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Abstract: We introduce in this paper a four-parameter lifetime model,called the inverse burr negative binomial distribution. Wederive
some statistical properties of the proposed model that includes moments, quantile functions, median, reliability andentropy. The method
of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Simulation study
is performed to investigate the performance of the estimation of the model parameters. Two real data sets are used to demonstrate the
flexibility of the new proposed model in comparison with other popular lifetime models.
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1 Introduction

The negative binomial distribution has been used in compounding distributions to form another flexible model. A lot
of disributions have been introduced and applied in survival analysis. [4] pioneered a family of univariate distributions
generated by compouding the negative binomial distribution with any continuos model. [3] introduced a lifetime model
called the Burr XII negative binomial distribution with application to Lifetime data. The G-negative binomial is defined
as follows: For any baseline cumulative distribution function (cdf) G(x), andx ∈ R , the G-Negative Binomial (G-NB)
family of distributions has probability density function (pdf) f (x) and cumulative density function (cdf)F(x) given by

fλ ,k(x) =
λk

[

(1− k)−λ −1
]g(x){1− k[1−G(x)]}−λ−1 x> 0 (1)

and

Fλ ,k(x) =
(1− k)−λ −{1− k[1−G(x)]}−λ

[

(1− k)−λ −1
] x> 0 (2)

The hazard function is given by

h(x) =
λkg(x){1− k[1−G(x)]}−λ−1

{1− k[1−G(x)]}−λ −1
x> 0 (3)

whereλ > 0 andk∈ (0,1)
The G-NB family has the same parameters of the G distributionplus two additional shape parametersλ > 0 andk

∈ (0,1). If X is a random variable having pdf in(1), we write X ∼ G−NB(λ ;k). This generalization is obtained by
increasing the number of parameters compared to the G model,this increase has added more flexibility to the generated
distribution. A significant point of the G-NB model is its ability to compariseG distribution as a sub-model whenλ = 1
andk→ 0. However, the inverse burr distribution also known as (BurrIII) has been used in various fields of sciences. In the
actuarial literature it is known as the inverse Burr distribution see [9] and as the kappa distribution in the meteorological
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literature see [14] and [13]. It has also been employed in finance, environmental studies, survival analysis and reliability
theory see [10], [8] and [6]. Furthermore, [5] proposed an extended BIII distribution in low-flow frequency analysis
where its lower tail is of main interest. Recently, [2] introduced the Complementary Burr III Poisson Distribution, [1]
proposed the geometric inverse burr distribution . In this paper, we use the Cordeiro G.M and M.Percontini [4] generator
to define a model, called the Inverse Burr Negative Binomial (IBNB) Distribution. The main reason for proposing IBNB
distribution are:(i) This distribution due to its flexibility became an importantmodel that can be used in a different
forms of problems in modeling lifetime data.(ii) It provides a reasonable parametric fit for modeling phenomenon with
non-monotone failure rates such as the bathtub-shaped and unimodal failure rates, which are common in reliability and
biological studies, unlike the exponetial poison (EP) and generalization of exponential poison (GEP) distributions whose
ability’s are only in modeling data with increasing or decreasing failure rates.(iii ) The IBNB distribution is a suitable
model for fitting skewed data that cannot be properly fitted byexisting distributions.

The rest of the paper is organized as follows. The immediate section after this introduction is the presence of new
model IBNB and some investigation on its properties. Section 3 is the statistical properties of the new model IBNB. In
section 4 estimation of the parameters using maximum likelihood method are given. Section 5 is the simulation studies
while in section 6 two real data are used to show the flexibility of the proposed model. Finally, the concluding remarks is
given in section 7.

2 The IBNB

The cumulative distribution function(cdf) and the probability density function(pdf) of the inverse burr distribution are
given by

G(x) =

(

xα

1+ xα

)β
and g(x) = αβxαβ−1(1+ x−α)−β−1 (4)

The inverse burr negative binomial is obtained by substituting cdf and pdf of the inverse burr i.eG(x) andg(x) in (4) in
the equations(1) and(2). We therefore have the following results

fα ,β (x; p,α,β ) =
kλ αβxαβ−1(1+ xα)−β−1

[

(1− k)−λ −1
]

{

1− k[1− (
xα

1+ xα )
β ]

}−λ−1

x> 0 (5)

the corresponding cumulative distribution function is

Fα ,β (x; p,α,β ) =
(1− k)−λ −

{

1− k[1− ( xα

1+xα )β ]
}−λ

[

(1− k)−λ −1
] x> 0 (6)

the hazard rate function is

h(x, p,α,β ) =
kλ αβxαβ−1(1+ xα)−β−1

{

1− k[1− ( xα

1+xα )β ]
}−s−1

−1−
{

1− k[1− ( xα
1+xα )β ]

}−λ x> 0 (7)

the survival function is

sα ,β (x; p,α,β ) =
−1−

{

1− k[1− ( xα

1+xα )β ]
}−λ

[

(1− k)−λ −1
] x> 0 (8)

2.1 PDF and Hazard Rate Function

A lot of failure rate fuction have complex expressions because of the integral in the denominator and therefore the
determination of the shapes is not explicit. [11] introduced a method to determine the shape ofh(x) with at most one
turning point. His method uses the density function insteadof the failure rate. A turning point of a function is a point at
which the function has a local maximum or a local minimum.

η(x) =− f
′
(x)

f (x)
(9)
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Theorem 1([11]) Let η(x) be defined as in(9)

(a)if η(x) ∈ III(strictly increasing), then h(x) is of type III
(b)if η(x) ∈ DDD(decreasing), then h(x) is of type DDD
(c)if η(x) ∈ BBBTTT(bathtube shape), if there exists x0 such that h

′
(x) = 0, then h(x) is of type BBBTTT. Otherwise is of type III

2.1.1 Probability Density Function(PDF)

The probability density function reported in(5) has the following properties

Theorem 2The probability density function of IBNB distribution is decreasing
for 0< α < 1 and unimodal also a constant otherwise.

Proof.Taking the log of(5) thereafter differentiating the result, we obtain

(log( f (x)))
′
= n(x)− kαβ (λ +1)x−(α+1)(1+ x−α)−(β+1)

(1− k[1− (1+ x−α)−β ])

wheren(x) = α(β+1)x−(α+1)

1+x−α − (α+1)
x .

For 0< α < 1 the functionn(x) is negative. Thus,f
′
(x) < 0 for all x > 0. This shows thatf is decreasing for

0< α < 1. Considerα > 1 impliesn will have one exact rootx0 andn(x)> 0 for x< x0 andn(x)< 0 for x> x0. Hence,f
is a unimodal function with mode atx= x0. However, forα > 1 and some values ofβ , λ andk, the pdf can be a constant.
⊓⊔
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Fig. 1: Probability Density Function of the Proposed Model

2.1.2 Hazard Rate Function

The hazard rate function reported in(7) has the following possible shape forx > 0,λ > 0,k > 0,α > 0,β > 0 in the
following theorem.
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Theorem 3The hazard rate function of the IBNB distribution is decresing for0< α ≤ 1, increasing and a bathtube shape
otherwise.

Proof. Considerη(x) as it is reported in(9), clearlyη(x) is positive sincef
′
(x) < 0. Taking the first derivative ofη(x),

we have thatη ′
(x) < 0 i.e it is negative. It follows by [11] that h(x) is decreasing. Forα > 1, η ′

is positive for allx> 0,
this shows that by [11] h(x)is increasing. For the bathtube shape it is shown graphically. ⊓⊔
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Fig. 2: Hazard Rate Function of the Proposed Model

2.2 Expansions

In this subsection, we present some representations of cdf,pdf of the IBNB distribution. We provide two simple formulae
for the IBNB, which may be used for further analytical or numerical analysis. For any realp and|z|< 1, we have that

(1− z)−p =
∞

∑
k=0

(p)k
zk

k!
(10)

where(p)0 = 1 and(p)k = p(p+1)(p+2)...(p+ k−1)= Γ (p+k)
Γ (p)

and for|z|< 1 andρ > 0, the power series expansion is given by

(1− z)−ρ =
∞

∑
j=0

Γ (p+ j)zj

Γ (p) j!
(11)

is the ascending factorial. Using(10) and(11) in (5), we obtain the following

f (x;α,β ,λ ,k) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)g(x;α,β ( j +1)) (12)
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wherewj ,i(λ ,k) = λ (−1)ik j+1(λ+1) jΓ ( j+1)

[(1−k)−λ−1]( j+1) j !Γ ( j+1−i)Γ (i+1)
andg(x;α,β ( j+1)) is clearly the density function of the inverse burr

distribution with parametersα,β ( j +1) and is given by

g(x : α,β ( j +1)) = αβ ( j +1)x−α−1(1+ x−α)−β ( j+1)−1

After some algebra, we find out that∑∞
j=0 ∑∞

i=0wj ,i(λ ,k) = 1, this shows that IBNB density can be witten as a linear
combination of the inverse burr distribution. Taking the integral of(4) we obtain that

F(x) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)G(x;α,β ( j +1)) (13)

whereG(x;α,β ( j +1)) is the inverse burr cumulative distribution with parametersα andβ ( j +1).

3 Statistical properties

3.1 Moments

Theorem 4The rth moment of the inverse burr negative binomial distribution (IBNB) is gven by

E(Xr) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)β ( j +1)B

(

1− (
r +αβ ( j +1)+1

α
),1− r

α

)

Proof. See Appendix B(1) ⊓⊔
The mean of IBNB is simply obtained by settingr = 1 in (4) where as the variance take the following form

Var(X) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)β ( j +1)B

(

1− (β ( j +2)+1),1− 2
α

)

−
{

∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)β ( j +1)B

(

1− (β ( j +1)+1),1− 1
α

)

}2

(14)

3.2 Quantile and median

By inverting the cdf of the IBNB we obtained the quantile function ( f or 0< q< 1) as

xq =















1−
[

(1− k)−λ −q{(1− k)−λ −1}
]−( 1

λ )− k

k





1
β

−1











−( 1
α )

(15)

the median is simply obtained by settingq= 0.5 in (15)
The skewness and kurtosis for IBNB can be obtained from the following equations respectively.

γ3 =
µ (3)−3µµ (2)+2µ3

(

µ (2)− µ2
) 3

2

(16)

γ4 =
µ (4)−4µµ (3)+6µ2µ (2)−3µ4

(

µ (2)− µ2
)2 (17)

whereµ is the mean,µ (2), µ (3) andµ (4) are the second, third, and fourth moment respectively.
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3.3 Entropy

The entropy of a random variableX with density f (x) is a measure of variation of the uncertainty. A large value ofthe
entropy indicates the greater uncertainty in the data. The Renyi entropy is defined by

IR(r) =
1

1− r
log

[

∫

R
f r(x)dx

]

(18)

wherer > 0 andr 6= 1

Theorem 5Let X be distributed according to IBNB, the Renyi entropy of Xis given by

IR(r) =
1

1− r
log

[

[
λ β

[(1− k)−λ −1]
]rki+r α r−1

∞

∑
i=0

∞

∑
j=0

(−1)ik j+1(λ +1) jΓ ( j +1)

[(1− k)−λ −1] j!Γ (i +1− j)Γ (i +1)

×B

(

1− (β (i + r)+ r),1− r(αβ +1)+ (α +1)
r

)]

Proof. See Appendix B(2) ⊓⊔
The Shannon entropy is defined byE[− log f (x)], this is a special case of the Renhi entropy whenr ↑ 1.

3.4 Reliability

In the context of reliability, the stress-strength model describes the life of a component which has a random strengthX1
that is subjected to a random stressX2. The component fails at the instant that the stress appliedto it exceeds the strength,
and the component will function satisfactorily wheneverX1> X2. Hence,R= P(X2< X1) is a measure of component
reliability see [7]. It has many applications especially in the area of engineering. We derive the reliabilityR whenX1
and X2 have independentIBNB(λ1;k1;α;β ) and IBNB(λ2;k2;α;β ) distributions. From equations(12) and (13), the
reliability reduces to

R= P(X1> X2) =
∫ ∞

0
f1(x)F2(x)dx

Substituting forf1(x) andF2(x) from the above integral, we obtain that

R=
∞

∑
j=0

∞

∑
i=0

wj ,i(λ1,k1)wj ,i(λ2,k2)

∫ ∞

0
g(x;α,β ( j +1))G(x;α,β ( j +1))

whereg(x;α,β ( j + 1)), G(x;α,β ( j + 1)) is the pdf and cdf of the inverse burr with parametersα and β ( j + 1)
respectively. Therefore, by making small algebra we have that

R=
∞

∑
j=0

∞

∑
i=0

wj ,i(λ1,k1)wj ,i(λ2,k2)

∫ ∞

0
x−(α+1)(1+ x−α)−2β ( j+1)−1

now letu= (1+ x−α), consequently, we obtain the reliability as follows

R=
∞

∑
j ,i=0

wj ,i(λ1,k1)wj ,i(λ2,k2)B(2β ( j +1),
2(α +1)

α
+1)

4 Statistical Inference

In this section, we consider the method of maximum likelihood estimators(MLEs) for the estimation. This is because the
MLEs possess under fairly regular conditions with some optimal properties.
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4.1 Estimation

Let X1,...,Xn be a random sample with observed valuesx1,...,xn from the class with parametersα, β , s, k. Let Θ =
(α,β ,λ ,k)T be the parameter vector.The log likelihood function is given by

l(θ ) = nlog(αβ λk)−nlog
[

(1− k)−λ −1
]

+(αβ −1)
n

∑
i=1

logxi − (β +1)
n

∑
i=1

log(ti)

− (λ +1)
n

∑
i=1

log

{

1− k

[

1− xα
i

ti

]}

(19)

whereti = (1+ xα
i ). The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equation

obtained by differentiatingl(x;α,β ,λ ,k) above. The components of the score vectorU = ( ∂ l
∂α ,

∂ l
∂β ,

∂ l
∂λ ,

∂ l
∂k)

T are given by

∂ l
∂λ

=
n
λ
− n(1− k)−λ log(1− k)

[

(1− k)−λ −1
] −

n

∑
i=1

log

{

1− k

[

1− xα
i

ti

]}

(20)

∂ l
∂α

=
n
α
+β

n

∑
i=1

logxi −α(β +1)
n

∑
i=1

x(α−1)
i

ti
− kβ (λ +1)

n

∑
i=1

xα
i logxi(xα

i t−1
i )β−1

{

1− k
[

1− xα
i
ti

]} (21)

∂ l
∂β

=
n
β
−α

n

∑
i=1

logxi −
n

∑
i=1

logti − k(λ +1)
n

∑
i=1

(xα
i t−1

i )β log(xα
i t−1

i )
{

1− k
[

1− xα
i
ti

]} (22)

∂ l
∂k

=
n
k
− n(1− k)−λ−1

[

(1− k)−λ −1
] −

n

∑
i=1

(xα
i t−1

i )β
{

1− k
[

1− xα
i
ti

]} (23)

whereti = (1+ xα
i ). For interval estimation and hypothesis tests on the model parameters, we require the observed

information matrix. The 4×4 unit observed information matrixJ = J(θ ) is obtained as

J =







Jαα Jαβ Jαλ Jαk
Jβ α Jβ β Jβ λ Jβ k
Jλ α Jλ β Jλ λ Jλ k
Jkα Jkβ Jkλ Jkk







where the expressions for the elements ofJ are given in Appendix A.
Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary,

asymptotically √
n(θ̂θθ −θθθ )∼ N4(0, I

−1(θθθ ))

Observe that̂θθθ is consistent estimator ofθθθ and thus, the validity of the asymptotic normality standstill if the fisher
information matrix I is replaced by the observed fisher informationJ(θ̂θθ): In this case, aγ100% approximate asymtotic
interval for each component parameterθ̂θθ l of θ̂θθ is given by

(

θ̂θθ l −Z1+γ
2

√

Jθ̂l θ̂l , θ̂θθ l +Z1+γ
2

√

Jθ̂l θ̂l

)

whereJθ̂l θ̂l is the diagonal element ofJ(θ̂θθ)
−1

corresponding to each parameterl = (α,β ,λ ,k) andZ1+γ
2

is the quantile
1+γ

2 of the standard normal distribution. The likelihood ration(LR) statistics is used for testing IBNB distribution against

some of the existing models. Considering the partitionθθθ = (θθθT
1 ,θθθ

T
2 )

T , tests of hypothesis of the typeH0 : θθθ 1 = θθθ (0)
1 vs

H1 : θθθ 1 6= θθθ (0)
1 can be done by LR statistics which is given byw= 2

{

l(θ̂θθ )− (l θ̃θθ)
}

, whereθ̂θθ , θ̃θθ are the MLEs ofθθθ under

H1 andH0 respectively. Under the null hypothesis,w
d→ χ2

q, whereq is the dimension of the vectorθθθ 1 of interest. The LR
test rejectsH0 if w> ξq, whereξq is the upper 100γ% point of theχ2

q distribution.
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5 Simulation

This section provides the outcomes of simulation study. Simulation were performed in order to investigate the proposed
estimator ofα, β , λ , k of the proposed MLE method. We generate 15000 samples of sizen=30, 50, 100, 200, 500, and
800 from IBNB distribution. We assess the correctness of theapproximation of the standard error of the MLE determined
through the fisher information matrix. The approximate values ofsd(α̂), sd(β̂ ), sd(λ̂ ), andsd(k̂) are calculated.

Table 1: The average of 15000 MLEs and standard error simulated from IBNB
AE SD

n ( α, β , λ , k) α̂ β̂ λ̂ k̂ sd(α̂) sd(β̂ ) sd(λ̂ ) sd(k̂)
30 (0.5, 0.5, 2.0,2.0) 0.628 0.861 2.985 3.103 0.519 0.557 3.518 4.424

(1.0, 2.0, 1.0,2.0) 2.158 2.058 2.977 3.001 4.632 4.551 3.775 6.223
(3.0, 0.9, 7.0,5.0) 3.559 3.033 10.267 7.952 6.694 1.677 6.575 7.331
(7.0, 7.0, 2.0,4.0) 9.566 8.464 3.429 4.311 9.625 8.045 3.205 6.223

50 (0.5, 0.5, 2.0,2.0) 0.611 0.662 2.575 3.120 0.349 0.547 3.118 3.422
(1.0, 2.0, 1.0,2.0) 1.888 2.355 1.977 2.988 4.437 3.221 2.895 4.222
(3.0, 0.9, 7.0,5.0) 4.119 4.333 8.777 7.925 5.994 1.566 6.435 7.221
(7.0, 7.0, 2.0,4.0) 8.552 8.334 2.998 4.291 8.777 8.005 3.122 6.111

100 (0.5, 0.5, 2.0,2.0) 0.588 0.567 2.485 2.994 0.219 0.451 2.544 3.112
(1.0, 2.0, 1.0,2.0) 1.158 1.958 1.978 2.031 4.326 3.112 2.112 3.343
(3.0, 0.9, 7.0,5.0) 3.199 3.999 8.208 7.752 4.193 0.977 5.776 6.141
(7.0, 7.0, 2.0,4.0) 7.544 7.234 2.400 4.111 7.225 7.123 2.146 5.333

200 (0.5, 0.5, 2.0,2.0) 0.528 0.555 2.179 2.419 0.222 0.337 2.423 2.555
(1.0, 2.0, 1.0,2.0) 1.058 1.558 1.777 2.011 3.992 2.666 1.996 3.112
(3.0, 0.9, 7.0,5.0) 3.559 3.214 7.287 7.152 4.024 0.167 4.998 5.068
(7.0, 7.0, 2.0,4.0) 7.152 7.001 2.389 4.119 7.222 6.033 1.999 4.997

500 (0.5, 0.5, 2.0,2.0) 0.522 0.561 2.089 2.103 0.135 0.133 1.555 1.414
(1.0, 2.0, 1.0,2.0) 1.188 1.358 1.908 2.000 3.113 2.441 1.679 2.113
(3.0, 0.9, 7.0,5.0) 3.009 3.033 7.208 7.077 3.444 0.077 4.223 4.661
(7.0, 7.0, 2.0,4.0) 7.552 7.111 2.029 4.333 6.664 5.145 1.200 3.573

800 (0.5, 0.5, 2.0,2.0) 0.518 0.533 2.006 1.999 0.119 0.125 1.239 0.924
(1.0, 2.0, 1.0,2.0) 1.100 1.051 1.231 1.981 2.632 1.991 0.987 1.983
(3.0, 0.9, 7.0,5.0) 3.011 3.123 7.009 6.992 2.977 0.045 3.567 3.771
(7.0, 7.0, 2.0,4.0) 7.211 7.000 2.111 4.033 5.555 4.124 1.102 3.341

6 Application

In this section, an applications of the IBNB distribution with the estimation of the parameters using the method of
maximum likelihood and likelihood ratio (LR) test for comparison of the IBNB distribution with some popular models
for given sets of data are presented. The examples has shown the flexibility of the IBNB distribution in comparison with
other models including the Exponential Poisson (EP), Generalization of Exponential Poisson (GEP) distributions for data
modeling. The MLEs of the IBNB parametersk, λ , α andβ are computed by maximizing the objective function usingR
software. The estimated values of the parameters,log-likelihood statistic, Akaike Information Criterion,
AIC = 2p− 2log(L), Bayesian Information Criterion,BIC = plog(n)− 2log(L), and Consistent Akaike Information

Criterion,CAIC= AIC+ 2 p(p+1)
n−p−1 , whereL = L(θθθ ) is the value of the likelihood function evaluated at the parameter

estimates, n is the number of observations, andp is the number of estimated parameters for the two sets of dataare
shown in(6.1) and(6.2) respectively. The IBNB distribution is fitted to the data sets and these fits are compared to the
fits using the EP, GEP, distributions.

6.1 Data set 1

The source of this data set is the Open University (1993). Thefollowing data are the prices of the 31 different childrens
wooden toys on sale in a Suffolk craft shop in April 1991: 4.2,1.12, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 2.85, 0.5, 0.99,
11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45.
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Table 2: MLEs of the prices of the 31 different childrens wooden toys on sale in a Suffolk craft shop in April 1991
α β λ k l(θθθ ) AIC CAIC BIC

EP(β ,λ ) − 0.0077 30.8795 − −75.9447 155.8894 156.32 158.76
GEP(α,β ,λ ) 2.3144 0.2369 1.9821 − −73.6629 153.3258 154.21 157.63

IBNB(α,β ,λ ,k) 3.10801427 3.13855928 0.74857029 −0.07335403 −68.129 145.3258 146.86 151.06

A comparison of the proposed model with two of the existing model is performed in Table(3). Therefore, considering
the significant level of 5%, we reject the null hypothesis.

Table 3: LR statistics for the data

Model Hypothesis Statisticw p-value
IBNBvs GEP H0 : α = 1 vsH1 : α 6= 1 11.0678 8.784×10−4

IBNBvs EP H0 : β = λ = 1 vsH1 : β 6= λ 6= 1 15.6314 4.034×10−4
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Fig. 3: fitted densities and cdf for the first data

6.2 Data set 2

This data set is given by [12] and consists of thirty sucessive values of March precipitation (in inches) in Minneapolis/St
Paul. The data are 0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.
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Table 4: MLEs of the prices of the 31 different childrens wooden toys on sale in a Suffolk craft shop in April 1991
α β λ k l(θθθ ) AIC CAIC BIC

EP(β ,λ ) − 0.0186 31.9785 − −45.7935 95.587 96.03 98.39
GEP(α,β ,λ ) 2.7329 0.7336 0.8003 − −39.7229 85.4458 86.37 89.65

IBNB(α,β ,λ ,k) 3.3591898 3.2513528 1.0284761 −0.2839195 −36.8475 81.695 83.295 87.299

A comparison of the proposed model with two of the existing model is performed in Table(5). Therefore, considering
the significant level of 5%, we reject the null hypothesis.

Table 5: LR statistics for the data

Model Hypothesis Statisticw p-value
IBNBvs GEP H0 : α = 1 vsH1 : α 6= 1 5.7508 0.0164811
IBNBvs EP H0 : β = λ = 1 vsH1 : β 6= λ 6= 1 17.6534 1.468×10−4
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Fig. 4: fitted pdf and cdf for the second data

7 Conclusion

We introduce the inverse burr negative binomial distribution IBNB. The new distribution brings a very vital result as it
fits some real data better than some existing model. The pdf ofthe new model is decreasing, a constant and unimodal
depending on the values of the parameter. The hazard rate function is also decreasing, increasing and a bathtube shape.
Statistical properties are investigated and the parameters of the IBNB are estimated using the method of maximum
likelihood and the information matrix is obtained . We test the hypothesis using LR test and the simulation study have
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shown that, the model parameters performed very well. The usefulness of the IBNB distribution is enunciated in two
application to a real data sets. The new proposed model givesa more flexible result for fitting lifetime data in reliability,
biology and other areas.
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Appendix A

The elements of the 4×4 information matrix are given by

Jλ λ =
n

λ 2 −n

{

[(1− k)λ −1]2−λ 2(1− k)λ log2(1− k)
}

[(1− k)λ −1]2

Jλ k = n

{

1− (1− k)λ +λ (1− k)λ log(1− k)
}

[(1− k)λ −1]2
+

n

∑
i=1

ti
(

1− k[1− xα
i
ti
]
)

Jλ α =−
n

∑
i=1

αkxα
i logxit

−α−1
i

(

1− k[1− xα
i
ti
]
)

Jkk =
n
k2 −

{

[(1− k)λ −1]n(λ +1)(1− k)−λ−2+nλ (1− k)−2λ−2
}

[(1− k)λ −1]2
−

n

∑
i=1

(

xα
i t−1

i [1− xα
i
ti
]
)

(

1− k[1− xα
i
ti
]
)2

Jkλ =
n(1− k)−λ−1 log(1− k)

[(1− k)−λ −1]

Jkβ =−(λ +1)
n

∑
i=1











αxα
i logxit

−(α+1)
i

(

1− k[1− xα
i
ti
]
) +

kαxα
i logxit

−(2α+1)
i

(

1− k[1− xα
i
ti
]
)2











Jkα =−(λ +1)
n

∑
i=1











kt−2α
i logti

(

1− k[1− xα
i
ti
]
)2 +

t−α
i logti

(

1− k[1− xα
i
ti
]
)











Jαβ =
n

∑
i=1

logxi −α
n

∑
i=1

xα−1
i

ti
− k(λ +1)

n

∑
i=1

xα
i logxi(xα

i t−1
i )β−1 log(xα

i t−1
i )

(

1− k[1− xα
i
ti
]
)

Jαλ = kβ
n

∑
i=1

xα
i logxi(xα

i t−1
i )β−1

(

1− k[1− xα
i
ti
]
)

Jαk = β (λ +1)
n

∑
i=1

(

1− k[1− xα
i
ti
]
)2

xα
i logxi(xα

i t−1
i )β−1− xα

i logxi(xα
i t−1

i )β−1(1− xα
i t−1

i )
(

1− k[1− xα
i
ti
]
)2

Jβ β =
n

β 2 − k(λ +1)
n

∑
i=1

(xα
i t−1

i )β log2(xα
i t−1

i )
(

1− k[1− xα
i
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]
)
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Jβ β = k
n

∑
i=1

(xα
i t−1

i )β log(xα
i t−1

i )
(

1− k[1− xα
i
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]
)

Jαk =−(λ +1)
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i logti
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i logti

(

1− k[1− xα
i
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]
)

Jαα =
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α2 − (β +1)
n
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i logxi +αx2α−1

i logxi
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− kβ (λ +1)
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(24)

Appendix B

1.Proof. of (4). The rth moment is given by

E(Xr) =

∫ ∞

0
xr f (x)dx=

∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)
∫ ∞

0
xrg(x;α,β ( j +1))

whereg(x;α,β ( j+1)) is the pdf of the inverse burr with parametersα andβ ( j+1). We therefore obtain the following

E(Xr) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)αβ ( j +1)
∫ ∞

0
xr+αβ ( j+1)−1(1+ x−α)−β ( j+1)−1

let u = 1+ x−α implies−(1−u) = x−α which shows thatx = −(1−u)−
1
α and alsodx= − du

αx−α−1 and after some
algebra, we obtain

E(Xr) =
∞

∑
j=0

∞

∑
i=0

wj ,i(λ ,k)β ( j +1)B

(

1− (
r +αβ ( j +1)+1

α
),1− r

α

)

⊓⊔
2.Proof. of (5). The Renhi entropy is given by

IR(r) =
1

1− r
log

[

∫

R
f r(x)dx

]

taking the integral we have that,

∫ ∞

0
f r(x)dx=

kλ αβ
[

(1− k)−λ −1
]

∫ ∞

0
xr(αβ−1)(1+ xα)−r(β+1)

{

1− k[1− (
xα

1+ xα )
β ]

}−r(λ+1)

dx.

using(10) and(11), we obatain

IR(r) =
1

1− r
log

[
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λ β

[(1− k)−λ −1]
]rki+rα r−1
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