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Abstract: In this paper, we introduce fractional sigmoidal curves esiimate their parameters to fit the given tumor volume d&ea.
outline approximation techniques to choose the apprapfiatctions of discrete, discrete fractional and contirsupactional calculus.
We demonstrate how to replace the exponential funaidhin the existing continuous time models with these functioiie use the

tumor volume data which were taken over consecutive segriatays, for twenty eight mice. We then compute residual Sisguares,

standard error of the estimate, adjusted coefficient ofiplaltietermination, and cross-validation methods to comp#odels on data
fitting and predictive performances. Estrus cycle stagesezfsurement are also taken into account when comparingdtielsn
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1 Introduction

Tumor volume, a relationship between tumor size and timef gpecial interest since volume estimation is very critica
in a clinical practice. Determining and modeling tumor voki are useful and quantitative ways to monitor tumor
progression. There are some mathematical models whichridestimor volumes and have prediction capabilities.
Typically, there are three ways to model non-complex groldhavior: Exponential, logistic and sigmoidal. In 1825,
Benjamin Gompertz introduced the Gompertz functionlh & sigmoid function, which is found to be applicable to
various growth phenomena, in particular tumor growth],([2], [3], [4], [5]). Beside the Gompertz model which
includes three parameters, Weibull and Richards modelsfaitr parameters are known as sigmoidal models.

Our aim in this paper is to introduce discrete, continuoastfonal and discrete fractional models of the tumor volume
and estimate parameters of these models in order to hawer Hath fitting. It is important to point out that determining
tumor volume over time can give a general overview of tumatretion dynamics. Hence the models we develop here
can be used to help physicians to choose the most appropeatenent for patients and animals with malignant solid
tumors.

We organize the paper as follows: In Section 2, we give a briefduction about Mittag-Leffler functions of fractional
calculus. Next, we introduce four types of sigmoidal cunwéh these functions, namely, continuous, discrete, coatis
fractional, and discrete fractional for each of the signabimlirves of Gompertz and Logistics with three parameteds an
Richards and Weibull with four parameters. We first dematstfitting the mean data with the four curves in order to
give the reader a feeling about how the models fits the raw &tae a complete comparison of the fittings is mostly
not possible with graphs, we use some statistical techridfe compare continuous, discrete, continuous fractiamal
discrete fractional forms of these sigmoidal curves by gishe data on the tumor volume for twenty-eight controlled
mice. These controlled and age-matched fer@ddeF; mice had inoculated tumors but did not receive any subsequen
treatment. Tumor volume was measured at 14HALO (hours kdtetron) daily until day 17 (for detailed information on
the materials and methods used to measure the tumor volu{é]s#/e use statistical computation techniques such as
residual sum of squares, standard error of the estimatgstadjcoefficient of multiple determination, and crosselaion
to compare fitting and predictive performances of these isoBesides the measurements on tumor volume, each mouse
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was observed on the estrus cycle stage of measurement. WWmaoothe performance of different models by considering
the estrus cycle stages. In Section 3, the results of they sttel presented and analyzed. We close the paper with a
discussion section.

2 Model Description

In the literature, continuous forms of the sigmoidal curaes used intensively in regression and data fitting analirsis
this section, we outline how to choose appropriate funstiohdiscrete calculus and fractional calculus to replaee th
exponential functiore " which appears in the continuous forms of the sigmoidal sirve

First we recall some basic functions of fractional calculus

The Mittag-Leffler function is named for Gosta Mittag-Leffliwho defined and studied the special functidin The
function is a direct generalization of the exponential timte®, and it plays a major role in fractional calculus. The one
and two-parameter representations of the Mittag-Lefflacfion can be defined in terms of a power series as

00 Xk
Ea (%) :k;)r(orkJr 1’

00 Xk
Eqpg(X) = k;)m,

wherea andf3 are positive real numbers. The Mittag-Leffler function witlo-parameters was first defined by Wiman in
[8].
We shall define the discrete Mittag-Leffler function with oaled two-parameters in the following way. Related
definitions are given by Naga®][.

o ki k
a‘t
Fo(at) =y ————,
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wherea andf3 are positive real numbers ama < 1. For any real number, the discrete Mittag-Leffler function was
defined in O]

o aktW
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where the raising factorial power functithis defined by

F(LE (atv) =

2.1 Fractional Sigmoidal Curves

By use of the Mittag-Leffler functions, we present four diéiat forms of the sigmoidal curves. Our study will include
Gompertz, Logistics, Richards and Weibull models. Let & < 1.
Continuous, discrete, continuous fractional, and digdreictional forms of Gompertz curve are as follows:

Y(t) = gna-ee ) (continuou$
Y(t) = dna-e-of (discrete
ha—e 5 (70)"M
t)=e Zo O (08 (continuous fractiongl
Ina_e © (_C)n(t7n+l)(n+1)a—1
Y(t)=e 2o Fme (discrete fractiona)
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Similarly continuous, discrete, continuous fractionall aiscrete fractional forms of Logistic curve are as fokow

Y(t) = m (continuou$
Y(t) = W“l_c)t (discretd
Y(t) = a (Da 1 (continuous fractional
1+ebzO FiDa)
Y(t) = ot 1)m (discrete fractiona)
1+ebzO FlniDa)

Gompertz and Logistics curves are known as sigmoidal cuwts three parameterg,b andc. In the continuous
fractional and discrete fractional forms,is also considered as a parameter.
Continuous, discrete, continuous fractional, and disdirgictional types of Richards curve are as follows:

a

Y(t) = T (continuous
Y(t) = m (discretd
Y(t) = 2 e (continuous fractiona|
e e ik
Y(t) = - (ta— - 1)m - (discrete fractiona)
+e s O e )

Continuous, discrete, continuous fractional, and disdirictional types of Weibull curve are as follows:

d

Y(t) =a—b(e ) (continuous

td

Y(t)=a—b(1-c) (discretg
0 n+1) -1 )td’l ( ) ; . al
continuous fraction
& ((n+D)a)
p(t—n41)Fa-L g . .
Y(t)=a—b —C . (discrete fractiona
® go( A r e )

Richards and Weibull curves are known as sigmoidal curvsfaur parameters, b, candd. In the continuous fractional
and discrete fractional forms, is also considered as a parameter.

2.2 Fitting mean data

In order to give the reader some idea about the distributidheodata points over a time interval (17 days) we plot mean
tumor volume of twenty-eight mice by each day (y-value) aiatdard deviations of volume are represented by bars (see
Figure 1). In fitting data, we use four different forms (comnibus, discrete, continuous fractional, and discretditraal)

of each type of curves Gompertz, Logistic, Richards, andowWkiThus, for easy presentation, we call these curves as
sub-models. We then try to fit different curves to mean tun@ume. In terms of residual sum of squares, continuous
fractional Gompertz, continuous fractional Logistic, tnnous Richards, and continuous Weibull sub-models fititita

best and these fits are plotted in Figure 1. In terms of natafichat G,y_hat L,y _hat R andy_hat W stand for fitted
values using Gompertz, Logistic, Richards, and Weibuipeetively. The comparison of models can somewhat be done
by looking at the graphs closely. However, it is hard to digtiish the fits of curves overall. In order to make a good
judgment on model comparison, we use statistical methodsiomed earlier in the rest of the paper.
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Fig. 1: Mean Tumor Volume with Standard Deviation by Day and Fitswoves

2.3 Model Fitting

To demonstrate how these models give new insights to théirexisiodels, we use the tumor volume data for twenty-
eight controlled mice. These controlled and age-matchedlieCD,F; mice had inoculated tumors but did not receive
any subsequent treatment. Tumor size was measured at 14HAdu@s after light on) daily until day 17 (for detailed
information on the materials and methods used to measutarti@ volume seed]).

We use Mathematica to estimate parameters for the continaiod discrete forms of the above curves. We first fix
parametec and compare graphs of the continuous and discrete formsafithves (Richard and Weibul) to get better
parameters, b, d anda. Then we substitute the same parameters into continucetginal and discrete fractional curves
to find estimated data valugt) for each iteration. We also use statistical computatiohrigpies such as residual sum
of squares, standard error of the estimate, adjusted deeffiaf multiple determination, and cross validation to pamre
fitting and predictive performance of these moddls Residual sum of squares (RSS) is the sum of squares ofigdsid
It is a measure of unexplained variation in tumor volume.unstudy, RSS is considered as sum of squares of difference
of original valuey; and estimated (t) as predicted value, therefore,

RSS- 3 (1~ V),

wheren is the number of days observed. A smaller residual sum ofreguadicates a better fit of the model to the data.

Standard error of the estimate (SE), which is derived fron$ R8kes into account the number of parameters in the
models (k) and eliminates the effects of number of obserpinigts on RSS. A smaller value of SE indicates a better
model.

The third measure that we use to compare models is the adjoségficient of determinatiorrf). The measure2
takes into account the percentage of variance in responisdhethat can be explained by a certain model and ‘perglize
model for using additional parameters. In other wordshalance the cost of using more parameters against the gain in
percentage of explained variance in tumor volum#g. Higher value of 2 means a better fit.

_n-1

rg:l (1_r2)7
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wherek is the number of parameters arfiis computed by:

n

Z(Yi —Y()?

2 i=

r<=1- 5-
5 - (a/m (Zy>

RSS, SE and? are used to access the fit of model. Sometimes, better fit daesean good predictive performance
because the model might ‘overfit’ the data by picking up to m@mndom noise. In order to access predictive performance
of models, we use k-fold cross-validation methodkdiold cross-validation, the data is partitioned ikteubsets. One of
thek subsets is chosen for testing the model, namely validagbrasd the remaining— 1 subsets are used as training
data so it is called training set. Thefold cross-validation process repe&tsmes. The advantage of this method is that
all observations are used for both training and validato each observation is used for validation exactly oncign
study, we choosk= n, wherenis the number of observations for each mouse and thus in epetition of fitting models,
the validation set contains one observation. We then uspregicted residual sum of squares (PRESS) to measure the
ability of models in prediction.

PRESS. Zi—Y()*
n—1

A smaller value of PRESS indicates better performance ofaisdd predicting missing value or future value of tumor
volume.

3 Results
In Tables 1,2, and 3, we list the number of models with mininR&S, minimum SE, and maximurg which we obtain

for the Gompertz, Logistic, Richards and Weibull curvesdach mouse. The minimum residual sum of squares could be
from continuous (C), discrete (D), continuous fractior@#}, discrete fractional (DF) or some of them at the same.time

Table 1: Number of Models with Minimum RSS

Model Type Gompertz | Logistic | Richards| Weibull
Continuous 7 9 0 11
Discrete 8 14 22 12
Continuous Fractional 5 5 6

Discrete Fractional 10 4 0 5
Number of minimum RSS 3 1 16 8

Table 2: Number of Models with Minimum SE of the Estimate

Model Type Gompertz| Logistic | Richards | Weibull
Continuous 12 14 8 14
Discrete 19 18 20 15
Continuous Fractional 0 0 0 0
Discrete Fractional 0 0 0 0
Number of minimum SE 6 17 3 2

In the next step, cross validation method is used to choaseniidels which are best at predictive performance.
We tabulate the results in Table 4 in which each column remtssnumber of minimum PRESS values for each model.
Besides the measurements on tumor volume, each mouse wasebsn the estrus cycle stage of measurement. Hence
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Table 3: Number of Models with Maximum Adjusted Coefficient of MuligpDetermination

Model Type Gompertz| Logistic | Richards | Weibull
Continuous 6 9 1 10
Discrete 9 14 20 12
Continuous Fractional 5 5 7 3
Discrete Fractional 10 4 0 3
Number of maximumyf 6 17 3 2

Tables 5, 6, and 7 list the number of times in which minimunidesl sum of squares, minimum standard error of the
estimate, and maximum adjusted coefficient of multiple wheitlgation are obtained for the Gompertz, Logistic, Riclsard
and Weibull curves regarding the estrus cycle phases.

Table 4: Number of Minimum Multiple Residual Sum of Squares in Croakdation

Model Type Gompertz| Logistics | Richards| Weibull
Continuous 5 1 8 10
Discrete 5 4 5 12
Continuous Fractional 10 16 5 1
Discrete Fractional 8 7 10 5

4 Discussion
Based on Table 1, the discrete-type models (discrete ancethsfractional) significantly outperform the continudype

models (continuous and continuous fractional) in termsat&ditting (producing the minimum RSS) across all types of
models we study in this paper. One of the reasons to explaim sutcomes is the fact that time is measured on discrete

Table 5: Number of models with minimum RSS taking into account estycse

Estrus Cycle| Model Type | Gompertz| Logistic | Richards| Weibull
Diestl’us Continuous 3 1 0 7
Discrete 2 7 9 3
Continuous Fractional 1 2 2 0
Discrete Fractional 6 1 0 1
min RSS 1 0 7 3
Metestrus Continuous 1 3 0 1
Discrete 3 5 7 6
Continuous Fractional 3 2 1 1
Discrete Fractional 1 O 0 0
min RSS 2 0 4 2
Estrus Continuous 3 3 0 1
Discrete 1 1 3 2
Continuous Fractional 1 1 3 0
Discrete Fractional 2 3 0 3
min RSS 0 1 3 2
P roestrus Continuous 0 2 0 2
Discrete 2 1 3 1
Continuous Fractional 0 O 0 0
Discrete Fractional 1 O 0 0
min RSS 0 O 2 1
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Table 6: Number of models with minimum SE of the estimate taking intocaunt estrus cycle

Estrus Cycle| Model Type | Gompertz| Logistic | Richards | Weibull
Diestl’us Continuous 3 3 2 8
Discrete 9 9 9 3
Continuous Fractional 0 O O O
Discrete Fractional 0 O O O
min SE 2 7 2 O
Metestrus Continuous 4 3 2 2
Discrete 4 6 6 6
Continuous Fractional 0 O O O
Discrete Fractional 0 O O O
min SE 2 5 O 1
Estrus Continuous 5 6 3 3
Discrete 3 2 3 4
Continuous Fractional 0 O O O
Discrete Fractional 0 O O O
min SE 2 3 1 O
Proestrus Continuous 0 2 1 1
Discrete 3 1 2 2
Continuous Fractional 0 O O O
Discrete Fractional 0 O O O
min SE 0 2 O 1

Table 7: Number of models with maximum adjusted coefficient of midtigetermination taking into account estrus cycle

Estrus Cycle| Model Type | Gompertz| Logistic | Richards | Weibull
DiestrUS Continuous 3 1 O 7
Discrete 2 7 9 2
Continuous Fractional 1 2 2 1
Discrete Fractional 6 1 O 1
max 3 2 6 2 1
M etestrus Continuous 1 3 O 1
Discrete 3 5 6 6
Continuous Fractional 3 2 2 O
Discrete Fractional 1 0 O 1
max 2 2 5 0 1
Estrus Continuous 2 3 0 1
Discrete 2 1 3 2
Continuous Fractional 1 1 3 2
Discrete Fractional 2 3 O 1
max 2 3 1 0
Proestrus Continuous 0 2 1 1
Discrete 2 1 2 2
Continuous Fractional O 0 O O
Discrete Fractional 1 0 O O
max 3 0 2 0 1

scale. Thus the discrete-type models, which more preciséligct the characteristics of the data, perform bettetst a
appears that the fractional models (both discrete andmemtis) overall are not as good as the non-fractional models i
terms of RSS. Within the non-fractional models, discretalai® fit the data better. On the other hand, the fractional,
discrete, and continuous models are comparative in fithiegdata. Comparing across the model types, Richards curves
appear to provide the best fit overall. Weibull curves aresémond best in terms of fitting performance. Note that both
Richards and Weibull models with 4-parameters provide nitendbility in terms of modeling and fitting the data
comparing to Gompertz and Logistic models with 3-paranseter

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

236 NS 2 Aticiet al.: Modeling tumor volume with...

Based on Table 2, taking into account the number of paramétethe models, the discrete models are again
significantly better than continuous models in producingiimum SE of the estimate. Also note that none of the
fractional models result in minimum SE of the estimate asral types. The important reveal in this table is that
Richards curves are no longer the best fit models. Insteagistio curves outperform other curves in a wide margin.
Thus, it can be concluded that Richards and Weibull curvel ddiparameter are penalized for using an additional
parameter comparing to Gompertz and Logistic curves wipa&meters.

Table 3 shows the number of models with maximum adjustedfic@aft of multiple determination within each
models. Here also the discrete-type models give betterrfthiodata. The non-fractional models are again fit better tha
fractional models. Within non-fractional model, discratedels fit better. For fractional models, discrete and catiis
models are comparable in fitting data. Because the adjus&fficdgent of multiple determination also penalizes models
for using more parameters, Logistic curves appear to gizé#st fit for the data.

In short, comparing fitting performance of models, it appéhat Logistic curves give the best fit in terms of residual
sum of squares, standard error of estimate, and the adjustdficient of multiple determination. Also, the discréype
models are seem to be outperformed the continuous-typelmadmrding all measures considered.

In Table 4, the results for comparing predictive perforneamong models using cross validation technique of four
curves are presented. For all types of curves, fractionaletsodo a better prediction than traditional models with a
significant number of fractional models with minimum restlsum of squares. For Gompertz and Logistic curves,
continuous-type models are better than discrete-typehh®mwther hand, for Richards and Weibull curves, discrepe-ty
models perform better than continuous-type in terms of iptiesh. The four types of curves are comparable in terms of
the number of models with minimum PRESS values, and thusaamgarable in prediction capacity.

In Table 5, one can see that if we take the estrus cycle intoustcthe models with 4-parameters still dominate
models with 3-parameter in terms of producing minimum reasidum of squares. The discrete models give better result
in data fitting compared to continuous counterparts. Foryegstrus cycle, Richards curves mostly give the minimum
residuals sum of squares. The second best is the Weibuksurience, the pattern in model comparison in terms of RSS
remains the same regardless of estrus cycles.

In Table 6, by taking the number of parameters in the modets account, Logistic curves prove to be the best
curves in producing minimum SE of the estimate. Based on fhemam SE, discrete-type models perform better than
continuous-type for all cycles except for estrus phaseoAds in Table 2, none of the fractional models result in
minimum SE compared to the traditional (non-fractionaljdeis.

Table 7 again shows that Logistic curves is the best fit modeterms of adjusted coefficient of multiple
determination. The continuous-type models and discsgie-tnodels are comparative in terms of fitting for all estrus
phases. Overall, the traditional models result in bettéhin the fractional models.

Based on the above observations, this paper illustratébésade the continuous models there are other models such
as discrete, discrete fractional and continuous fractiwhi&ch may serve better for modeling and data fitting.
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Table 8: RSS for Gompertz, Logistic, Richards and Weibull Curves

id# Gompertz Logistic Richards Weibull Percentage of
Curve Curve Curve Curve Reduction in RSS
21 .09320807348 .07720652925 .06293114988 .07048076018 32 48315566%
CandD D D D
22 .33321:5;5178 .3258875032 .3150(2)51669 .7207(9:75288 56.2893663877%
23 .0999;9F266879 .094745826414 .09468367515 .1832(1:35621 483178679216%
26 .01504232032 .01325261841 .01155143364 .01112150576 26.0652244906%
D Cand D D D
27 .05129960785 .05247699452 .05359189805 .05379376776 4.63652176425%
CF CF D D
o8 .098737'%41550 .0926%992014 .09265;86241 .4856g70681 80.919169325%
29 .006888F511228 .00602DZO41787 .006013138354 .005935D668825 13.4562160158%
30 .0816([))721610 .0797(2:180993 .0797%49954 .09002716682 11.4729030291%
31 .0809£I13056469 .O7471D837868 .073545750628 .07221320207 10.78490452%
22 .OO97DQ|6288886 .00884;3677223 .008832102086 .0121([))950143 270234027628%
33 .049737'%01896 .0495(3:751166 .04900;39451 .05395D346556 9.17655798124%
34 .3197g37942 .3125§97049 .2951%61514 .3196;07032 7 691719866%
35 .0415?:372344 .0315(3:005505 .02468361651 .0303%3:951321 40.59349087%
136 .02069668479 .02091409925 .02136563279 .02133241926 3.130953371%
C CF CF C
.2605491124 .2552786642 .2517539004 .2526146358 o
137 c C and D D DE 3.375644583%
138 .16882':72298 .1511§71712 .1510%39993 .2413(1:81123 37 4253354376%
139 .1444é68940 .1389286529 .12938D00537 .12980'93389 10.43071255%
140 .05338370310 .05156530341 .0512836781 1677970703 69.437083729%
DF DF D C
.02861367403 .02903453028 .02963366498 .02903453028 o
141 CF CF CE DE 3.44200068%
142 .00365;090481 .003025069415 .003025604093 .00259(::380003 20.0747646667%
1279762340 1301131682 .1333610592 .1217973994 o
143 DF DF CF DE 8.670941779%
144 .2024468349 .1942945348 .1788737819 2167948971 2 3573053%
CandD C D C
.2808836341 .2850144884 .2920227196 .2758650186 o
145 CF CF CF DE 5.841223937%
146 .241;5':16991 .2325881230 .2300&2)31995 .5407(9:24771 57 450985254%
147 .03264789880 .03702966456 .04236747212 .03155296655 25 525491677%
DF DF CF D
148 .1113[:)379834 .1077352924 .1041%)25459 .1061;10149 6.489642869%
149 .1394980990 .1242478059 .1140944052 .1137031905 18.491225819%
D CandD D D
.3029542604 .3004077982 .3031836220 3070499722
0,
150 CE CEandDE CE D 2.163222472%
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Table 9: SE of the estimate for Gompertz, Logistic, Richards and \e®urves
id# Gompertz Logistic Richards Weibull Percentage of
Curve Curve Curve Curve Reduction in SE|
21 | 0.081594849925 0.074261376834 0.069576272414 | 0.073631494192] 14.72958%
Cand D D D D
22 | 0.154336629274 0.152565560428 | 0.155678457306 0.235469666314 35.20798%
C D D C
23 | 0.084434139067 0.082266233370 | 0.085344854809 0.124660537615 34.00780%
D D D D
26 | 0.032778826267 0.030767118824 0.029808921793 0.029248939179 10.76880%
D D D D
27 | 0.060533483220 | 0.061224688636 0.064207571384 0.064327149287 5.89746%
C C C D
28 | 0.084007922165 0.081372125861 | 0.084424687603 0.193272837858 57.89780%
D D D C
29 | 0.022136274858 0.020739957616 | 0.021517682092 0.021367963875 6.30782%
D D D C
30 | 0.086132675723 0.085153236169 | 0.089290256770 0.087633743678 4.63323%
D C C D
31 | 0.076035971135 0.073054959096 | 0.075215108343 0.074529912462 3.92053%
D D D D
32 | 0.026433537456 0.025140572250 | 0.026072535042 0.030520486726 17.62722%
D D D D
33 | 0.059627328706 0.059466384057 | 0.061395561422 0.064422562674 7.69323%
D C D D
34 | 0.151137069812 0.149425018201 | 0.150689735090 0.156799897763 4.70337%
C D D D
35 | 0.054480483688 0.047434206351] 0.043576296053 | 0.048349300536 20.01485%
C C D C
136 | 0.038449117387 | 0.038650741020 0.040540944327 0.040508706813 5.15979%
C C C C
137 | 0.141570616356 0.140131439453 | 0.14484298982(0 0.145091495156 3.41857%
Cand D Cand D D Cand D
138 | 0.109861584278 0.103918639604 | 0.107776120982 0.136245850268 23.72712%
D D D C
139 | 0.10157576131Q 0.099627396153 | 0.099761274165 0.100632454086 1.91814%
C C D C
140 | 0.061756920555 0.060690615567 | 0.062958086063 0.113611033558 46.58035%
D D D C
141 | 0.045208806727 | 0.045539304092 0.047745170469 0.047266144584 5.31229%
C D C C
142 | 0.01616232497q4 0.014701966377 0.015250735400 0.014125263791 12.60376%
D D D C
143 | 0.095612974015 | 0.096407243244 0.101289673671 0.097091220391 5.60442%
C Cand D C D
144 | 0.120251770079 0.117805691956 0.117300987569 | 0.129137641864 9.16592%
Cand D C D C
145 | 0.141644335876 | 0.142682970828 0.149882723333 0.145838953486 5.49656%
D Cand D C C
146 | 0.131462176282 0.128895894593 | 0.133027816495 0.203959361921] 36.80315%
D D D C
147 | 0.048291628800 | 0.051433723908 0.057108511470 0.049266127035  15.43882%
D C C D
148 | 0.092544369151] 0.091060120630 | 0.093145292375 0.094052740036 3.18185%
D C D D
149 | 0.11810931335(0 0.111466499855 | 0.112592877809 0.112399678973 5.62429%
D Cand D D D
150 | 0.147104191622 0.146484858945 | 0.152717975366 0.153685486077 4.68530%
C C C D
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Table 10: Adjusted coefficient of multiple determination for Gompeitogistic, Richards and Weibull Curves

id# Gompertz Logistic Richards Weibull Percentage of
Curve Curve Curve Curve Improvement in%
21 | 0.875576708450 0.896937141390 0.909531267613 | 0.898678078451 3.87797%
Cand D D D D
22 | 0.913887734524 0.915847784358 | 0.912378723423 0.799542424038 14.54649%
CF D D c
23 | 0.948167714870 0.950787777278 | 0.947035552998 0.886997579679 7.19170%
DF D D D
26 | 0.953153210867] 0.958726937939 0.961257684976 0.962699618669 1.00156%
D Cand D D D
27 | 0.959660165654 | 0.958734318747 0.954615883310 0.954444930632 0.54642%
CF CF CF D
28 | 0.977987636496 0.979342204179 | 0.977763236309 0.883460190639 10.85301%
DF D D c
29 | 0.907013671671f 0.918354357644 | 0.912116315795 0.913335035644 1.25033%
DF D D C
30 | 0.795175126623 0.799806887185 | 0.779882302617 0.787973791478 2.55482%
D c cC D
31 | 0.730360795520 0.751088909937 0.736151266589 0.871492336833 19.32354%
D D D CF
32 | 0.967261358913 0.970378634044 | 0.968141796391 0.956344629902 1.46746%
DF D D D
33 | 0.978170454133 0.978286900833 | 0.976855238854 0.974516754010 0.38687%
DF C D D
34 | 0.887347108563 0.889884873537 | 0.888012980577| 0.878747166156 1.26745%
C D D D
35 | 0.974393023894 0.980588474625 0.983617619355 | 0.979832281166 0.94670%
C C D C
136 | 0.970745913446 | 0.970438605223 0.967477329446 0.967527886933 0.33785%
C CF CF C
137 | 0.814855817720 0.818600957411 | 0.806197762887 0.805535161649 1.62200%
CandD CandD D CF
138 | 0.960512831514 0.964659615213 | 0.961987234579 0.939252146717 2.70507%
DF D D C
139 | 0.933103339405 0.935645069393 | 0.935471994529 0.935218223864 0.27240%
cC c D CF
140 | 0.968603280203 0.969672741147 | 0.967363269132 0.893721690468 8.49829%
DF DF D C
141 | 0.951442656867 | 0.950730577633 0.945843406303 0.946938346619 0.59198%
CF CF CF DF
142 | 0.945913528509 0.955246002801 0.951842653145 0.958688200381 1.35051%
D D D C
143 | 0.927035094804 | 0.925816734203 0.918116119435 0.925216223046 0.97144%
DF DF CF DF
144 | 0.867718973914 0.873045777975 0.874131245030 | 0.847447158036 3.14876%
D C D C
145 | 0.918048643639 | 0.916843414599 0.908244726297| 0.913321571961 1.07944%
CF CF CF DF
146 | 0.956885085930 0.958551859222 | 0.955851921143 0.896219878809 6.95499%
DF D D C
147 | 0.966642898452 | 0.962165947689 0.953382357482 0.965281739943 1.39089%
DF DF CF D
148 | 0.970344274342 0.971287897257 | 0.969957893780 0.969369685109 0.19788%
D C D D
149 | 0.910071904661] 0.919903076710 | 0.918276126086 0.918556346494 1.08026%
D Cand D D D
150 | 0.955994398393 0.956364284596 | 0.952573473449 0.951968666503 0.46174%
CF CF and DF CF D
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Table 11: Parameter estimates and SEs for discrete and continuoupéstancurve for mean data

Model type | Parameter| Estimate | Standard error
Discrete a 16.859 19.2374

b 1.83367 0.141244

c 0.95235 0.0153967
Continuous a 16.859 19.2374

b 1.83367 0.141244

0.0488226 0.0161671

(9]

A Appendix

In Table8, the minimum RSS’s for each model are presented. On avettagy®SS’s for Gompertz, Logistic, Richards,
and Weibull curves are 0.2346, 0.2263, 0.2212, and 0.32%89ectively. Thus, among the four models, Richards curves
result in the smallest average RSS'’s. Itis interesting te timat the average RSS's for Weibull model is bigger thaseho
of 3-parameter Gompertz and Logistic models, hence yiedigood fitting on average. However, when considering the
number of minimum RSS'’s, Weibull model results in larger fy@mof minimum sum. This could be explained by the fact
that Weibull curves yield minimum RSS'’s of wider range (meaeability) than the ranges of 3-parameter Gompertz and
Logistic models. If we compare the absolute values of RSSngnmoodels, the difference seems to be small. However,
to show that there are a significant improvement using therhedel, we compute the percentage of reduction in RSS,
which are included in the last column of TaleThe largest percentage of reduction in RSS is about 81%ghnikia
prominent and significant improvement in terms of modehfiti

Table9 and Tablel0 are similar to Tabl& with RSS’s being replaced by SE of the estimate and adjustefficient
of multiple determination.

From Table9, on average, the SE of the estimate for Gompertz, Logistahdrds, and Weibull curves are 0.0851,
0.0833, 0.0855, and 0.0995, respectively. Thus, amongtivefiodels, Logistic curves result in the smallest averdgje S
Note that average SE for 3-parameter models are smallethibaa of 4-parameter models. This shows that SE penalizes
the 4-parameter models for using extra parameters. In gheddumn of Tabl®, we compute the percentage of reduction
in SE. The largest percentage of reduction in SE is abou®b,Ahich shows that there is a significant difference in terms
of SE among different models.

From Tablel0, on average, the adjusted coefficient of multiple detertiongor Logistic, Richards, and Weibull
curves are 0.9245, 0.9285, 0.9248, and 0.9137, respactivaistic curves shows the best fitting performance in term
of both average2 and the number of models with maximug If the number of models with maximurg is considered,
Gompertz curves are the second best. While the avegagfeRichards curves is the second largest, the number of model
with maximumr2 using Richards curve is far less than that of Gompertz curivethe last column of Tabld0, we
compute the percentage of improvementjnThe largest percentage of improvementjns about 19.3%, which is still
a substantial improvement in fitting performance to conside

One further step is taken where we run a statistical randéectehodel using the same data. The model takes into
account the effect of time on tumor volume. Moreover, singeerare chosen at random, they constitute the random factor
in the model. It turns out that the random effect model yiedssidual sum of squares of 0.336.

The mean tumor volume of all mice is computed and we fit all nitiethis mean data. In order to fit the fractional
model, we use function(algorithm) named NonlinearModéfFMiathematica to find the estimates for paramatér and
c. Thenin the next step, value afis searched using iteration. The parameter estimates andesd errors for continuous
and discrete Gompertz curve for mean data are presentetliaITa

We also fit all models to the mean tumor volume of mice againsé.t The result indicates that the continuous
fractional Gompertz model fit data best in terms of all statié measures RSS, SE, arg The estimates and standard
errors of parameters in continuous and discrete Gomperteare listed in Tabld1l Except for the intercept, all
parameters have small standard errors.

References

[1] B. Gompertz, On the nature of the function expressiveneflaw of human mortality, and on a new mode of determining/éhae
of life contingenciesPhilos. Trans. R. Soc. Lond.15, 513-585 (1825).

© 2015 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appll, No. 4, 229-241 (2015)www.naturalspublishing.com/Journals.asp NS = 241

[2] 1. D. Bassukas and B. M. Schultze, The recursion formdléhe Gompertz function: A simple method for the estimatiowl a
comparison of tumor growth curveSyowth Dev. Aging2, 113-122 (1988).
[3] I. D. Bassukas, Comparative Gompertzian analysis efaltons of tumor growth patternrSancer Res 54, 4385-4392 (1994).
[4] L. E. B. Cabrales, A. R. Aguilera, R. P. Jameéz, M. V. Jargue, H. M. C. Ciria, J. B. Reyes, M. A. O. MateusS FPalencia and M.
G. Avila, Mathematical modelling of tumor growth in mice limving low-level direct electric currenilath. Comput.Simulz8,
112-120 (2008).
[5] S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Epbh. Hlatky and P. Hahnfeldt, Classical mathematical medet
description and prediction of experimental tumor grovith©S Comput. BiollO, 1-19 (2014).
[6] P. A. Wood, J. Du-Quiton, S. You and W. J. M. Hrushesky,c&tlian clock coordinates cancer cell cycle progressigmitdlylate
synthase, and 5-fluorouracil therapeutic indér]. Cancer Thers, 2023—2033 (2006).
[7] G. M. Mittag-Leffler, Sur la nouvelle fonctioEq (x), C. R. Acad. Sci. Pari$37, 554-558 (1903).
[8] A. Wiman, Uber die nullstellen der funktioneBa(x), Acta Math.29(1), 217-234 (1905).
[9] A. Nagai, Discrete Mittag-Leffler function and its apgditions,Publ. Res Inst. Math. Sci. Kyoto Univ1302, 1-20 (2003).
[10] F. M. Atici and P. W. Eloe, Linear systems of fractionabfa difference equationRocky MT. J. Math41(2), 353-370 (2011).

© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Model Description
	Results
	Discussion
	Appendix

