sci. 6, No. 3, 673-680 (2012) 673

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

A Planning Heuristic Based on Subgoal Ordering and
Helpful Value
Weisheng Li1 , Peng Tu1 and Junqing Liu2

1 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China

Received: Jul 8, 2011; Revised Oct. 4, 2011; Accepted Oct. 6, 2011
Published online: 1 August 2012

Abstract: This work is concerned with how to improve the efficiency of heuristic search in a planning system. Utilize the dependency
relations between the variables in a goal, a subgoal ordering method is first used to guide the heuristic search in a more reasonable way.
The idea of helpful value in a goal is then introduced. A more accurate heuristic cost can be achieved by using the helpful value when
we compute the heuristic cost. Finally, a heuristic algorithm combined subgoal ordering with helpful value is proposed. The algorithm
is implemented in the planning system Fast Downward. The experimental results show the efficiency of the proposed heuristic search
algorithm on the benchmarks of International Planning Competitions (IPC) 2008.

Keywords: Intelligent planning, Subgoal ordering, Helpful value, Heuristic.

1. Introduction
As an important research field in artificial intelligence, in-
telligence planning has got much attention of researchers
in recent years. Planners based on the ideas of heuristic
search are very popular in intelligence planning area due
to their efficiency in solving problems. Several of the well-
known heuristic state search planners are such as HSP[1],
FF[2], Fast Downward[3, 4], and so on. HSP use the ad-
ditive heuristic for solving domain-independent plan. The
relaxed plan heuristic is used in FF, which encodes the cost
of a specific relaxed plan.

Causal graph heuristic is used in Fast Downward to
capture the underlying causal structure of the domain, which
is based on hierarchical decomposition of planning tasks.
In Fast Downward, a planning problem described by PDDL
is translated to a multiple planning task (MPT) to reduce
the state space. The additive heuristic[5] is used in causal
graph heuristic, and the additive heuristic function of a
state is defined as the sum of heuristic costs of all the
variables in the goal. In Fast Downward, The sum of all
the transition conditions cost is added into the cost of the
variables transition. If variables in the goal or in the con-
ditions of one transition are dependent, additive heuristic
is inadmissible. When there are positive interactions be-

tween these variables, additive heuristic may overestimate
the cost.

In this paper, a heuristic search based on dependency
relations of the variables in a goal is proposed. It combines
the dependency relations of the variables of goals and help-
ful values of goal state. By ordering the variables of a goal,
we can get a more reasonable subgoal[6] sequence. Every
time we take the first subgoal in the subgoal sequence to
compute the heuristic cost. Then, by extracting the posi-
tive interactions between the variables, one can compute
the helpful value in each subgoal. Use the heuristic cost
to minus the helpful value, one can get a more accurate
heuristic estimates to guide the search. The experimental
results show that the plan length can be effectively reduced
in our method.

The rest of the paper is organized as follows. The pre-
liminaries of PDDL descriptions language and heuristic
search are introduced in Section 2. Section 3 shows the ar-
chitecture of Fast Downward. Section 4 illustrates the de-
pendency relations of the variables of goal and helpful val-
ue. Section 5 provides a detailed description of the heuris-
tic based on dependency relations of the variables of goal.
Our results are proposed in section 6. In the last section,
we summarize the paper and propose our future work.

∗ Corresponding author: e-mail: liws@cqupt.edu.cn
c⃝ 2012 NSP

Natural Sciences Publishing Cor.



674 Weisheng Li et al : A Planning Heuristic Based on Subgoal Ordering ...

2. Preliminaries

We first introduce the preliminaries of The Planning Do-
main Definition Language (PDDL) and heuristic.

2.1. PDDL
PDDL[7] is the standard encoding language for clas-

sical planning tasks. It is widely used in the international
planning competitions to express the planning tasks.

A planning task is a 4-tuple

Q = (F,A, I,G) (1)

In Equation (1), the finite set F describes the domain
propositional state variables, with any state s expanded in
the search s ⊆ F . The finite set A describes the domain
actions in a 3-tuple term, each action a ∈ A is associat-
ed preconditions pre(a) ⊆ F , add effects add(a) ⊆ F ,
delete effects del(a) ⊆ F . We call an action is applica-
ble in a state s ⊆ F , if the precondition of the action
pre(a) ⊆ s. The result of the application s[a] is given by
its add-effect add(a) and its delete-effect del(a) removing.
Similarly, applying an action sequence a1, a2, . . . , an to a
state s is donated as s[a1, a2, . . . , an]. In particular, if G ⊆
s[a1, a2, . . . , an], we call the sequence < a1, a2, . . . , an >
a plan.

2.2. Heuristic

Relaxing a planning problem is a basic process for
heuristic. We use the heuristic to estimate the cost of cur-
rent state. Relaxed planning graph (RPG) is to reason by
Graph-plan over the delete-relaxed problems. It is NP-hard
to find optimal relaxed plan for a task, still there are good
approximation strategies, and one of them is the delete-
relaxed plan. The delete-relaxed planning Q′ ignores the
delete effects of actions in a planning task Q. A delete-
relaxed action a′ ∈ A′ , with its preconditions pre(a′) =
pre(a), add effects add(a′) = add(a), and delete effects
del(a′) = ϕ. The definition of relaxed planning problem
are

Q′ = (F,A′, I, G) (2)

and

A′ = {(pre(a), add(a), ϕ)|
(pre(a), add(a), del(a)) ∈ A} (3)

The Fast Downward planning system uses the causal
graph heuristic in which the additive heuristic is used. The
steps of heuristic search are shown as follows.

Step 1. Take the initial state I as current state S.
Step 2. In the domain actions A, Find all the avail-

able actions sequence (a1, a2, . . . , an), which means that
pre(ai) ⊆ S(1 ≤ i ≤ n).

Step 3. Execute these actions on the current state S,
one will get reachable state sequence (s1, s2, . . . , sn). If
the goal state appeared in these states, it means that we

have got the plan of the planning task. If not, estimate the
cost of changing state from current state to goal state by the
heuristic function, and take the state which has the mini-
mal cost as the next current state.

Step 4. Repeat the process, until the goal state appeared
or there is no more reachable state or actions could get.
The definition of additive heuristic is

h(s) =
∑
v∈G

cost(s(v), sG(v)) (4)

where cost(s(v), sG(v)) represents the heuristic cost of
changing a variable v from a value in state s to another
value in the goal G. When one compute the heuristic cost
of v, it is necessary to combine the domain transition graph
and causal graph which will be described in the next sec-
tion.

3. Architecture of Fast Downward

The Fast Downward planning system solves a planning
task in three phases: translation, knowledge compilation
and search. We will review the three components in this
section.

3.1. Translation

The main purpose of translation is to transform classi-
cal STRIPS planning tasks to multi-valued planning tasks
(MPT). This form is based on the SAS+ planning mod-
el[10], in which state variables are allowed to have non-
binary finite domains. A multi-valued planning task is giv-
en by a 5-tuple

Π =< V, s0, s∗, O > (5)

with the following components.
V is a finite set of state variables, each with an associ-

ated finite domain Dv. State variables are partitioned into
fluent (affected by operators) and derived variables (com-
puted by evaluating axioms). The domains of derived vari-
ables must contain the default value ⊥.

A partial variable assignment or partial state over V is
a function s on some subset of V such that s(v) ∈ Dv
wherever s(v) is defined. A partial state is called an ex-
tended state if it is defined for all variables in V and a
reduced state or state if it is defined for all fluent in V . In
the context of partial variable assignments, we write v = d
for the variable-value pairing < v, d > or v → d.

The tuple s0 is a state over V called the initial state.
The tuple s∗ is a partial variable assignment over V

called the goal.
O is a finite set of (MPT) operators over V . An opera-

tor < pre, eff > consists of a partial variable assignment
pre over V called its precondition, and a finite set of ef-
fects eff . Effects are triples < cond, v, d >, where cond
is a (possibly empty) partial variable assignment called the
effect condition, v is a fluent called the affected variable,

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 6, No. 3, 673-680 (2012) / www.naturalspublishing.com/Journals.asp 675

and d ∈ Dv is called the new value for v. O include a set
of (MPT) axioms over V . Axioms are triples of the form
< cond, v, d >, where cond is a partial variable assign-
ment called the condition or body of the axiom, v is a de-
rived variable called the affected variable, and d ∈ Dv is
called the derived value for v. The pair < v, d > is called
the head of the axiom and can be written as v := d.

We take the transportation tasks as an example. Three
kinds of objects are included in the transportation domain:
locations, trucks and cargos. Three operators are de-
fined: load cargo at one location, unload cargo at one lo-
cation and move car from one location to another one.

Figure 1 The planning task Task1.

Figure 1 shows one transportation task signed Task1:
the nodes represent locations, where gray node is the ini-
tial location of the truck, and solid arcs represent paths be-
tween different locations. In Task1, there are 5 locations,
one truck and two cargos. Dashed arcs show the goal: mov-
ing the truck located at P4 to P2, moving the cargo1 at P1

to P3, and moving the cargo2 at P5 to P1.
At the translation step, Task1 is transformed into a

MPT Π =< F, s0, s∗, A >:
(1)State variables set: F = (fa, fb, ft). Three vari-

ables fa, fb and ft define the state of cargo1, cargo2 and
the truck locations respectively. The domain of fa and fb
have six values: P1, P2, P3, P4, P5, T , and ft has five dif-
ferent values: P1, P2, P3, P4, P5.

(2)Operators set:
A = {< (ft = P1), (ft = P2) >,

< (fa = P1, ft = P1), (fa = T ) >,

< (fa = T, ft = P5), (fa = P5) >}
Here, we only list three operators which are respective-

ly: move, load and unload.
(3)Initial state:

I = {fa = P1, fb = P5, ft = P4}

(4)Goal state:

G = {fa = P3, fb = P1, ft = P2}

3.2. Knowledge compilation
Knowledge compilation comprises three items. First,

we compute the domain transition graph of each state vari-
able. The domain transition graph for a state variable en-
codes under what circumstances that variable can change

its value, i. e., from which values in the domain there are
transitions to which other values, which operators or ax-
ioms are responsible for the transition, and which condi-
tions on other state variables are associated with the tran-
sition.

Second, we compute the causal graph of the planning
task. The causal graph encodes dependencies between dif-
ferent state variables Where domain transition graphs en-
code dependencies between values for a given state vari-
able.

Third, we compute two data structures that are useful
for any forward-searching algorithm for MPTs, called suc-
cessor generators and axiom evaluators.

Considering Task1, the domain transition graphs are
shown in Figure 2 and Figure 3, where the labels are transi-
tion conditions. No label in Figure 2 shows that the transi-
tion of the truck does not depend on other variables. Figure
3 shows that the transition of cargos is affected by the truck
location. For example, moving cargo1 from T (fa = T ) to
P1(fa = P1) needs the condition that the truck location is
P1(ft = P1), which corresponds to the operator unload
the cargo at P1. So an arc from variable fa to ft and fb to
ft is included in the causal graph shown in Figure 4. We
say that fa and fb depends on ft, or ft affects fa and fb,
where fa and fb is high-level variable and ft is low-level
variable.

Figure 2 Domain transition graph of fa and fb.

Figure 3 Domain transition graph of ft.

3.3. Search

Unlike the translation and knowledge compilation com-
ponents, for which there is only a single mode of execu-
tion, the search component of Fast Downward can perform
its work in various alternative ways. There are three basic
search algorithms to choose from:

(1)Greedy best-first search. This is the standard text-
book algorithm, modified with a technique called deferred

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



676 Weisheng Li et al : A Planning Heuristic Based on Subgoal Ordering ...

Figure 4 Causal graph of Task1.

heuristic evaluation to mitigate the negative influence of
wide branching. Fast Downward extended the algorithm
to deal with preferred operators, similar to FF’s helpful
actions. Fast Downward uses this algorithm together with
the causal graph heuristic.

(2)Multi-heuristic best-first search. This is a variation
of greedy best-first search which evaluates search states
using multiple heuristic estimators, maintaining separate
open lists for each. Like a variant of greedy best-first search,
it supports the use of preferred operators. Fast Downward
uses this algorithm together with the causal graph and FF
heuristics.

(3)Focused iterative-broadening search. This is a sim-
ple search algorithm that does not use heuristic estimators,
and instead reduces the vast set of search possibilities by
focusing on a limited operator set derived from the causal
graph. It is an experimental algorithm; in the future, a fur-
ther develops the basic idea of this algorithm into a more
robust method.

Fast Downward uses causal graph heuristic. The main
idea of causal graph heuristic is to compute ha

cg(s), which
is the transition cost form state s to the goal s∗, and if
s is the initial state, ha

cg(s) is the causal graph heuristic
distance of the overall task. The function ha

cg(s) is define
as

ha
cg(s) =

∑
v∈s∗

costv(s(v), s∗(v)) (6)

In Equation (6), costv(s(v), s∗(v)) represents the esti-
mated cost of changing variable v from a value in state s to
another value in goal s∗. Equation (6) shows that the causal
graph heuristic of a state is the sum of heuristic costs of all
the variables in the goal, so it is an additive heuristic. We
call ha

cg(s) as causal graph additive heuristic.
For a variable v, costv(d, d′) is computed mainly based

on the slightly modified Dijkstra’s algorithm by using causal
graph and domain transition graphs as follows.

(1) If v has no predecessors in the causal graph, the
value of costv(d, d′) is the length of the shortest path from
d to d′ in the domain transition graph of variable v, or∞ if
the path doesn’t exist. This can be computed by Dijkstra’s
algorithm.

(2) Let V ′ be the set of the predecessors of variable
v in the causal graph. If the transition of v from d to d′

has a condition of assignment about a variable v′ in V ′,
then transition cost of v′ from current state is computed
and added into the transition cost of variable v.

(3) All high-level transitions have the basic cost 1.

4. Problems in the heuristic of Fast
Downward

We take the transportation tasks shown in Fig.1 as an ex-
ample. Four kinds of objects are included in the transporta-
tion domain: locations, truck, cargo1 and cargo2. The
paths between different locations are two-way. Three oper-
ators are defined: load cargo at one location, unload cargo
at one location and move car from one location to another
one.

In the planning task, obviously, ft is a precondition of
the action (load) which can move fa or fb to goal state.
Therefore, even ft at the goal state, but fa or fb is not at
the goal state, the state of ft at goal will be deleted when
moving fa or fb to the goal state. Guaranteeing that fa and
fb at the goal state first before moving ft to goal state is
a reasonable method. But the additive heuristic takes the
sum of costs of all the variables in the goal as heuristic
costs. There is a problem that the heuristic cost of ft get
smaller while the heuristic cost of fa and fb are unchanged
after the action < (ft = P4), (ft = P3) > being executed,
and the heuristic will lead the search complete ft first. As
mentioned above, when moving fa or fb to goal state, the
state of ft at goal state will be deleted. As a result, if we
only take the cost of fa and fb as the heuristic cost, the
heuristic will lead fa and fb complete first. Then we use
the cost of ft as heuristic cost to take ft to get the goal
state. We will get a better plan of the planning task at this
rate.

The heuristic of Fast Downward is the sum of heuris-
tic cost of all the variables in the goal. These variables are
regarded as independent each other. But in fact, there are
helpful relations[8] between these variables, so the heuris-
tic cost computed by Fast Downward is often bigger than
the reality cost. We still take Task1 as an example. If we
just want to get the heuristic cost of fa and fb , the addi-
tive heuristic cost from initial state to a goal is computed
according to the following equation.

h(s) = costfa(P1, P3) + costfb(P5, P1) (7)

The transition cost of fa from P1 to P3 is 7, computed
by Dijkstra algorithm in the domain transition graph of fa,
and the corresponding plan is:

{move(P4, P3),move(P3, P2), . . . ,

move(P2, P3), unload}

Then we can compute the transition cost of fa from P5

to P1. The cost of this step is 7, and the corresponding plan
is:

{move(P4, P5), load, . . . ,move(P2, P1), unload}

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 6, No. 3, 673-680 (2012) / www.naturalspublishing.com/Journals.asp 677

Finally, we can get the heuristic cost of fa and fb which
is 7 + 7 = 14. But the optimal plan is:

{move(P4, P5), load, . . . ,move(P2, P3), unload}

The heuristic cost of optimal plan is 11 rather than 14,
and the reason for the error of the heuristic: ft come to
P1 with fb having arrived at goal state. At this time, the
precondition (ft = P1) of the action which can take fa to
goal state becomes true. Therefore, there is less heuristic
cost for fa to go to goal state. It means that fb has helpful
relation on fa.

The definitions and propositions of dependency rela-
tions are listed as follows.

DEFINITION 1. (dependency relation) Given a plan-
ning task Q = (F,A, I,G), variables x, z ∈ G, action
a ∈ A, if x is an effective variable of a, and z is a precon-
dition variable of a. We call x has dependency relation on
z. Signed as x→ z.

PROPOSITION 1.
∀a ∈ A,∀x, z ∈ G,

(x ∈ add(a))&(z ∈ pre(a))⇒ x→ z

DEFINITION 2. (helpful relation) Given a planning
task Q = (F,A, I,G), variable x, z ∈ G, c ∈ F , action-
s a, b ∈ A, if the action a makes the variable z come to
goal state, and action b makes the variable x come to goal
state, and x is an effective variable of a, z is a precondition
variable of a, and variable c is an effective variable of ac-
tion a, as well as a precondition variable of b, and c has the
same value in the two states. We call variable x has helpful
relation on z. Signed as x→ z.

PROPOSITION 2.
∀a, b ∈ A,∀x, z ∈ G, c ∈ F,

(c ∈ add(a) = c ∈ pre(b))&

(z ∈ add(a))&

(x ∈ add(b))⇒ x→ z

DEFINITION 3. (helpful value) According to defini-
tion 2, the helpful value of x → z is the cost of variable c
transition from the state which the action a not be executed
to the state which action a executed.

DEFINITION 4. (deep relation) Given a planning task
Q = (F,A, I,G), variables x, z ∈ G, y ∈ F , actions
a, b ∈ A. And x is an effective variable of a, z is a pre-
condition variable of b, and y is a precondition variable of
a, as well as an effective variable of b, and y has the same
value in the two state. We call variable x has deep relation
of z, Signed as x→ z.

PROPOSITION 3.
∀a, b ∈ A,∀x, z ∈ G, y ∈ F,

(y ∈ pre(a) = y ∈ add(b)))&

(x ∈ add(a))&

(z ∈ pre(b))⇒ x→ z

PROPOSITION 4.
∀x, y, z ∈ G,

(x→ y)&(y → z)⇒ x→ z

Obviously, one could get the proposition due to the
definition 4.

DEFINITION 5. (dependency relation tree) Given a
planning task Q = (F,A, I,G), the tree of dependency re-
lations of Q is defined as one or more trees (t1, t2, . . . , tn).
The set of vertex of the tree is the set of all the variables
of goal. For example, if there has x → z, take x as the
child node, z as parent node. Constitute all the depen-
dency relations and deep relations of goal, we will get
(t1, t2, . . . , tn).

DEFINITION 6. (helpful relations graph) Given a plan-
ning task Q = (F,A, I,G), the helpful relations graph of
Q is defined as a digraph whose vertex are the variables of
a goal. There will be an arc from x to z, when x→ z, and
the value of the arc is the helpful value of x→ z.

5. Heuristic based on subgoal ordering and
helpful value

According to the analyses of the existing problems on the
heuristic function of Fast Downward as well as the defini-
tion of dependency relations between the variables of goal
and helpful value, We improve the heuristic function of
Fast Downward from two aspects: first, ordering the vari-
ables of goal in order to get a reasonable sequence of vari-
ables to complete. Second, extracting the helpful value in
the goal to get a more accurate heuristic cost.

5.1. Subgoal ordering

First, find all the variables of a goal which do not de-
pend on any other variables as definition 1 and definition 4
form a subgoal. Then delete the subgoal from the goal and
finish the process as mentioned above to get the next sub-
goal, until the goal is empty. The result of the algorithm is
a subgoal sequence (SG1, SG2, . . . , SGn). The algorithm
is described as follows.

Step 1. Find all the dependency relations and deep re-
lations in the planning task. Then do the work as definition
5, we will get one or more tree (t1, t2, . . . , tn).

Step 2. Obviously, the leaves of the tree are the vari-
ables which should be completed first. So take all the leaves
to form a subgoal (SG).

Step 3. Delete all the leaves from the tree. There will
be many new leaves. After the work mentioned above, we
will get the second subgoal (SG).

Step 4. Repeat the three steps mentioned above, until
the tree is empty. Finally, we will get the subgoal sequence
(SG1, SG2, . . . , SGn).

The pseudocode of subgoal ordering algorithm is shown
in Algorithm 1.

Algorithm 1 Subgoal ordering (Q).

InputA planning problem Q = (F,A, I,G).
OutputSubgoals sequence (SG1, SG2, . . . , SGn).
1. vector< pair < int, int >> pair;
2. while G ̸= ϕ do

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



678 Weisheng Li et al : A Planning Heuristic Based on Subgoal Ordering ...

3. choose the first element e ∈ G;
4. find a ∈ A and e ∈ add(a);
5. for i← 1 to pre(a).size() do;
6. if (pre(a)[i] ∈ G or pre(a)[i] ∈ pair.first)

then
7. pair← (e→ pre(a)[i]) or (e→ pair.second);
8. else goto 4;
9. move e from G;
10. class node int n;vector< node∗ > next; tree;
11. N ← 1;
12. while pair ̸= ϕ do
13. New tree tN ;
14. N ← N + 1;
15. while(Find (e← i) ∈ pair ∩ e /∈ tN )
16. tN ← (e→ i);
17. goto 15;
18. else goto 13;
19. while(t1, t2, . . . , tn ̸= ϕ) do
20. SGi ←all the leafs of the tree;
21. Delete the leafs from the tree;
22. Retun (SG1, SG2, . . . , SGn).

5.2. Computing helpful value

We extract the helpful value in the goal to get a more
accurate heuristic cost. There is a problem we have to con-
cern that one variable may has helpful relation on several
variables. However, only one of the variables can use the
helpful relation. For example, let us assume that there is
another variable cargo3 in P1 to P2. In this case, cargo2
has helpful relations (ft = P1) on cargo1 and cargo3, but
only one of them can use the helpful relation. If cargo1
comes to goal state, the helpful relation (ft = P1) will
be vanished, and the cargo3 cant use the helpful relation
in this time. We use the longest path to compute helpful
value in order to avoid this problem. The algorithm is de-
scribed as follows.

Step 1. Find all the helpful relations of the planning
task as definition 2, and compute the helpful value of each
helpful relation as definition 3 to get the helpful relations
graph as the definition 6.

Step 2. Compute the longest path in the helpful relation
graph, and its length is the helpful value of all the helpful
relations in the longest path.

Step 3. Delete the longest path from the helpful rela-
tion graph. Repeat the work above, until there is no arc in
the helpful relation graph. Add all the helpful value. Final-
ly, we will get sum of the helpful value of the goal (HV ).

The pseudocode of helpful value algorithm is shown in
Algorithm 2.

Algorithm 2 Helpful Value(Q,SG).

Input:A planning problem Q = (F,A, I,G) and SG.
Output:helpful value.
1. HV ← 0;
2. graph GH;
3. for i← 1 to SG.size() do
4. if sg[i] ̸= G[i]

5. find a ∈ A and sg[i] ∈ add(a) and add(a)[i] =
G[i];

6. for j ← 1 to SG.size() do
7. if(∃b, f, (sg[j] ∈ add(b)&f ∈ add(a)&f ∈

pre(b)))
8. GH ← (sg[i], sg[j]) and the length of the arc

is DTG(f, add(a)[f ]);
9. while(GH ̸= ϕ)
10. HV+=the length of longest path in GH;
11. Delete the longest path from GH;
12. return HV .

5.3. System architecture

Reading the planning task, we will get the subgoal se-
quence (SG1, SG2, . . . , SGn) by the algorithm of order-
ing the variables of goal. Take the heuristic function to
compute the heuristic cost of the first subgoal. If the heuris-
tic cost is equal to 0, take the next subgoal to compute
heuristic cost. If not, then compute the helpful value of the
subgoal by the algorithm of computing helpful value. Ex-
tract the helpful value from heuristic cost to get a more
precise heuristic cost, and return the heuristic cost to plan-
ner. Repeat the work above, until the subgoal sequence is
empty. The system architecture of HBSH planner is shown
in Fig.5.

Figure 5 System architecture of HBSH planner.

6. Experimental Results

To compare with the Fast Downward planner, the algo-
rithm proposed in this paper is complemented by C++.
We compare the performance of the two algorithms us-
ing questions from the IPC 2008. The experimental plat-
form is: Ubuntu-10(Linux kernel 2.6.32), the compiler is
g++4.1.2, the memory is 3GB, the CPU is Intel Pentium
Dual T3400 2.16GHz. By the rule of the IPC the sched-
ule time is 30 minutes (1800s) for every domain problem.
For convenience, our algorithm singed as HBSH (Heuris-
tic Based on Subgoal ordering and Helpful value), and the
Fast Downward singed as F-D.

Table.1 shows the length of planning answers for HB-
SH and F-D in Woodworking and Pegsol domains form
IPC 2008.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 6, No. 3, 673-680 (2012) / www.naturalspublishing.com/Journals.asp 679

Table 1 Plan length between HBSH and F-D

Woodworking Pegsol

Problem F-D HBSH Problem F-D HBSH

1 5 5 1 6 5
2 6 6 2 10 9
3 8 8 3 13 11
4 13 13 4 15 11
5 15 13 5 14 12
6 8 8 6 18 12
7 50 48 7 16 16
8 25 25 8 16 15
9 24 22 9 21 19
10 34 32 10 24 20
11 36 36 11 25 20
12 45 42 12 23 21
13 63 57 13 28 24
14 72 72 14 27 22
15 116 107 15 30 26
16 147 153 16 35 25
17 89 76 17 62 67
18 129 118 18 86 82
19 168 173 19 122 107
20 153 147 20 75 77

In Table 1, it shows that the average length of plan for
Fast Downward in the Woodworking domain is 60.3, while
the LSH is 56.45. In addition, the average length of plan
for Fast Downward in the Pegsol domain is 33.3, the LSH
is 31.05. The experimental results proved that the algo-
rithm proposed improves the performance in shorting the
length of planning answers and obtains better plan.

Figure 6 Running time of woodworking.

Fig.3 to Fig.6 shows that the running time of HBSH
and Fast Downward in Woodworking domain is closed
and the same in the former 10 problems in Pegsol domain.
However, the running time of HBSH is longer than Fast

Figure 7 Expanded nodes of woodworking.

Figure 8 Running time of Pegsol.

Figure 9 Expanded nodes of Pegsol.

Downward in the last 10 problems, which might because
the calculate amount grows greatly when the complexity
of our algorithm has being to a significant extent. How to
improve the algorithm efficiency and accelerate the search-
ing time is the future work. The performances of the two
algorithms are similar from the angle of expanded nodes.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.



680 Weisheng Li et al : A Planning Heuristic Based on Subgoal Ordering ...

7. Conclusions

In recent years, more and more researchers begin to pay at-
tention to the heuristic search. The accuracy of the heuris-
tic function in the heuristic searching method will deter-
mine the performance of a planner, as a result, after ana-
lyzing the heuristic function of the Fast Downward plan-
ner we propose a heuristic search method based on sub-
goal ordering and helpful value. The experiments results
prove that the proposed algorithm is effective. In the ac-
tual planning problems, the dependency relations in the
whole planning task are more than the above two points.
How to extract the dependency relations in the planning
task, and then use these dependency relations to design a
more efficient heuristic function to improve our efficiency
in solving planning task, is a problem worth us to contin-
ue to study. Research of dependency relations in planning
task and to design a more efficient heuristic function are
our future work.

Acknowledgement

The authors acknowledge the financial support of NSFC
under project No. 61142011, the Key Project of Chinese
Ministry of Education under project No. 210183, and the
Program for New Century Excellent Talents in University
of China under project No. NCET-11-1085.

References

[1] B. Bonet, H. Geffner, Planning as heuristic search, Artif. In-
tell., 129 (2001).

[2] J. Hoffmann and B. Nebel, The FF planning system: Fast
plan generation through heuristic search, J. Artif. Intell.
Res., 14 (2001).

[3] M. Helmert, The Fast Downward planning system, J. Artif.
Intell. Res., 26 (2006).

[4] M. Helmert, A planning heuristic based on causal graph
analysis, Proc. the International Conference on Automated
Planning and Scheduling, 161 (2004).

[5] E. Keyder, H. Geffner, Set-Additive and TSP Heuristic for
Planning with Action Costs and Soft Goals, Proc. the Inter-
national Conference on Automated Planning and Schedul-
ing, 140 (2007).

[6] R. S. Liang, Y. F. Jiang, R. Bian, Admissible Subgoal Or-
dering for Automated Planning, J. Software, 22 (2011).

[7] F. Maria, L. Derek, PDDL: An extension to PDDL for ex-
pressing temporal planning domains, J. Artif. Intell. Res., 20
(2003).

[8] X. J. Wu, Y. F. Jiang, Y. B. Ling, Research on Relation-
s of Effect of Action for STRIPS Domain, J. Software, 18
(2007).

Weisheng Li graduated from
School of Electronics & Me-
chanical Engineering at Xidi-
an University of China in Ju-
ly 1997. He received his M.S.
degree and Ph.D. degree from
School of Electronics & Me-
chanical Engineering and School

of Computer Science & Technology at Xidian University
of China in July 2000 and July 2004, respectively. Current-
ly he is a professor of Chongqing University of Posts and
Telecommunications of China. His research focuses on in-
telligent information processing and pattern recognition.

Peng Tu is a postgraduate of Chongqing University of
Posts and Telecommunications. His research focuses on
intelligent planning.

Junqing Liu is a associate professor of China Three
Gorges University. His research focuses on multimedia in-
formation processing.

c⃝ 2012 NSP
Natural Sciences Publishing Cor.


