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Abstract: In this paper, we introduce fractional sigmoidal curves andestimate their parameters to fit the given tumor volume data.We
outline approximation techniques to choose the appropriate functions of discrete, discrete fractional and continuous fractional calculus.
We demonstrate how to replace the exponential functione−ct in the existing continuous time models with these functions. We use the
tumor volume data which were taken over consecutive seventeen days, for twenty eight mice. We then compute residual sum of squares,
standard error of the estimate, adjusted coefficient of multiple determination, and cross-validation methods to compare models on data
fitting and predictive performances. Estrus cycle stages ofmeasurement are also taken into account when comparing the models.
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1 Introduction

Tumor volume, a relationship between tumor size and time, isof special interest since volume estimation is very critical
in a clinical practice. Determining and modeling tumor volume are useful and quantitative ways to monitor tumor
progression. There are some mathematical models which describe tumor volumes and have prediction capabilities.
Typically, there are three ways to model non-complex growthbehavior: Exponential, logistic and sigmoidal. In 1825,
Benjamin Gompertz introduced the Gompertz function in [1], a sigmoid function, which is found to be applicable to
various growth phenomena, in particular tumor growth ([1], [2], [3], [4], [5]). Beside the Gompertz model which
includes three parameters, Weibull and Richards models with four parameters are known as sigmoidal models.

Our aim in this paper is to introduce discrete, continuous fractional and discrete fractional models of the tumor volume
and estimate parameters of these models in order to have better data fitting. It is important to point out that determining
tumor volume over time can give a general overview of tumor destruction dynamics. Hence the models we develop here
can be used to help physicians to choose the most appropriatetreatment for patients and animals with malignant solid
tumors.

We organize the paper as follows: In Section 2, we give a briefintroduction about Mittag-Leffler functions of fractional
calculus. Next, we introduce four types of sigmoidal curveswith these functions, namely, continuous, discrete, continuous
fractional, and discrete fractional for each of the sigmoidal curves of Gompertz and Logistics with three parameters and
Richards and Weibull with four parameters. We first demonstrate fitting the mean data with the four curves in order to
give the reader a feeling about how the models fits the raw data. Since a complete comparison of the fittings is mostly
not possible with graphs, we use some statistical techniques. We compare continuous, discrete, continuous fractional, and
discrete fractional forms of these sigmoidal curves by using the data on the tumor volume for twenty-eight controlled
mice. These controlled and age-matched femaleCD2F1 mice had inoculated tumors but did not receive any subsequent
treatment. Tumor volume was measured at 14HALO (hours afterlight on) daily until day 17 (for detailed information on
the materials and methods used to measure the tumor volume see [6]. We use statistical computation techniques such as
residual sum of squares, standard error of the estimate, adjusted coefficient of multiple determination, and cross-validation
to compare fitting and predictive performances of these models. Besides the measurements on tumor volume, each mouse
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was observed on the estrus cycle stage of measurement. We compare the performance of different models by considering
the estrus cycle stages. In Section 3, the results of the study are presented and analyzed. We close the paper with a
discussion section.

2 Model Description

In the literature, continuous forms of the sigmoidal curvesare used intensively in regression and data fitting analysis. In
this section, we outline how to choose appropriate functions of discrete calculus and fractional calculus to replace the
exponential functione−ct which appears in the continuous forms of the sigmoidal curves.

First we recall some basic functions of fractional calculus.
The Mittag-Leffler function is named for Gösta Mittag-Leffler who defined and studied the special function [7]. The

function is a direct generalization of the exponential function ex, and it plays a major role in fractional calculus. The one
and two-parameter representations of the Mittag-Leffler function can be defined in terms of a power series as

Eα(x) =
∞

∑
k=0

xk

Γ (αk+1)
,

Eα ,β (x) =
∞

∑
k=0

xk

Γ (αk+β )
,

whereα andβ are positive real numbers. The Mittag-Leffler function withtwo-parameters was first defined by Wiman in
[8].

We shall define the discrete Mittag-Leffler function with oneand two-parameters in the following way. Related
definitions are given by Nagai [9].

Fα(at) =
∞

∑
k=0

aktk

Γ (αk+1)
,

Fα ,β (at) =
∞

∑
k=0

aktk

Γ (αk+β )
,

whereα andβ are positive real numbers and|a| < 1. For any real numberν, the discrete Mittag-Leffler function was
defined in [10]

Fα ,β (atν) =
∞

∑
k=0

aktkν

Γ (αk+β )
,

where the raising factorial power functiontν is defined by

tν =
Γ (t +ν)

Γ (t)
.

2.1 Fractional Sigmoidal Curves

By use of the Mittag-Leffler functions, we present four different forms of the sigmoidal curves. Our study will include
Gompertz, Logistics, Richards and Weibull models. Let 0< α ≤ 1.

Continuous, discrete, continuous fractional, and discrete fractional forms of Gompertz curve are as follows:

Y(t) = elna−eb(e−c)t (continuous)

Y(t) = elna−eb(1−c)t (discrete)

Y(t) = e
lna−eb

∞
∑

n=0
(−c)n t(n+1)α−1

Γ ((n+1)α)
(continuous f ractional)

Y(t) = e
lna−eb

∞
∑

n=0
(−c)n (t−n+1)(n+1)α−1

Γ ((n+1)α)
. (discrete f ractional)
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Similarly continuous, discrete, continuous fractional, and discrete fractional forms of Logistic curve are as follows:

Y(t) =
a

1+eb(e−c)t
(continuous)

Y(t) =
a

1+eb(1− c)t
(discrete)

Y(t) =
a

1+eb
∞

∑
n=0

(−c)n t(n+1)α−1

Γ ((n+1)α)

(continuous f ractional)

Y(t) =
a

1+eb
∞

∑
n=0

(−c)n (t −n+1)(n+1)α−1

Γ ((n+1)α)

. (discrete f ractional)

Gompertz and Logistics curves are known as sigmoidal curveswith three parameters,a,b and c. In the continuous
fractional and discrete fractional forms,α is also considered as a parameter.
Continuous, discrete, continuous fractional, and discrete fractional types of Richards curve are as follows:

Y(t) =
a

(1+eb(e−c)t)
1
d

(continuous)

Y(t) =
a

(1+eb(1− c)t)
1
d

(discrete)

Y(t) =
a

(1+eb
∞
∑

n=0
(−c)n t(n+1)α−1

Γ ((n+1)α)
)

1
d

(continuous f ractional)

Y(t) =
a

(1+eb
∞
∑

n=0
(−c)n (t −n+1)(n+1)α−1

Γ ((n+1)α)
)

1
d

. (discrete f ractional)

Continuous, discrete, continuous fractional, and discrete fractional types of Weibull curve are as follows:

Y(t) = a−b(e−c)t
d

(continuous)

Y(t) = a−b(1− c)t
d

(discrete)

Y(t) = a−b(
∞

∑
n=0

(−c)n t(n+1)α−1

Γ ((n+1)α)
)t

d−1
(continuous f ractional)

Y(t) = a−b(
∞

∑
n=0

(−c)n (t −n+1)(n+1)α−1

Γ ((n+1)α)
)t

d−1
. (discrete f ractional)

Richards and Weibull curves are known as sigmoidal curves with four parameters,a,b,candd. In the continuous fractional
and discrete fractional forms,α is also considered as a parameter.

2.2 Fitting mean data

In order to give the reader some idea about the distribution of the data points over a time interval (17 days) we plot mean
tumor volume of twenty-eight mice by each day (y-value) and standard deviations of volume are represented by bars (see
Figure 1). In fitting data, we use four different forms (continuous, discrete, continuous fractional, and discrete fractional)
of each type of curves Gompertz, Logistic, Richards, and Weibull. Thus, for easy presentation, we call these curves as
sub-models. We then try to fit different curves to mean tumor volume. In terms of residual sum of squares, continuous
fractional Gompertz, continuous fractional Logistic, continuous Richards, and continuous Weibull sub-models fit thedata
best and these fits are plotted in Figure 1. In terms of notation,y−hat−G,y−hat−L,y−hat−R, andy−hat−W stand for fitted
values using Gompertz, Logistic, Richards, and Weibull, respectively. The comparison of models can somewhat be done
by looking at the graphs closely. However, it is hard to distinguish the fits of curves overall. In order to make a good
judgment on model comparison, we use statistical methods mentioned earlier in the rest of the paper.
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Fig. 1: Mean Tumor Volume with Standard Deviation by Day and Fits of curves

2.3 Model Fitting

To demonstrate how these models give new insights to the existing models, we use the tumor volume data for twenty-
eight controlled mice. These controlled and age-matched femaleCD2F1 mice had inoculated tumors but did not receive
any subsequent treatment. Tumor size was measured at 14HALO(hours after light on) daily until day 17 (for detailed
information on the materials and methods used to measure thetumor volume see [6]).

We use Mathematica to estimate parameters for the continuous and discrete forms of the above curves. We first fix
parameterc and compare graphs of the continuous and discrete forms of the curves (Richard and Weibul) to get better
parametersa, b, d andα. Then we substitute the same parameters into continuous fractional and discrete fractional curves
to find estimated data valueY(t) for each iteration. We also use statistical computation techniques such as residual sum
of squares, standard error of the estimate, adjusted coefficient of multiple determination, and cross validation to compare
fitting and predictive performance of these models [4]. Residual sum of squares (RSS) is the sum of squares of residual.
It is a measure of unexplained variation in tumor volume. In our study, RSS is considered as sum of squares of difference
of original valueyi and estimatedY(t) as predicted value, therefore,

RSS=
n

∑
i=1

(yi −Y(t))2,

wheren is the number of days observed. A smaller residual sum of squares indicates a better fit of the model to the data.
Standard error of the estimate (SE), which is derived from RSS, takes into account the number of parameters in the

models (k) and eliminates the effects of number of observingpoints on RSS. A smaller value of SE indicates a better
model.

SE=

√

√

√

√

√

n

∑
i=1

(yi −Y(t))2

n− k
.

The third measure that we use to compare models is the adjusted coefficient of determination (r2
a). The measurer2

a
takes into account the percentage of variance in response variable that can be explained by a certain model and ‘penalizes’
model for using additional parameters. In other words,r2

a balance the cost of using more parameters against the gain in
percentage of explained variance in tumor volume (r2). Higher value ofr2

a means a better fit.

r2
a = 1−

n−1
n− k

(1− r2),
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wherek is the number of parameters andr2 is computed by:

r2 = 1−

n

∑
i=1

(yi −Y(t))2

n

∑
i=1

y2
i − (1/n)

(

n

∑
i=1

yi

)2 .

RSS, SE andr2
a are used to access the fit of model. Sometimes, better fit does not mean good predictive performance

because the model might ‘overfit’ the data by picking up to much random noise. In order to access predictive performance
of models, we use k-fold cross-validation method. Ink-fold cross-validation, the data is partitioned intok subsets. One of
thek subsets is chosen for testing the model, namely validation set, and the remainingk−1 subsets are used as training
data so it is called training set. Thek-fold cross-validation process repeatsk times. The advantage of this method is that
all observations are used for both training and validation,and each observation is used for validation exactly once. Inthis
study, we choosek= n, wheren is the number of observations for each mouse and thus in each repetition of fitting models,
the validation set contains one observation. We then use thepredicted residual sum of squares (PRESS) to measure the
ability of models in prediction.

PRESS=
∑i(yi −Y(t))2

n−1
.

A smaller value of PRESS indicates better performance of models in predicting missing value or future value of tumor
volume.

3 Results

In Tables 1,2, and 3, we list the number of models with minimumRSS, minimum SE, and maximumr2
a which we obtain

for the Gompertz, Logistic, Richards and Weibull curves foreach mouse. The minimum residual sum of squares could be
from continuous (C), discrete (D), continuous fractional (CF), discrete fractional (DF) or some of them at the same time.

Table 1: Number of Models with Minimum RSS

Model Type Gompertz Logistic Richards Weibull

Continuous 7 9 0 11

Discrete 8 14 22 12

Continuous Fractional 5 5 6 0

Discrete Fractional 10 4 0 5

Number of minimum RSS 3 1 16 8

Table 2: Number of Models with Minimum SE of the Estimate

Model Type Gompertz Logistic Richards Weibull

Continuous 12 14 8 14

Discrete 19 18 20 15

Continuous Fractional 0 0 0 0

Discrete Fractional 0 0 0 0

Number of minimum SE 6 17 3 2

In the next step, cross validation method is used to choose the models which are best at predictive performance.
We tabulate the results in Table 4 in which each column represents number of minimum PRESS values for each model.
Besides the measurements on tumor volume, each mouse was observed on the estrus cycle stage of measurement. Hence
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Table 3: Number of Models with Maximum Adjusted Coefficient of Multiple Determination

Model Type Gompertz Logistic Richards Weibull

Continuous 6 9 1 10

Discrete 9 14 20 12

Continuous Fractional 5 5 7 3

Discrete Fractional 10 4 0 3

Number of maximum ra
2 6 17 3 2

Tables 5, 6, and 7 list the number of times in which minimum residual sum of squares, minimum standard error of the
estimate, and maximum adjusted coefficient of multiple determination are obtained for the Gompertz, Logistic, Richards
and Weibull curves regarding the estrus cycle phases.

Table 4: Number of Minimum Multiple Residual Sum of Squares in Cross validation

Model Type Gompertz Logistics Richards Weibull

Continuous 5 1 8 10

Discrete 5 4 5 12

Continuous Fractional 10 16 5 1

Discrete Fractional 8 7 10 5

4 Discussion

Based on Table 1, the discrete-type models (discrete and discrete fractional) significantly outperform the continuous-type
models (continuous and continuous fractional) in terms of data fitting (producing the minimum RSS) across all types of
models we study in this paper. One of the reasons to explain such outcomes is the fact that time is measured on discrete

Table 5: Number of models with minimum RSS taking into account estruscycle
Estrus Cycle Model Type Gompertz Logistic Richards Weibull

Diestrus Continuous 3 1 0 7
Discrete 2 7 9 3

Continuous Fractional 1 2 2 0
Discrete Fractional 6 1 0 1

min RSS 1 0 7 3
Metestrus Continuous 1 3 0 1

Discrete 3 5 7 6
Continuous Fractional 3 2 1 1

Discrete Fractional 1 0 0 0
min RSS 2 0 4 2

Estrus Continuous 3 3 0 1
Discrete 1 1 3 2

Continuous Fractional 1 1 3 0
Discrete Fractional 2 3 0 3

min RSS 0 1 3 2
Proestrus Continuous 0 2 0 2

Discrete 2 1 3 1
Continuous Fractional 0 0 0 0

Discrete Fractional 1 0 0 0
min RSS 0 0 2 1
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Table 6: Number of models with minimum SE of the estimate taking into account estrus cycle
Estrus Cycle Model Type Gompertz Logistic Richards Weibull

Diestrus Continuous 3 3 2 8
Discrete 9 9 9 3

Continuous Fractional 0 0 0 0
Discrete Fractional 0 0 0 0

min SE 2 7 2 0
Metestrus Continuous 4 3 2 2

Discrete 4 6 6 6
Continuous Fractional 0 0 0 0

Discrete Fractional 0 0 0 0
min SE 2 5 0 1

Estrus Continuous 5 6 3 3
Discrete 3 2 3 4

Continuous Fractional 0 0 0 0
Discrete Fractional 0 0 0 0

min SE 2 3 1 0
Proestrus Continuous 0 2 1 1

Discrete 3 1 2 2
Continuous Fractional 0 0 0 0

Discrete Fractional 0 0 0 0
min SE 0 2 0 1

Table 7: Number of models with maximum adjusted coefficient of multiple determination taking into account estrus cycle
Estrus Cycle Model Type Gompertz Logistic Richards Weibull

Diestrus Continuous 3 1 0 7
Discrete 2 7 9 2

Continuous Fractional 1 2 2 1
Discrete Fractional 6 1 0 1

max r2a 2 6 2 1
Metestrus Continuous 1 3 0 1

Discrete 3 5 6 6
Continuous Fractional 3 2 2 0

Discrete Fractional 1 0 0 1
max r2a 2 5 0 1

Estrus Continuous 2 3 0 1
Discrete 2 1 3 2

Continuous Fractional 1 1 3 2
Discrete Fractional 2 3 0 1

max r2a 2 3 1 0
Proestrus Continuous 0 2 1 1

Discrete 2 1 2 2
Continuous Fractional 0 0 0 0

Discrete Fractional 1 0 0 0
max r2a 0 2 0 1

scale. Thus the discrete-type models, which more preciselyreflect the characteristics of the data, perform better. It also
appears that the fractional models (both discrete and continuous) overall are not as good as the non-fractional models in
terms of RSS. Within the non-fractional models, discrete models fit the data better. On the other hand, the fractional,
discrete, and continuous models are comparative in fitting the data. Comparing across the model types, Richards curves
appear to provide the best fit overall. Weibull curves are thesecond best in terms of fitting performance. Note that both
Richards and Weibull models with 4-parameters provide moreflexibility in terms of modeling and fitting the data
comparing to Gompertz and Logistic models with 3-parameters.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


236 Atıcıet al.: Modeling tumor volume with...

Based on Table 2, taking into account the number of parameters in the models, the discrete models are again
significantly better than continuous models in producing minimum SE of the estimate. Also note that none of the
fractional models result in minimum SE of the estimate across all types. The important reveal in this table is that
Richards curves are no longer the best fit models. Instead, Logistic curves outperform other curves in a wide margin.
Thus, it can be concluded that Richards and Weibull curves with 4-parameter are penalized for using an additional
parameter comparing to Gompertz and Logistic curves with 3-parameters.

Table 3 shows the number of models with maximum adjusted coefficient of multiple determination within each
models. Here also the discrete-type models give better fit for the data. The non-fractional models are again fit better than
fractional models. Within non-fractional model, discretemodels fit better. For fractional models, discrete and continuous
models are comparable in fitting data. Because the adjusted coefficient of multiple determination also penalizes models
for using more parameters, Logistic curves appear to give the best fit for the data.

In short, comparing fitting performance of models, it appears that Logistic curves give the best fit in terms of residual
sum of squares, standard error of estimate, and the adjustedcoefficient of multiple determination. Also, the discrete-type
models are seem to be outperformed the continuous-type models regarding all measures considered.

In Table 4, the results for comparing predictive performance among models using cross validation technique of four
curves are presented. For all types of curves, fractional models do a better prediction than traditional models with a
significant number of fractional models with minimum residual sum of squares. For Gompertz and Logistic curves,
continuous-type models are better than discrete-type. On the other hand, for Richards and Weibull curves, discrete-type
models perform better than continuous-type in terms of prediction. The four types of curves are comparable in terms of
the number of models with minimum PRESS values, and thus are comparable in prediction capacity.

In Table 5, one can see that if we take the estrus cycle into account, the models with 4-parameters still dominate
models with 3-parameter in terms of producing minimum residual sum of squares. The discrete models give better result
in data fitting compared to continuous counterparts. For every estrus cycle, Richards curves mostly give the minimum
residuals sum of squares. The second best is the Weibull curves. Hence, the pattern in model comparison in terms of RSS
remains the same regardless of estrus cycles.

In Table 6, by taking the number of parameters in the models into account, Logistic curves prove to be the best
curves in producing minimum SE of the estimate. Based on the minimum SE, discrete-type models perform better than
continuous-type for all cycles except for estrus phase. Also, as in Table 2, none of the fractional models result in
minimum SE compared to the traditional (non-fractional) models.

Table 7 again shows that Logistic curves is the best fit model in terms of adjusted coefficient of multiple
determination. The continuous-type models and discrete-type models are comparative in terms of fitting for all estrus
phases. Overall, the traditional models result in better fitthan the fractional models.

Based on the above observations, this paper illustrates that beside the continuous models there are other models such
as discrete, discrete fractional and continuous fractional which may serve better for modeling and data fitting.
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Table 8: RSS for Gompertz, Logistic, Richards and Weibull Curves
id# Gompertz Logistic Richards Weibull Percentage of

Curve Curve Curve Curve Reduction in RSS

21
.09320807348

C and D
.07720652925

D
.06293114988

D
.07048076018

D
32.48315566%

22
.3334575178

C F
.3258675032

D
.3150651669

D
.7207975288

C
56.2893663877%

23
.099979266879

D F
.09474826414

D
.09468867515

D
.1832135621

C
48.3178679216%

26
.01504232032

D
.01325261841

C and D
.01155143364

D
.01112150576

D
26.0652244906%

27
.05129960785

C F
.05247699452

C F
.05359189805

D
.05379376776

D
4.63652176425%

28
.09877841550

D F
.09269992014

D
.09265786241

D
.4856070681

C
80.919169325%

29
.006858511228

D F
.006022041787

D
.006019138354

D
.005935668825

D
13.4562160158%

30
.08160721610

D
.07976180993

C
.0797249954

D
.09005716682

C
11.4729030291%

31
.08094056469

D
.07471837868

D
.07354750628

D
.07221120207

D
10.78490452%

32
.00979888886

D F
.008848677223

D
.008837102086

D
.01210950143

D
27.0234027628%

33
.04977301896

D F
.04950751166

C
.04900239451

D
.05395346556

D
9.17655798124%

34
.3197937942

C
.3125897049

D
.2951961514

D
.3196207032

D
7.691719866%

35
.04155372344

C
.03150005505

C
.02468561651

D
.03038951321

C
40.59349087%

136
.02069668479

C
.02091409925

C F
.02136563279

C F
.02133241926

C
3.130953371%

137
.2605491124

C
.2552786642

C and D
.2517539004

D
.2526146358

D F
3.375644583%

138
.1689272298

D F
.1511871712

D
.1510039993

D
.2413181123

C
37.4253354376%

139
.1444468940

C
.1389586529

C
.1293800537

D
.1299003389

D F
10.43071255%

140
.05338370310

D F
.05156530341

D F
.0512836781

D
.1677970703

C
69.437083729%

141
.02861367403

C F
.02903453028

C F
.02963366498

C F
.02903453028

D F
3.44200068%

142
.003657090481

D
.003026069415

D
.003023604093

D
.00259380003

C
29.0747646667%

143
.1279762340

D F
.1301131682

D F
.1333610592

C F
.1217973994

D F
8.670941779%

144
.2024468349

C and D
.1942945348

C
.1788737819

D
.2167948971

C
2.3573053%

145
.2808836341

C F
.2850144884

C F
.2920227196

C F
.2758650186

D F
5.841223937%

146
.2419516991

D F
.2325981230

D
.2300531995

D
.5407924771

C
57.459985254%

147
.03264789880

D F
.03702966456

D F
.04236747212

C F
.03155296655

D
25.525491677%

148
.1113379834

D
.1077952924

C
.1041125459

D
.1061510149

D
6.489642869%

149
.1394980990

D
.1242478059

C and D
.1140944052

D
.1137031905

D
18.491225819%

150
.3029542604

C F
.3004077982
C F and D F

.3031836220
C F

.3070499722
D

2.163222472%
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Table 9: SE of the estimate for Gompertz, Logistic, Richards and Weibull Curves
id# Gompertz Logistic Richards Weibull Percentage of

Curve Curve Curve Curve Reduction in SE
21 0.081594849925 0.074261376834 0.069576272414 0.073631494192 14.72958%

C and D D D D
22 0.154336629274 0.152565560428 0.155678457306 0.235469666314 35.20798%

C D D C
23 0.084434139067 0.082266233370 0.085344854809 0.124660537615 34.00780%

D D D D
26 0.032778826267 0.030767118824 0.029808921793 0.029248939179 10.76880%

D D D D
27 0.060533483220 0.061224688636 0.064207571384 0.064327149287 5.89746%

C C C D
28 0.084007922165 0.081372125861 0.084424687603 0.193272837858 57.89780%

D D D C
29 0.022136274858 0.020739957616 0.021517682092 0.021367963875 6.30782%

D D D C
30 0.086132675723 0.085153236169 0.089290256770 0.087633743678 4.63323%

D C C D
31 0.076035971135 0.073054959096 0.075215108343 0.074529912462 3.92053%

D D D D
32 0.026433537456 0.025140572250 0.026072535042 0.030520486726 17.62722%

D D D D
33 0.059627328706 0.059466384057 0.061395561422 0.064422562674 7.69323%

D C D D
34 0.151137069812 0.149425018201 0.150689735090 0.156799897763 4.70337%

C D D D
35 0.054480483688 0.047434206351 0.043576296053 0.048349300536 20.01485%

C C D C
136 0.038449117387 0.038650741020 0.040540944327 0.040508706813 5.15979%

C C C C
137 0.141570616356 0.140131439453 0.144842989820 0.145091495156 3.41857%

C and D C and D D C and D
138 0.109861584278 0.103918639604 0.107776120982 0.136245850268 23.72712%

D D D C
139 0.101575761310 0.099627396153 0.099761274165 0.100632454086 1.91814%

C C D C
140 0.061756920555 0.060690615567 0.062958086063 0.113611033558 46.58035%

D D D C
141 0.045208806727 0.045539304092 0.047745170469 0.047266144584 5.31229%

C D C C
142 0.016162324976 0.014701966377 0.015250735400 0.014125263791 12.60376%

D D D C
143 0.095612974015 0.096407243244 0.101289673671 0.097091220391 5.60442%

C C and D C D
144 0.120251770079 0.117805691956 0.117300987569 0.129137641864 9.16592%

C and D C D C
145 0.141644335876 0.142682970828 0.149882723333 0.145838953486 5.49656%

D C and D C C
146 0.131462176282 0.128895894593 0.133027816495 0.203959361921 36.80315%

D D D C
147 0.048291628800 0.051433723908 0.057108511470 0.049266127035 15.43882%

D C C D
148 0.092544369151 0.091060120630 0.093145292375 0.094052740036 3.18185%

D C D D
149 0.118109313350 0.111466499855 0.112592877809 0.112399678973 5.62429%

D C and D D D
150 0.147104191622 0.146484858945 0.152717975366 0.153685486077 4.68530%

C C C D
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Table 10: Adjusted coefficient of multiple determination for Gompertz, Logistic, Richards and Weibull Curves
id# Gompertz Logistic Richards Weibull Percentage of

Curve Curve Curve Curve Improvement in r2a
21 0.875576708450 0.896937141390 0.909531267613 0.898678078451 3.87797%

C and D D D D
22 0.913887734524 0.915847784358 0.912378723423 0.799542424038 14.54649%

CF D D C
23 0.948167714870 0.950787777278 0.947035552998 0.886997579679 7.19170%

DF D D D
26 0.953153210867 0.958726937939 0.961257684976 0.962699618669 1.00156%

D C and D D D
27 0.959660165654 0.958734318747 0.954615883310 0.954444930632 0.54642%

CF CF CF D
28 0.977987636496 0.979342204179 0.977763236309 0.883460190639 10.85301%

DF D D C
29 0.907013671671 0.918354357644 0.912116315795 0.913335035644 1.25033%

DF D D C
30 0.795175126623 0.799806887185 0.779882302617 0.787973791478 2.55482%

D C C D
31 0.730360795520 0.751088909937 0.736151266589 0.871492336833 19.32354%

D D D CF
32 0.967261358913 0.970378634044 0.968141796391 0.956344629902 1.46746%

DF D D D
33 0.978170454133 0.978286900833 0.976855238854 0.974516754010 0.38687%

DF C D D
34 0.887347108563 0.889884873537 0.888012980577 0.878747166156 1.26745%

C D D D
35 0.974393023894 0.980588474625 0.983617619355 0.979832281166 0.94670%

C C D C
136 0.970745913446 0.970438605223 0.967477329446 0.967527886933 0.33785%

C CF CF C
137 0.814855817720 0.818600957411 0.806197762887 0.805535161649 1.62200%

C and D C and D D CF
138 0.960512831514 0.964659615213 0.961987234579 0.939252146717 2.70507%

DF D D C
139 0.933103339405 0.935645069393 0.935471994529 0.935218223864 0.27240%

C C D CF
140 0.968603280203 0.969672741147 0.967363269132 0.893721690468 8.49829%

DF DF D C
141 0.951442656867 0.950730577633 0.945843406303 0.946938346619 0.59198%

CF CF CF DF
142 0.945913528509 0.955246002801 0.951842653145 0.958688200381 1.35051%

D D D C
143 0.927035094804 0.925816734203 0.918116119435 0.925216223046 0.97144%

DF DF CF DF
144 0.867718973914 0.873045777975 0.874131245030 0.847447158036 3.14876%

D C D C
145 0.918048643639 0.916843414599 0.908244726297 0.913321571961 1.07944%

CF CF CF DF
146 0.956885085930 0.958551859222 0.955851921143 0.896219878809 6.95499%

DF D D C
147 0.966642898452 0.962165947689 0.953382357482 0.965281739943 1.39089%

DF DF CF D
148 0.970344274342 0.971287897257 0.969957893780 0.969369685109 0.19788%

D C D D
149 0.910071904661 0.919903076710 0.918276126086 0.918556346494 1.08026%

D C and D D D
150 0.955994398393 0.956364284596 0.952573473449 0.951968666503 0.46174%

CF CF and DF CF D
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Table 11: Parameter estimates and SEs for discrete and continuous Gompertz curve for mean data

Model type Parameter Estimate Standard error

Discrete a 16.859 19.2374

b 1.83367 0.141244

c 0.95235 0.0153967

Continuous a 16.859 19.2374

b 1.83367 0.141244

c 0.0488226 0.0161671

A Appendix

In Table8, the minimum RSS’s for each model are presented. On average,the RSS’s for Gompertz, Logistic, Richards,
and Weibull curves are 0.2346, 0.2263, 0.2212, and 0.3219, respectively. Thus, among the four models, Richards curves
result in the smallest average RSS’s. It is interesting to note that the average RSS’s for Weibull model is bigger than those
of 3-parameter Gompertz and Logistic models, hence yields not good fitting on average. However, when considering the
number of minimum RSS’s, Weibull model results in larger number of minimum sum. This could be explained by the fact
that Weibull curves yield minimum RSS’s of wider range (morevariability) than the ranges of 3-parameter Gompertz and
Logistic models. If we compare the absolute values of RSS among models, the difference seems to be small. However,
to show that there are a significant improvement using the best model, we compute the percentage of reduction in RSS,
which are included in the last column of Table8. The largest percentage of reduction in RSS is about 81%, which is a
prominent and significant improvement in terms of model fitting.

Table9 and Table10 are similar to Table8 with RSS’s being replaced by SE of the estimate and adjusted coefficient
of multiple determination.

From Table9, on average, the SE of the estimate for Gompertz, Logistic, Richards, and Weibull curves are 0.0851,
0.0833, 0.0855, and 0.0995, respectively. Thus, among the four models, Logistic curves result in the smallest average SE.
Note that average SE for 3-parameter models are smaller thanthose of 4-parameter models. This shows that SE penalizes
the 4-parameter models for using extra parameters. In the last column of Table9, we compute the percentage of reduction
in SE. The largest percentage of reduction in SE is about 57.9%, which shows that there is a significant difference in terms
of SE among different models.

From Table10, on average, the adjusted coefficient of multiple determination for Logistic, Richards, and Weibull
curves are 0.9245, 0.9285, 0.9248, and 0.9137, respectively. Logistic curves shows the best fitting performance in terms
of both averager2

a and the number of models with maximumr2
a. If the number of models with maximumr2

a is considered,
Gompertz curves are the second best. While the averager2

a of Richards curves is the second largest, the number of models
with maximumr2

a using Richards curve is far less than that of Gompertz curves. In the last column of Table10, we
compute the percentage of improvement inr2

a. The largest percentage of improvement inr2
a is about 19.3%, which is still

a substantial improvement in fitting performance to consider.
One further step is taken where we run a statistical random effect model using the same data. The model takes into

account the effect of time on tumor volume. Moreover, since mice are chosen at random, they constitute the random factor
in the model. It turns out that the random effect model yieldsa residual sum of squares of 0.336.

The mean tumor volume of all mice is computed and we fit all models to this mean data. In order to fit the fractional
model, we use function(algorithm) named NonlinearModelFit in Mathematica to find the estimates for parametera,b, and
c. Then in the next step, value ofα is searched using iteration. The parameter estimates and standard errors for continuous
and discrete Gompertz curve for mean data are presented in Table11.

We also fit all models to the mean tumor volume of mice against time. The result indicates that the continuous
fractional Gompertz model fit data best in terms of all statistical measures RSS, SE, andr2

a. The estimates and standard
errors of parameters in continuous and discrete Gompertz curve are listed in Table11. Except for the intercept, all
parameters have small standard errors.
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