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1 Introduction

Let (X, ||.])) and(Y,||.]|y) be the general Banach spaces.F»r0, (G, ||.||;) is @ Banach space of all continuous functions
from [—1,t] into X, where]|.||, is defined by

[Wlly:== sup (@), for g € G.
—T<n<t

Our main objective in this paper is to establish sufficienmtditions for the controllability of the following Soboleype
nonlinear nonlocal fractional order functional integriéfetential equation.

th" [Ex(t)]+A(t)x(t) = f(t,x(t),xt)+/0tg(t,s,x(s),xs)ds+ Bu(t), t€J=10,b],
h(X_r0) = @,

(1.1)

wheret > 0 and 0< a < 1. The fractional derivativ%Dt" is understood in Caputo’s sense. For aryJ, % denotes
the element irCy defined byx (8) = x(t+6) for 8 € [-1,0]. h:Co — Cp, f : IXx X xCyp — Y, andg: A x X x Cyp —

Y (A ={(t,s) € Jx J:t >s}) are nonlinear maps. The control functien) is given inL?[J, Z] with Z as a Banach space
andB e BL(Z,Y). —A(t) : D(A(t)) c X — Y andE : D(E) C X — Y are closed linear operators such that

() For eacht > 0, the domairD(A(t))(= D(A)) is independent df.
(I) D(E) c D(A) andE is bijective.
() E~1:Y — D(E) is continuous.

The assumptions (11), (1) and Closed - Graph theorem inthiyboundedness of linear operatok(t)E~1:Y — Y. We
denote the operaterA(t)E~1 by —Q(t).

Over the past years, the theory of fractional differenteplations attracts many researchers due to their applisatio
in various fields of engineering, physics and economics ffseenonographs of Podlubng][and TarasovZ]). In fact,
many physical phenomena such as behaviors of viscoelaatirials, electrochemical processes, dielectric paltion,
colored noise, chaos and many more, can be modeled moreatedguoy fractional derivatives or fractional integrals
rather than the classical integer order derivatives ogiatis, for example, se&[4,5] and the references therein.
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Equations of the form1(.1) serve as an abstract formulation of partial different@gli@ions which appear in many
physical phenomena such as in the flow of fluid through fissuwells 6], thermodynamics and shear in second order
fluids [7], the propagation of long waves of small amplitud8ls §nd so on. Moreover, the researchers have found that the
introduction of nonlocal condition into the system can aialy improve its qualitative and quantitative charaisgcs. In
fact, in many situations, nonlocal conditions arise moezjsely for physical measurements than the classical tiondi
and therefore the problems with nonlocal conditions lookenealistic than the problems with classical conditions in
the treatment of physical problems. These facts attractyraathors to analyze various types of evolution equationis wi
nonlocal conditionsg,10,11].

Furthermore, there has been a significant development irstthiy of controllability to Sobolev type nonlinear
integrodifferential equations of integer order in Banagiaces, for example, sed4 13|, and the references listed
therein. The controllability of integer order functiona&bdution systems of Sobolev type is studied by Balachandreh
Dauer [L4] by using Schauder fixed point theorem and classical semjmtbeory. While in 15], Balachandran and
Sakthivel established sufficient conditions for the coltetility of Sobolev type semilinear integrodifferentieduations
in Banach spaces. However, there are only few papers deaiihghe controllability of Sobolev type integrodifferéait
equations of fractional order. The problem of controllépifor Sobolev type fractional functional evolution systes
studied by Michal et al. 6] via the techniques of fixed point theorem and semigroup riheldahmudov 7]
investigated sufficient conditions for the approximate toafability of Sobolev type fractional stochastic evaart
systems by using the Schauder fixed point theorem. Recentlgss of Sobolev-type semilinear fractional evolution
systems in a separable Banach space is studied by Wang &8Jalwhere they establish the controllability result by
applying techniques of fixed point theorem to an appropgatedensing mapping as well as the theory of propagation
families and measure of noncompactness.

Different from these works, we analyze the fractional etiolu equations of Sobolev typel (1) with nonlocal
condition and establish sufficient conditions for the coetglcontrollability of considered equatiod.f) without
assuming the compactness condition on semigroup or on leduimar operator® andE ~1. We also observe that if the
associated semigroup or linear operaBoor E~! is compact, then the considered evolution equation is ceralyl
controllable only in the translation of finite dimensionabspace oK. Moreover, the sufficient conditions for the exact
null controllability to (L.1) are obtained.

The paper is organized as follows. In Sectidnwe shall set forth some preliminary facts about the fragtio
differential equations and introduce the concept of miltusons to (L.1). Main results concerning the sufficient
conditions of controllability of {.1) are proved in Sectior3. Finally, an application is given in which a nonlocal
fractional partial differential equation of Sobolev typeadiscussed to illustrate the abstract results.

2 Preliminaries

For an abstract continuous functidéron the intervala, b], the Caputo derivative of orderd a < 1 is defined as follows.
[19
1

t
m/o(t—s)— f'(s)ds

Here and hereafter, we assume that the opera@it) satisfies the following assumptions.

6D{ f(t) =

(B1) For eacht € [0,T], the operatofA | +Q(t)]* exists for allA with 0(A) > 0 and

Hw +Q(t)r1H < (O(A) > 0).

[A]+1
(B2) For anyt, s, { € [0,T], we have

Q1) - Q()]Q  s)|| <Clt-Z |, 0<y<1,

where the constan, y are independent df s, ¢.

Then, for eactw € [0, T], —Q(0) generates an analytic semigro{ify (t) = e '2(9)}. Moreover, there exists a positive
constanC independent of bothands such that
C

n7

IQ"(s)exp(—tQ(s))

| <

—

wheren= 0,1, t >0, se [0,T]. For more details we refer t@,21].
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Following Borai R2], we define operatorg, ¢ andU as follows.
Wit —a [ 617 e (6)exp(~176Q(s)) d6
0
whereé, is a probability function defined 0j, «) whose Laplace transform is given 32

j=co (—X)J

® —6x _
e 6(0)08= 3 gy A€ @Y. x>0

j=00
n)= 7y éit.n),
=1

with
$a(t,n) = [Q(t) —Q(n)]Y(t—n.n),
¢j1(t,n) / s)p1(s.n)ds for j=1,2,..

and
U =-QUQ 0~ [ 43R *(0)ds

Let x € Cp such thah(x) = ¢. For eachu € L?[J,Z], a mild solution of the equatiori (1) (see R2,23)) is a function
x € Cy such thak(t) = x(t) for t € [-1,0] and fort € J

x(t) = x(0) +/Ot E~'y(t—n,n)U(n)Q(0)Ex(0)dn +/Ot E~'y(t—n,n)(H(n)+Bu(n))dn

+ [ [N et nnen.9H(E + Bus)dse,

whereH (t) = f(t,x(t) +/gtsx §),%)ds

Lemma 1(Bochner’s Theorem) A measurable functionJS— X is Bochner integrable if S| is Lebesgue integrable.

Lemma 2(see R4]) For m € L1[0,b], we have

[ [ ne -9 tmesn = #ay) [ 97 msds

whereZ(a,y) is a Beta function.

Theorem 1(Krasnoselskii's Fixed Point Theorem)Let X be a Banach space. Let N be a bounded, closed and convex
subset of X and I€fl;, O, be maps of N into X such thagx+ 0oy € N for every pair xy € N. If [ is a contraction and
O, is completely continuous, then the equatiowx + COox = X has a solution on N.

3 Main Result

This section comprises the main results concerning theaitatiility of mild solution for the equationl(1). We consider
the following hypotheses.

(H1) h: Cy — Cy and there exists Lipschitz continuous functipri Cp such thah(x) = ¢ with x(0) € D(E).
t

(H2) f(t,x,y) and/ g(t,s,x,y)ds are continuous with respect to first variable. Moreoverdhexist constantg;,q, €
0

t
(0,a) N (0,y) and functiond.¢(.) € La [J,R*]andLy: A — [0, ) with / Ly(t,s)ds=Lg(t) € L [J,R"] such that
0

[1(t,u,v) = Ft,w, p)lly < Le(@)ffJu—wi[+[v—pllol;
la(t;s,u,v) —g(t, s, p)lly < Lg(t,s)[[lu—wl|+[lv—pllo],

forallt,se J; u,we X andy, p € Cy.
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(H3) The linear operatd : L%[J,Z] — L*[J,Y] is boundedw : L?[J,Z] — X defined by

b b
wu= [ty n.mBumdn+ [ | "E-ly(b—n,n)e(n,9Bus)dsdn,
0 0 JO

induces an invertible operat&l‘ LZ[J,Z]/KerW — X and there exist two positive constais, M3 > 0 such that

B <M andHW H <M
I ”B]LZY 2 BL([X,L2[3,Z]/Ketw] .

(H4) For all bounded subsely the set

Aeg(t) = {/Otg/;%(e,t,n)H(n)dedn + /OH/O” /;oQE(G,t,n)¢(n,s)H(s)d6dsd7, xe D}

is relatively compact in X for arbitary € € (0,t) and constant { > 0. Here,
Ze(6,t,n) = ab(t—n)" & (6)E exp(—(t—n)76Q(n)).

For brevity, letE = ||E*1HM[Y‘D(E)], whereBL[Y,D(E)] is the class of all bounded linear operators frénmto D(E).
The following lemma plays an important role in our analysis.

Lemma 3.The following results hold.

(i) The operator-valued functiong(t — n,n
&0

At)Y(t—n,n) are continuous in the uniform operator topology in
the variablest n, whereO<n <t -— b, f

) and At)
<t < b, for anye > 0. Moreover,
|[E"tw(t—n,n)| <CE@{—n)"™

(i) The functiong (t, n) is uniformly continuous in the uniform operator topology,in provided0<n <t—¢, e<t<b
for anye > 0. Moreover,

¢ (t.n)l <Ct—n)"*.
t
(iii) Fort € J,/ Y(t—n,n)U(n)dn is uniformly continuous in the norm & X) and
0
Ul <C@+nY).
(iv) ForO< n <ty <tpyanda € (0,1], there existu € (0,1] such that

|E"Hw(ti—n,n) - @tz—n.n)]|| <CE[(tr—m* M1+ (—t)*} - (b—n)"Y].

Proof. (i), (i) and (iii) can be deduced by following the similargarments as ind2]. Now, inequality in (iv) can be proved
by using the similar arguments as in (s26|[ pp. 437) and the following relation

He*tlQ(S)V — g Q)

|l /d o tQs p
- /tz dt( )dtH<C|t1—t2| wherep € (0,1].

By using Holder’s inequality, we have

[ o= Capteny) o) ¥ (Lo () + L))

pmi1lt ppi1ql-a P11t ® itk (3.1)
< _ ::
sh [m+1} +[p+1} el 15531 +[n+1] Ma,
WhereL1_||LfHLT Ry LZ—HLQH EON ﬁ:%,m:%,n:af)azl’p_alﬂa1and3,m,n,pe(—1,0).|:0r
brevity, letN = CBYE [ 1 + %jby}
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3.1 Complete Controllability

Definition 31 (Complete Controllability) The fractional equatiofil.1) is said to be controllable on interval J if for every
initial function x € Co and x € X there exists a control @ L[J, Z] such that the mild solution¥) of the equation satisfies
x(b) = x3.

Theorem 2Assume that the hypotheses (H1) - (H4) hold and the linearab@eW is not compact. Then, the equation
(1.1) is completely controllable on J providéi{lJr NMzMg} < 1, whereC = 2CM,E.

Proof. By (H1), there existy € Cp such thah(x) = ¢. We define

t), ifte|-r1,0],
"(t):{igm, :fté[lr]

t
Then,v; € Co andf(t, v(0), vo), / g(t,s,v(0),vp)dsare continuous functions ofonJ. Let
0

Ny = sup|| f(t,v(0),vo)|ly and Np = sup /t g(t,s,v(0), vo)ds{ (3.2)
ted ted [|/0 Y
For an arbitrary functiomn(.) € C, andt € J, we define the contral(t) as follows.
~ b b
Ux(t) =W~* {XI—X(O)_/O E’lw(b—n,n)U(mQ(O)EX(O)dn—/0 E-'¢(b—n,nmH(n)dn
(3.3)
b
SN S UEREEE
Next, we define the operatdronCy by [x = X, whereX(t) = x(t) fort € [-1,0] and fort € J
t t
X(t) = x(0) +/O E~g(t—n.n)U(n)Q(O)EX(0)dn +/O E~g(t—n.n)(H(n)+Bu(n))dn
t (3.4)
+ [ [T E - n.men.9(HE) + Bu(s)dsd.
0.Jo
In view of (H2) and equality3.2), for eachn € J, we have
n
Ry = | fnxtm)+ [ on.sxs e
Y
n n
< [ x0) = 1000wl N+ | [ o595 [ a5 v(0),vojds| -+
0 0 Y
< Li(n) [Ix() = v(O)[l + [[%q — vol|] +/0,7 Lg(n,9) [[1X(s) = v(O)[| + [[s — Vollo] ds+ N1+ N2
< 2(Le () +Lg(m)IlIX[lp + 11X llo] +No+Na.
(3.5)

Now, from (H2), 8.5 and Lemma&B, for eacht,n € J, we get

[E" w(t—n,mU(MQO)EX(0)]| < C*E(t—n)* (1 +n") [QO)EX(O)y,
[E~*w(t—n,mH ()| < CE[2(Ls(n) +Lg(n) Xl + X llo] +No+Ne] (t =),

[E" w(t—n.n)¢(n.9H(S)|| < C*E[2(Le(S) +Lg(s)[[1Xl+ [Ixlo] +Na+No] (t =) —9) 2.
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Therefore, using above inequalitie8,1) and Lemma2, we have
t C2 .
[ I 0= n.mU(m)QUOEX(0)[dn < B (1+b) [QUOEX(O)l

[ e we-nmHm)|
E [ba(Nl—l—Nz)

IN

C
a

b (Nl + Nz)
a

b
201l + xlo) ] (6= Le(m) + Lyt
+ 20+ Xl (

L bMia-a) | pB+D(A-a) ) 1

<CE [ (m+1)(1-ay) + (B+1)(1-%)

[ [ we-n.mn9H (9 dsen

e ba+Y(Ny + N b -
< CEy) | T 4 21y o) ] (6L () + Lo(m))en|
y 0
_ ba+V(N1+N2) L,b(P+D(1-ay) |_2b(n+l>(1fqz>
<2 I S L2
_C Eg(avy) [ a+y |X||b+HX|| (p+1 1 ) (n+1)(1_q2)

Now, for eacht € J and for anyx € C,, we have

Cc?_ PN
[ux(®)]l < Ms [lell + X0 + - EDT(L+ D)) [[QO)EX (0) ly +2CE(|IXllp +[1X o)

< [ 1=t Cmt@, (o m Y (L () + L)
0

o] )

~[1
+ CKE {—+
a
< Ma]|[xa]| +a-+CJIx|ly],

wherea = (1+C) | [|o+ $ EbY(1+b") [|Q(O)EX(0) [y + N(Ny + Np).
Thus, from above inequality, (H3) and LemBave have

t Ch? N
/0 |E"*@(t—n,n)Bu(n)||dn < —5 EMMs [lell\ +a+CHX”b} ,

t rn 1 C2bG+VA >
| IE M= n.n)e(n.sBus) dsdr < VEM2M3‘%)(G’V) [+ a+Clixly)

Now, it is clear from above |nequal|t|es that the |ntegrahte||E Yyt—n,mHM)|, |[E @t —n.n)o(n,s)Bu(s)|,
|E-2@(t—n,n)U( O], [|E"*wt—n,n)¢(n,9H(s)| and |E- 1L,U (t—n.n)Bw(n)| are Lebesgue
Integrable with respect tq, se [0,t] for all t € J. Therefore, from Lemma, it follows that all mtegral terms in(t)
and @3.4) exist in Bochner sense.

Stepl:First we claim that](C,) C Cp. For this, letx € Cy, then,Ox(t) = x(t), fort € [-1,0] and for 0<t; <ty <b, we
have

Ox(t2)~ Ox(t) = [ €t~ 0,m) ~ @t~ 0] U (7)QUO)EX (0)n

+ /:E1LIJ(tz—n,n)U(n)Q(O)Ex(O)dn

b [T E Wit n.m - 0] () +Budm)an

+ [PE e n.m K+ Budm)dn

b [ E w0 — w1 )] 6(n.9)(H(E) + Bu(s)dstn
0 JoO
t2

+ [7 [ E - n.mé(n.9(H(E + Bus)dst.
t1 JO
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In view of (H1), it is easy to see théaix is continuous orf—T1,0]. Also, from hypotheses (H2), (H3), LemmBandx € Cy,
it can be seen that the nonlinear ntamnd the operatorg, ¢, B are continuous od. Therefore[J(Cy) C Cy,. Now, for
eacht € J, we have

C2 . ~ ~ ~ ~
10O <IlIxllo+ ;Eb“(1+ b¥) [Q(O)EX (0)[ly +N(Nz -+ Nz) +C(|[Xl[, +[1X llo) + NM2M({[x1 || +a+C|[x[|p,)
= aMs + (Mg — 1) ||| +CMg X,

whereMs = 1+ NM,Ms. We choose > %ﬁww and definéB, := {x e C,: x(0) = x(0) and||x||, <r}. Then, for
- 6

eachr > 0, B, is a closed, bounded and convex subse&ldnd from above inequality, it follows thai(B; ) C By.
Forx € Cy,, we define operatorid; and, such thatdix(t) = x(t) andOyx(t) = 0 fort € [—1,0], and fort € J,

(O (t) = x(0) + /0t E~'y(t—n,n)U(n)Q(0)Ex(0)dn + /ot E-tg(t—n,n)Bu(n)dn

Con (3.6)
o [ [T E - n.me(n.9Bu(s)dsan.
0 JO

t t rn
(290 = [ Egpt—nmHman+ [ [T g(t—n.n)(n.9H(s)dsd. 67)
Then,(Ox)(t) = (H1x)(t) 4+ (O2x)(t) fort € [—1,b]. Moreover, forx,y € B, andt € J, we have
[(D1x+ Oay) (t)]| < aMg + (Mg — 1) [|xa | + CMer.

Since r > mﬁ—ﬂw therefore, aMs + (Mg — 1) |x1|| < r(1 — CMg). Hence, from above inequality and
- 6

(O1x+ O2y)(0) = x(0), itis clear thatd;x+ Opy € By for everyx,y € By.
Step2: Next, we will show that]; is contraction. For this, let, y € B, and define

A0 1= (16X~ Y030+ [ {018,595 - git 5 Y(9.y0)}ds

In view of (H2), Lemmag and3, for eacht € J, we have
[|ux(t) — uy(t) ||<M3[/ HE w(b—n,n)H ‘dr]+/ HE Yyb—n,n)¢(n,sH Hdsdn]

< 2OMeE Xy, [ [ {(b—n)“—1+0%<a,v><b—n>“+y—1}(Lf<n>+Lg<n>>dn]

< 2CEMaMs]|x— Y]l = CMs [~ Yl
Therefore, from3.6), Lemmas2, 3 and above inequality, for eatke J, we get

_rt
2x(0) = Cay(®)] < CE [ [(t=n)**+C(a.y)(t =)™ |Budn) Bu(n) dn
~ ~ 1 C%(a,y)b
< CEMM3Ch” (E+Ty) 1x—Yllp = NMaMC [[x— ]l -

inceC |1+ NM;Ms| < 1, therefore NM,MsC < 1. Also, ||(01x)(t) — (Oay)(t)|| = 0 for t € [—7,0]. Hence,[; is a
Si C[l NMM] 1, therefore NMpMqC < 1. Also, || (0x)(t) — (Cay)(t)]| = O f [-7,0]. Hence,Ol

contraction orB;.
Step3:Next, we will show that the map, is completely continuous dg . For this, first we will prove that the map, is
continuous omB;. Then, we show thdil;(B,) C C, is equicontinuous andy(B; )(t) is relatively compact for eadhe J
and then the compactnessmj follows from the Ascoli—ArzeIa theorem.

Let us conS|der sequence xmy c B, with x™ — x in B. We denote

Hn(t) = f(t,x +/ g(t,s,x"(s),x¢ ))ds From (H2) and Lemma3, it is easy to see that

E-ly(.—ss)Hn(s) = E"lP(.—s s)H(s), a.esed,

E-'w(.—n,m¢(n.9H(s) = E (. —n,n)¢(n.9H(s), aesed,
|E"*@(.—n,n) (Ha(n) —H(N))|| < 4CE(.— )" YLt (n) +Lg(n)) € L*I,RT),
|E2w(.—n.m)$(n,5) (Hn(s) —H(9))|| < 4rC®E(Ls(n) +Lg(n)(.—n)* 1(n —9)¥ T e L}I,R").
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Then, from the Lebesgue dominated convergence theoremavee h

/0t |[E~*@(t—n,n)(Ha(n) —H(n))|[dn — 0 asn— e,

t 0
L[ 1E 0= n.mo(n.9) (Hals) - H(s) | dscy — 0 asn - o

Hence, from the above result and hypothesis (H2), we get

| E2x™ — | < fgjp[ S E e~ n.m) (Het) — ()

b [ [ B 1m0 1.9 (Ho(s) ~ H(s) | dsth| 0 asn o
0 JO

which implies thatd, is continuous oif, . Next we claim thatl, (B, ) C Gy is equicontinuous. For this, letOt <t+e<b
andx € B,. Then, we have

(OxX)(t+€) — (Ox)(t) =11+ 2+ 13414, (3.8)

where
= ot Hyt+e—n,n)—wt—n,mIH(n)dn,
t rn
'22/0/0 E~y(t+e—n,n)—wt—n,n)é(n,9H(s)dsdy,
ls= | ETM(t+e—n.mH(n)dn,

t+& rn 1
I4:/t /o E-g(t+e—n,n¢(n,sH(s)dn.
Now, we claim that|l;|| — 0 ase — 0, fori = 1,2,3,4. From (H2), 8.5 and Lemma3, we have

[E"Hy(t+e—n.n) —wt—n,mIH®)|

<SCE[(t—n) t(1+et)—(t +8—’7) “H2(Ls(n) + Lol + I llo) +No+Ng] |
[Etwt+e—n.n)—wt—n.n)]o(n,9H()|

<C’E[(t— n)“‘1(1+ M) = (t+e—n)* 1 (n =91 [2(Lt () +Lg(s)[r + X llo) +No+Ng] ,
|Ety(t+e—n,nmH(n)|

<CE(t+e—n)"" 1[ ( £(n) +Lg(m)Ir +[Ixllo] + N1+ Nz ,
[E"tg(t+e—n,me(n,9H(s)||

<C%E(t+&-n)"" (n )Y [2(L1(9) + Lg(9))[r + | X llo] + Na+Na] .

Also, from (H2) and Holder’s inequality, for eache (0,t) andt € [0, b], we get

LibMtD(d-an) | jp(M+1)(1-a)
(my + 1)1~ * (mp+1)(1-%) "~

[ (=97 019+ Lyfs))ds<
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wherem; = ly%qll, andm = l”%qlz € (—1,0). Hence, using Lemm3, (H2), and the facta® —b? |< (b—a)? for o € (0,1],
0 < a< b, wehave
Ly {(2e(MD))(1-) 4 ghp(mtD{I-a)}
(m+ 1)(1—ql)
Lo{ (2e(B+D)(1-a2) 4 ghp(B+1)(1-a2)}
(B+ 1)(1—112)
2Ms(r + [X[lo) | bY(Ny+No)
a ay ’
Lie(MD(-a) | ,eB+D)(1-02)
My DT w (BT ®
bY(N1+N
et 1y+ 2)} .

12l < 2CE(r + 1 xlo) [

+ %E(Nl +Ny)[b%eH + 2¢9],

|[12]| < CE(26% +bTeH) [

Ce? -
+ TE(N1+ N2)7

13| < 2CE(r + | xlo)

C2Ee®

Iall < [2M5<r+ Ixlo)

Now, from above inequalities, it is easy to see tht| — 0 ase — 0, for i = 1,2,3,4. Hence, from 3.7),
[I(O2x)(t + &) — (O2x)(t)|| — 0 ase — 0, which implies the equicontinuity af, onB;.

Next we claim that, for eache J, the setl7(t) := {(0Oxx)(t) : x € B, } is relatively compact irX. Clearly,[1(0) =
{(O2x)(0) : x € By} = {0} is compact. Hence, it is only necessary to considelO. Now, for eacte € (0,t), t € (0,b],
constant > 0 andx € By, we definelT, ¢ (t) = { (¢ ¢X)(t) : x € B }, where

t—& oo t—& prn o
Dpeoxtt)= [ [ ze(@rmHmaean+ [ [T 7e(@.t.0)b(n.9H(sd00sa.
Since, By is a bounded subset @, therefore, from (H4)(0, ;. /X)(t) is relatively compact for arbitrarg < (0,t) and

{ > 0. Also, we have
(O2¢)(t) — (Oge,¢X)(t) = Pr+ P+ Py + Py, (3.9)

where t .
—€
P = /O /O Z6(0,t,nH(n)dedn,

t—¢ Z

Pzz/o /on/o Z6(6,t,1)$(n,9H (s)d6dsdn,
t )

PF/H/O Z&(6,t.n)H(n)dédn,

P“:/t;/on /Ow Ze(6,t,n)9(n,9)H(s)d6dsdn.

Now, from Holder’s inequality and Lemnt we have

~( ¢ (MH-1)(1-qy) (B+1)(1-qp) o
|PL|| < aCE (/ esa(e)de> Lib Lob ) (N1 +Np)b 1 7
0

2(r+1xllo) ( (m+1)1-a + (B+1)1-%) a
a-+y
SO
ay

. 4 o
IPol < ac?E ( [ 6Ea(ed6 ) | 2 Ms(r + Ll

(m+1)(1-a) (B+1)(1-092) a
20+ [xllo) 222 L (Na+NJe? |
(m-+1)(1-a) (B+1)1-%) o

=( [ 2e? Ni 4 Nz)bYe
P4 < aC?E (/O esa(e)de) {TM5(r+ ||x|o)+%} :

IPs|| < aCE </0m efa(e)de>

Now, from above inequalitie§P,|| — 0 ase,{ — 0, for eacti = 1,2,3,4. Hence, from3.9), || (02x)(t) — (Hz ) (1) || —
0 as¢,{ — 0, which implies that the sdl (t) can be arbitrarily approximated by the relatively compasts 81, ;(t).
Therefore([0,B;)(t) C X is relatively compact itX. Hence, the continuity dfl, and relatively compactness fiflox : x €
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B, } imply that[, is completely continuous. Hence, using Krasnoselskide#iPoint theorem has a fixed poink on
By. It is easy to see thatis a mild solution of the equatior (1), satisfyingx(b) = x;. Therefore, the fractional equation
(1.1) is completely controllable od.

Theorem 3Assume that the hypotheses (H1) - (H4) hold and the linearab@eW is compact. For &) € Cy satisfying
(1.2), we define

° b
o)+/0 E—llll(b—f77’7)U(f7)Q(0)Ex(O)dn+/o E-Lgb— .m)H(m)dn
b rn
+/o /0 E-'y(b—n,n)¢(n,s)H(s)dsdn.

Then, for all x € X andy € Cp, the equatior{1.1) is controllable on J if and only if xe R(W) +z and x € Cy provided
C[1+NMMs| < 1, whereC = 2CMiE

ProofSince, we assume that the linear operiitais compact and it induces an invertible operatbwith HV~V‘1H < Mg,

thereforeR(W W) ( X) is a finite dimensional closed subspaceXofAlso, there exists a closed subspdcef X such that
X=RW)@Z, i.e., for everyx € X there exist uniqug € R\W) andze Z such thak=y+z

Now, if x; € R(W) + z, then, by following the similar steps of Theorétnone can prove that the equatidni) is
controllable with controt, = W1 [X1— 2.

Conversely, lek; € X and the equatloril(l) is controllable inJ. Slnce,xl € X, therefore, there exist umqw@ R(W)
andz e Z such thak; = v+ z Also, forve R(W), there exists uniquec D( ) such thaW u=v. Thereforex; = Wu-+z.

Now, the equation(.1) is controllable iffx; = x(b) = WU+ z iff Wu+z=Wu+ z iff z=ziff x; € R(W) + z.
Hence our claim.

3.2 Exact Null Controllability

Definition 32 (Exact Null Controllability) The fractional equatiofil.1) is said to be exactly null controllable on interval
J if for every initial functiony € Co there exists a control & L?[J,Z] such that the mild solution(¥) of the equation
satisfies ) =

Theorem 4Assume that the hypotheses (H1) - (H4) hold and the linearab@eW is not compact. Then, the equation
(1.1) is exactly null controllable on J provided [1+ NM2M3} < 1, whereC = 2CM,E.

ProofFor proving the exact null controllability of the equatioh 1), we follow the similar proof of Theorerg after
replacingx; = 0. Then, the exact null controllability of the equatidnl) onJ follows with controluy(t), which is defined
by (3.3 withx; =0

Moreover, ifW is a compact linear operator, then Theorgrmplies the null controllability of the equatiori (1) on
intervalJ providedz, € R(W).

4 Example
Consider the following nonlocal Sobolev type functiondfetiential equation of fractional order
9 (20,8) - 2¢(0.6)) — 2t ) 2t.6) = (121, ).2) + [ ault, e s wn(t ©)

z(t,0) = z(t,m) = 0, (4.1)
hO(Z(eaf)) = (R)(E)v XS [—T,O], te [O, 1] =J, E € [077—[]7

whered? is Caputo partial derivative of order € (0,1), w > 0 is a constant and
(i) a(t, &) is a continuous function aralt,&) > & (d > 0), for all & € [0, 1.
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(i) Forallt,se Jand& < [0, i1 there exist constan& > 0 andy € (0,1) such thata(t,£) —a(s, &) [<C|t—s|¥, where
C,y are independent in

t

(iii) For eacht € J, a4 (t,.) € L1(J) and/ a(t,s)ds:=a(t) € L% [J,R™], whereg, € (0,a)N(0,y).
0

(iv) u:J % (0,mm) — (O, 1) is continuous irt.

LetX =Y =L?([0, r1}) be the space of functions which are square integrable. Weetkbié operators: D(A) € X —Y
andE : D(E) € X =Y as follows.
-w’  and Ew=w-w,

where each domaiD(A) andD(E) is given by
{we X:w,w are absolutely continuous” € X andw(0) = w(m) =0} .

Then,A andE can be written respectively a26]

00
Av=Y N2 < W,Wh > Wn, We D(A),

n=1

00

W= z (1+n%) <W,Wyh > Wy, weD(E),

wherew, (&) = (,—21)1/23in(nf), n=12 ... , is the orthogonal set of eigenvectorsffAlso, forw € X [26],

o0

_ 1

E-lw= > T < WWh > Wi,
n=1

2

—~AElw= i

< WWn > Wn
2 " ’
n_—ll

0 2
Tt)w= Z e<1+_n2)t < W,Wn > Wh.
n=1

Itis easy to see thatAE 1 is a bounded linear operator frortoY, ||[E~1|| < # and||T(t)| <e ' forallt > 0. Moreover,

by using the fact thaR(A, —AE~H)w = / e MT(t)wforwe Y (see R1]), one can prove thafR(A, —AEY)|| < 1t
0

whereA =0(A) = ﬁznz > 0. Hence, the semigroup(t) generated by linear operate’AE~ is an analytic semigroup.
Since the eigenvalues &1 are A, = =12..., andni@)‘“ =0, therefore, the linear operatBr ! is compact

[2€].

Now, we definex(t)(&) = z(t,&) andx = z(6,.), thatis(x(t+ 68))(§) = z(t+6,&) fort € J, £ € [0,
[—T,0]. Also, we definef : JxXxCo—=Y,g:AxXxCo—Y(A={(t,s)€IxJI:t>s}),Bu:J—XA(l):
X —Y,Q(t):Y —Yandh:Cy— X by

f(t,x(t),%)(§) = Z(t,2(t,§),z(6,8)),
9(t.5.X(9),%5) (&) = ay (t,5)e ),
(Bu)(t)(&) = wp(t, &),
AX(E) = a(t,&)AX(E),

—Qt)X(&) = —AEX(§) = —a(t,§)AE 1x(€),
R(w)(&) = ho(w(t,8)).

fort € Jand& € [0, 1. Also, hereD(A(t)) = D(A), fort € J.
Now, we can write4.1) in an abstract form

1+n2 N

m and@ €
D(A(t)) C

{SD{’ [EX(t)] +A)xX(t) = f(t,x(t), +/ g(t,s,x(s),%s)ds+Bu(t), t € J,
h(x0) = @.
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Note that boundary condition is absorbed into the definitibdomain of operatoA(t) and the requirement thatt) €
D(A), for allt € J. Moreover, under the points (i) - (ii) and due to the defimitiof operators-AE~1, —Q(t) andT (t), it
can be proved that the conditions (B1) - (B2) hold fa®(t).

Let ||B|| < M2 and the linear operatd¥ defined by

(Wu)(& [/E Y(l-n,nu (nEdn+// E'wd—n.nm¢(n,s)u(s.&)n|, for & € (0,m),

induces an invertible operatd such thatHW 1H Ms.

W),L2[3,Z] /KeW]| —
Next, we consideff (t,X(t),x) = X(t) + sin(x). Then it is easy to see that the nonlinear mépg are satisfying
hypotheses (H2) along witk (t ) 1,Lg(t,s) = al(t s) andLg(t) =& (t). Now, itis easy to compute the constaNtdvi,

andC. Leth be defined byr(y / I(s (x)ds | € LY([~1,0]). Then, we can write4.1) as a fractional delay
differential equation of the forml(l) whereh( )(9) h(x) for xo € Co, 6 € [-1,0] and@(8) = @ for 6 € [—1,0).
Now we can take((t) = kqb on[—T1,0] with k= / s)ds= 0. Hence, the hypotheses (H1), (H2) and (H3) hold. Since

E~1is compact, therefore, the hypothesis (H4) holds and tlafioperatow is compact. Now, i€ |1+NMoMs| < 1,
then one can apply the Theoré&o see the controllability of considered fractional evatequation of Sobolev type.
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