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Abstract: In this paper we purpose to define the notiohtacunary statistical convergence and lacunary statistically Cauchy in random
2-normed spaces and proved some interesting results for these concepts in this set up.
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1. Introduction sup,eq f(t) = 1. By DF, we denote the set of all distri-
bution functions such that(0) = 0.

. . . o . + ¥
An interesting and important generalization of the notion T @ € %o, thenH, € D™, where

of metric space was introduced by Menger [11] under the
name of statistical metric space, which is now called prob- H,(t) = {
abilistic metric space.

Infact the probabilistic theory has become an area ofj; is gbvious thattl, > f forall f € D*.
active research for the last forty years. An important fam- A ;_,, - is a continuous mapping: [0, 1] x [0, 1] —
ily of probabilistic metric spaces are probabilistic normed 14 11 gych that([0, 1], +) is abelian monoid with unit one
spaces (briefly, PN-spaces). The notion of probabilistic norg?,’ﬂi wd>axb if’ c ’> aandd > bforalla,b,c € [0, 1].
spaces was introduced in [25] and [26] and further it was A tyiangle function T is a binary Opéréﬂon o+

extended to random/probabilistic 2-normed spaces by Golgfnich is commutative. associative andf, Hy) = f for
[7] using the concept of 2-norm ofédbler [6]. everyf e D*. ' ’

The concept of statistical convergence for sequences The concept of 2-normed spaces was first introduced
of real number was introduced by Fast [2] and Steinhausgy Ganler [6].
[27] independently in the same year 1951 and since then™ A 2-normed space is a paiiX, |.,.||), whereX is a
several generalizations and applications of this concept haygear space of a dimension greater than one jand| is

been investigated by various authors, e.g. [4,5,8, 10,15, 18, rea| valued mapping o x X such that the following
23]. This notion has also been defined and studied in dif--gnditions be satisfied:

ferent set ups, e.g. in probabilistic normed space [9, 14, 20, _ ) _
21,24]; in intuitionistic fuzzy normed spaces [12,16,17, () l[#;y[ = 0if and only if = andy are linearly depen-
19]; and in fuzzy/random 2-normed space [13,22]. In this _dent,
paper we shall study lacunary statistical convergence andl!) |12, vll = [ly, z|| for all z,y € X,
lacunary statistical Cauchy in random 2-normed spaces. (i) [, y[ = [el[|z, y[|, whenever, y € X anda € R,
We shall assume throughout this paper that the sym-) 1z + . 2l < [z, [ + [ly, 2| forall .y, = € X.
bol R will denote set of all real numbers. A functigh:
R — Ry is called adistribution function if itis a non- Example 1.1.Take X = %2 being equipped with the
decreasing and left continuous withf,c5» f(¢) = 0 and  2-norm||z, y|| = the area of the parallelogram spanned by

1if t>a;
0if t<a.
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the vectorse andy, which may be given explicitly by the
formula

llz,yll = |z1y2—2291|, Wherex = (z1,22),y = (y1,¥2)-

In 2006 Golet [7] introduced the notion of random 2-

where the vertical bars denote the cardinality of the en-
closed set.

A number sequence = (xy) is said to bestatistically
convergen(cf. [2], [27]) to the numbe¥ if for eache > 0,
the setK(e) = {k < n : |z — £] > €} has asymptotic

normed space. Quite recently, Alotaibi and Mohiuddine density zero, i.e.

[1] determined the stability of cubic functional equation

in this setting.

Let X be a linear space of a dimension greater than

one, a triangle function, and leF : X x X — Dy. If
the following conditions are satisfied:

(i) F(x,y;t) = Ho(t) if z andy are linearly dependent,

(i) F(x,y;t) # Ho(t) if z andy are linearly indepen-
dent,

(i) F(z,y;t) = F(y,x;t) for everyz,y in X,

(iv) Flaz,y;t) = F(z,y; th) for everyt > 0, a # 0
andz,y € X,

V) Flz + y,2t) > 7(F(x,z;t), F(y, z; t)) whenever
z,y,z € X.

ThenF is called grobabilistic 2-norm on X and(X, F, 1)
is called aprobabilistic 2-normed space (for short, PTNS).
If (v) is replaced by

(V) Flx 4y, z;t1 +1t2) > Flx, z;t1) * F(y, z; t2), for all
r,y,z € X andty, ts € Ry .

Triple (X, F, ) is called arandom 2-normed space (for
short, RTN-space).

Example 1.2.Let (X, |.,.|]|) be a 2-normed space with
|z, z|| = |z122 — @x221|, ¢ = (21,22), 2 = (21,22) and
axb = abfora,b € [0,1]. Forallz € X,¢ > 0and
nonzeroz € X, consider

—t if t>0
Fi(z, z;t) = {6+||w,2|if L < 0.

and
Fo(x, z;t) = Ho(t — ||z, 2]))-

1
limg|{k <n:lxg—¥ >e€}|=0.
In this case we writet-lim x = £.

Definition 2.2. By a lacunary sequence we mean an
increasing integer sequente= (k,.) such that, = 0 and
h, =k, — k._1 — oo asr — oo. Throughout this paper
the intervals determined b§ will be denoted byI,. :=
(k.—1, k], and the ratick,./k,._; will be abbreviated by

qr-
Let K C N. The number

1
0p(K) = limh—|{k el ke K}
is said to be th@-densityof K, provided the limit exists.

Definition 2.3 [5]. Let 8 be a lacunary sequence. Then
a sequence = (zy) is said toSy-convergent to the num-
ber L if for every e > 0, the setK (¢) hasf-density zero,
where
K(e):={keN :|zy—L| > ¢}

In this case we writéSy- limx = L or x;, — L(Sp).

Let (X, F,*) be a RTN-space. We say that a sequence
x = (xr) is convergent in (X, F, x) or simply (X, F, *)-
convergent to ¢ [22] if for everye > 0, ¢ € (0,1) there
exist a positive integdk, such thatF (zy — ¢, z;€) > 1 —t
whenevelk > ky and nonzera € X. In this case we write
F-limy 2, = ¢ and/ is called theF-limit of x = (zy).

Now we define theSy-convergence in RTN-space.

Definition 2.4.Let (X, F, x) be a RTN-space arttibe

Then(X, 71, x) and(X, F3, *) are random 2-normed spaces, lacunary sequence. We say that a sequenee (z;)

2. Main results

In this section we study the@gept of lacunary statisti-

is said to beSy-convergent to £ in random 2-norm space

X (for Short,SéRTN)-convergent) if for everye > 0,
t € (0,1) and nonzere € X

do({k e N : Flz — €, 2;¢) <1—1t}) =0

cally convergent and lacunary statistically Cauchy sequences
in random 2-normed spaces. Before proceeding further, w@" €duivalently

recall the definition of density and related concepts which

form the background of the present work.
Definition 2.1 [3]. Let K be a subset ofV, the set

of natural numbers. Then tresymptotic density ok de-
noted byd(K), is defined as

1
d(K) zlimﬁ\{kgn:k‘eK}L

do({k e N : Flxy, — £, 2;3¢) > 1 —t}) = 1.

In this case we write, x, £(Sp) or S(SRTN)—lima: =/,
and denote the set of al,-convergent sequences in ran-
dom normed spaces Ky ) =.

Theorem 2.1.Let (X, F, ) be a RTN-space andlbe
a lacunary sequence. If a sequence (xy) is a lacunary
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statistically convergent in random normed spacethen
SN imit is unique.

Proof. Suppose thaﬁ‘éRTN lima = 6 andSéRTN ) lim

ly. Lete > 0 andt > 0. Chooses € (0,1) such that
(1—-s)*(1—s)>1—ce Then, for any nonzere € X,
we define the following sets as
Ki(s,t) ={keN: F(xy — l1,2;t) <1—s},
Ky(s,t) ={k e N : F(zp — b, z;t) <1 —s}.
So that we havéy (K (s,t)) = 0 anddy(Kz(s,t)) =0
forall ¢ > 0. Now let
K5(s,t) = Ky(s,t) U Ka(s,t).
It follows thatdy (K3(s,t)) = 0, which implies
Jo(N\ K3(s,t)) = 1.
If ke N\ Ks(s,t), we have
F(ly — o, z;t) > F(xp — L1, 2,t/2) x Fay, — la, z;1/2)
>(1—s)*x(1—s)>1—c
Sincee > 0 was arbitrary, we geF(¢; — ¢o, 2z;t) = 1 for
all t > 0 and nonzera € X, which givest; = ¢,. Hence
SéRTN)-Iimit is unique.
This completes the proof of the theorem.

Theorem 2.2.Let (X, F, ) be a RTN-space antibe

any lacunary sequence - lim = £ thenSS™ ™) -lim z =
£. But converse need not be true.

Proof. Let #-lima = /. Then for everye > 0, t €
(0,1) and nonzera € X, there is a numbet, € N such
thatF(z, — ¢, 2;t) > 1 — e forall k > ko. Hence the set
Ale) ={k e N : F(zr—{, z;t) < 1—¢} has natural den-
sity zero, that isgg (A(e)) = 0. HenceSéRTN)-limx =/

For converse, we construct the following example:

Example 2.1.Let X = 2 with the 2-norm||z, z|| =
|lx122 — z221||, Wherex = (z1,22), 2 = (21, 22) and
axb=abforallabe [0,1]. Let F(x, z;t) = m,
wherez € X, t > 0 and nonzera € X. In this case, we

and so, we get
1

AGUIE

Lk eN ke~ (VA 1<k < ke e M)

Vi
hy '
which implies thatim ;| K (¢, )| = 0. Hence

<

=0asr — o

59(K(6,t>) = lim \ZE

T

implies thatxy, Z, 0(Sp). On the other hana;, 7/@ 0,
since

_t

t+ |2k, |l

_ ﬁ,f(}r kr—['\/hr]“{‘lgkgkr(re./\[),
1, otherwise;

and hence

Flzp, z;t) =

0, for ky — [Vh] +1 <k < k.(r e N);

hlgn F(rp, 23t) = { 1, otherwise;

This completes the proof of the theorem.

Theorem 2.3 Let (X, F, x) be a RTN-space. Then, for

any lacunary sequen@eSéRTN)— limz = ¢if and only if
there exists asubséf = {k1 < ko < - - <kp,<---} C
N such thavy(K) = 1 andF- lim zj, = /.

Proof. Necessity Suppose thaSéRTN ) limz = £

Then, for anyt > 0, s € A and nonzera € X, let

1
21_7 )
S
1
< - .
S

K(s,t) = {ke./\f:f(xk—ﬁ,z;t)
and

M(s,t) = {ke./\/’:}"(xk—ﬁ,z;t)

observe thatR?, F, «) is a RTN-space. Define a sequence Thendy (K (s,t)) = 0 and

x = (zx) by

v (k,0); for k. — [Vh ]+ 1<k <k,reN
¥ =1 (0,0) ; otherwise.

Letfore > 0,t >0
K(et)={k e N : Flay, z;t) <1—€}.
Then

t
K(e,t) =<k <1
0= RN <)
et

={keN:z, = (k0)},
={keN:k —[Vh]+1<k<k.,reN},

M1,t) D M(2,t) D ---M(i,t) D M@E+1,t) D---
(2.3.1)
and
So(M(s,t)=1,5=1,2,---. (2.3.2)

Now we have to show fon € M(s,t), z = (zy,)
is F-convergent t&. On contrary suppose that sequence
x = (xzy,) is not F-convergent to/. Therefore there is
e > 0 and a positive integd¥y suchF (zy, — £, z;t) > €
forall k > kg and nonzera € X. Let

M(e,t) ={neN : Flay, — ¥, zt) < e},

forall k < ko, e > 1,5 € N and nonzero: € X.
Thends(M(e,t)) = 0 and by (2.3.1)M (s, t) C M(e,1).
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Hencedy (M (s,t)) = 0, which contradicts (2.3.2). There-
forex = () is F-convergent td.

Sufficiency Suppose that there exists a subket=
{k1 <kg < -+ <kp<---} CNsuchthavy(K) =1
andF- lim z, = ¢. Then there exists a positive integer

N € N such that for > N
Fleg —4,z;t) > 1 —e.
Now
K(e,t)={keN: Flxp — €, z;t) <1—¢}

and K’ = {kni1,kny2,---}. Thendy(K') = 1 and
K(e,t) € N — K’ which implies thatiy (K (e, t)) = 0.
HenceS(gRTN)-limx =/

This completes the proof of the theorem.

which is not possible. HencB(¢,t) ¢ A(r,t) which im-
plies thatr = (zy) is SéRTN)-Cauchy.

Conversely, let: = (x) be $5""™)-Cauchy but not
SéRTN)—convergent. Then there exist$ € N such that

So(E(e,t)) = 6g({n € N+ Flap—xar, z:t) < 1—€}) =0,
and

So(F(e,t)) = 6g({n € N1 Flwn—0, z:1/2) > 1—¢}) = 0.
This implies thatis (F€ (¢, t)) = 1. Since

Fxpn — Tm, 25t) > 2F (1 — 4, 25t/2) > 1 — ¢,

if Fzn — €, 2;t/2) > 155 Thereforedy(EC (e, 1)) = 0,
i.e.dp(E(e,t)) = 1, which leads to a contradiction, since

Lastly, we define lacunary statistically Cauchy sequence = (1) wasSy" '-Cauchy. Hence: = (x;) must be

in random 2-normed space.

Definition 2.5. Let (X, v, x) be a RTN-space arlbe
any lacunary sequence. Then, a sequenee(xy,) is said
to be Sy-Cauchyin RTN-spaceX if for everye > 0 and
t > 0 and nonzeroz € X, there exist a numbelN =
N (e, z) such that for alk,l > N

So({k € N : F(zg —x1,25¢) <1 —1t}) = 0.

Theorem 2.4.Let (X, v, ) be a RTN-space anfibe
any lacunary sequence. Then, a sequence (xi) is

SN _convergent if and only if it issS** ™) -Cauchy.

Proof. Letz = (x) be SéRTN)—convergent td, i.e.,

SéRTN)—limx = (. Then for a givere > 0, choose" > 0
such that(l — r) « (1 —r) > 1 — €. Then, fort > 0 and
nonzeroz € X, we have

So(A(r,t)) =0g({n e N : F(zp—£,2;t/2) <1-1r}) =0
(3.1.1)
which implies that
0(AC(r, 1) = de({n e N : F(xp — €, 2;t/2) > 1 —7})
=1.
Letm € A%(r,t). ThenF (z,, — £, 2;t/2) > 1 —r.
Now, let

B(e,t) ={n e N : F(x, — Tpm,2;t) <1 —¢€}.

We need to show thaB(e, t) C A(r,t). Letn € B(e,t).
ThenF (z,—xm, z;t) < 1—eand henceF (z,—¢, z; t/2) <
1—r,i.e.n € A(r,t). Otherwise, ifF (z,, — ¢, 2z;t/2) >
1 —r,then
1—€e> F(xn — Tm,2;t)
> Flxn —4,2;t)2) « F(xm — €, 2;1/2)
>A=r)x(1—-7)>1—F¢,

SéRTN )_convergent.
This completes the proof of the theorem.

3. Conclusion

The idea of random 2-norm is very useful to deal with
the convergence problems of sequences. In the present work,
we have introduced a wider class of lacunary statistically
convergent sequences in RTN-space to deal with the se-
guences which are not covered by Fridy and Orhan [5].
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