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Abstract: We introduce in this paper a four-parameter lifetime modled the inverse burr negative binomial distribution. déeive
some statistical properties of the proposed model thatdted moments, quantile functions, median, reliability amopy. The method
of maximum likelihood is used for estimating the model pagtars and the observed information matrix is obtained. &itimn study
is performed to investigate the performance of the estonaif the model parameters. Two real data sets are used tondemate the
flexibility of the new proposed model in comparison with atpepular lifetime models.

Keywords: Negative Binomial Distribution, Inverse Burr DistributipMaximum likelihood, Observed information matrix.

1 Introduction

The negative binomial distribution has been used in comgmgndistributions to form another flexible model. A lot
of disributions have been introduced and applied in suhawalysis. #i] pioneered a family of univariate distributions
generated by compouding the negative binomial distriloutiith any continuos model3] introduced a lifetime model
called the Burr XIl negative binomial distribution with djgation to Lifetime data. The G-negative binomial is define
as follows: For any baseline cumulative distribution fuoet(cdf) G(x), andx € R , the G-Negative Binomial (G-NB)
family of distributions has probability density functiopdf) f (x) and cumulative density function (cdf)(x) given by

fi k(%) = mg(x) {1-Kk[1- G(x)]}*’\*1 x>0 (1)
and ) |
Fasli) = g x>0 @
The hazard function is given by
o = AKILLKL=GOol .

{1-kK1-GMx)} -1

whereA > 0 andk € (0,1)

The G-NB family has the same parameters of the G distribyilas two additional shape parametdrs- 0 andk
€ (0,1). If X is a random variable having pdf if1), we write X ~ G — NB(A;k). This generalization is obtained by
increasing the number of parameters compared to the G ntbdeincrease has added more flexibility to the generated
distribution. A significant point of the G-NB model is its &ty to compariseG distribution as a sub-model whén= 1
andk — 0. However, the inverse burr distribution also known as (Bijihas been used in various fields of sciences. In the
actuarial literature it is known as the inverse Burr disttibn see 9] and as the kappa distribution in the meteorological
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literature seel4] and [13]. It has also been employed in finance, environmental ss,gigrvival analysis and reliability
theory see 10], [8] and [6]. Furthermore, §] proposed an extended BIll distribution in low-flow frequgranalysis
where its lower tail is of main interest. Recentlg] [ntroduced the Complementary Burr 11l Poisson Distributi [1]
proposed the geometric inverse burr distribution . In tlaipgy, we use the Cordeiro G.M and M.Percontiihidenerator
to define a model, called the Inverse Burr Negative BinomiNB) Distribution. The main reason for proposing IBNB
distribution are:(i) This distribution due to its flexibility became an importanbdel that can be used in a different
forms of problems in modeling lifetime datéi) It provides a reasonable parametric fit for modeling phermamevith
non-monotone failure rates such as the bathtub-shapedramedial failure rates, which are common in reliability and
biological studies, unlike the exponetial poison (EP) aedagalization of exponential poison (GEP) distributiorsose
ability’s are only in modeling data with increasing or dexsiag failure rates(iii) The IBNB distribution is a suitable
model for fitting skewed data that cannot be properly fitte@kigting distributions.

The rest of the paper is organized as follows. The immeditéa after this introduction is the presence of new
model IBNB and some investigation on its properties. SecBas the statistical properties of the new model IBNB. In
section 4 estimation of the parameters using maximum hikeldl method are given. Section 5 is the simulation studies
while in section 6 two real data are used to show the flexjbditthe proposed model. Finally, the concluding remarks is
given in section 7.

2 The IBNB

The cumulative distribution function(cdf) and the probipidensity function(pdf) of the inverse burr distributicare
given by

GJ = < 1 fx"

The inverse burr negative binomial is obtained by substigutdf and pdf of the inverse burr i@(x) andg(x) in (4) in
the equation$l) and(2). We therefore have the following results

B
> and gx) = aBx?F Y1 +4+x ) A1 (4)

KAaBxaP—1(1+4x)~F-1
[(1-k)*—1]

the corresponding cumulative distribution function is

-0~ {1-K1- ()}
-1

a —A-1
fo 5 (6P, 0, B) = {1—k[1—< X >ﬁ1} x>0 (5)

1+x@

x>0 (6)

Fag(Xp,a,B)=
the hazard rate function is

k)\aﬁxaﬁ—l(1+xa)—ﬁ—1{1_ k[l— ( xd )ﬁ]}—s—l

h(x,p,a,B) = — x>0 (7)
-1- {1—k[1— (W)E]}
the survival function is A
—1-{1-K1- (5P}
Sa (X p,a,B) = x>0 (8)

(1K) —1]

2.1 PDF and Hazard Rate Function

A lot of failure rate fuction have complex expressions baeaaf the integral in the denominator and therefore the
determination of the shapes is not explicitl] introduced a method to determine the shapé(@d with at most one
turning point. His method uses the density function instefthe failure rate. A turning point of a function is a point at
which the function has a local maximum or a local minimum.
f'(x
X) = ———~ 9
nx =—- R 9)

N
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Theorem 1([11]) Let n(x) be defined as i9)

(a)if n(x) € I(strictly increasing), then x) is of typell
(b)if n(x) € D(decreasing), then(k) is of type
(0)if n(x) € BT (bathtube shape), if there existssuch that h(x) = 0, then Kx) is of typeB . Otherwise is of type |

2.1.1 Probability Density Function(PDF)

The probability density function reported (B) has the following properties

Theorem 2The probability density function of IBNB distribution isadeasing
for 0 < a < 1and unimodal also a constant otherwise.

Proof.Taking the log of(5) thereafter differentiating the result, we obtain

) —(a+1) —a)—(B+1)
og( £(9)) = nix) <A

_a(B+x @) (a1
wheren(x) = =S5 =— — - ,

For 0< a < 1 the functionn(x) is negative. Thusf (x) < O for all x > 0. This shows thaf is decreasing for
0< a < 1. Consider > 1 impliesn will have one exact rooy andn(x) > 0 for X < Xp andn(x) < 0 for x > Xo. Hence,f

is a unimodal function with mode at= xo. However, fora > 1 and some values @, A andk, the pdf can be a constant.
O
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Fig. 1: Probability Density Function of the Proposed Model

2.1.2 Hazard Rate Function

The hazard rate function reported (@) has the following possible shape far- 0,A > 0k > 0,0 > 0,8 > 0 in the
following theorem.
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Theorem 3The hazard rate function of the IBNB distribution is deangdior 0 < o < 1, increasing and a bathtube shape

otherwise.
Proof. Considem (x) as it is reported ir{9), clearlyn (x) is positive sincef’ (x) < 0. Taking the first derivative of (x),

we have than'(x) < 0 i.e it is negative. It follows byJ1] thath(x) is decreasing. Fawr > 1, n’ is positive for allx > 0,
this shows that byI[1] h(x)is increasing. For the bathtube shape it is shown graphicat

© .. =6, =5, A=2, k=0.5,
0=5, =5, 1=0.3, k=03,

Fig. 2: Hazard Rate Function of the Proposed Model

2.2 Expansions

In this subsection, we present some representations gbdtidf the IBNB distribution. We provide two simple formulae
for the IBNB, which may be used for further analytical or nuioal analysis. For any reg and|z| < 1, we have that

1-27= 3 (i (10

I (p+k)

where(p)o = 1 and(p)x = p(P+1)(pP+2)...(p+k—1) = +7;
and for|z] < 1 andp > 0, the power series expansion is given by

o e (p+))?
1-77P=Y ——— (11)
-2 ,Zo r(p)j!
is the ascending factorial. Usir{@0) and(11) in (5), we obtain the following

e BAK =S S wi(A.Kg0ca,B( +1)) (12)
22
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. _ DR A+D)r(+1) : - - - - :
wherew;;(A,k) = A [(lfk)”‘71](j+1)j!I'(Jj+l—i)l'(i+1) andg(x; o, B(j+1)) is clearly the density function of the inverse burr

distribution with parameters,(j + 1) and is given by
gx:a,B(j+1) = aB(j+1)x @14 x ) BlU+H-1

After some algebra, we find out thaf’ 5" w;ji(A,k) = 1, this shows that IBNB density can be witten as a linear
combination of the inverse burr distribution. Taking theegral of(4) we obtain that

0 00

F(x) = wji(A,KG(xa,B(j+1)) (13)
25"

whereG(x; a,B(j +1)) is the inverse burr cumulative distribution with parameteandf(j +1).

3 Statistical properties

3.1 Moments

Theorem 4The rth moment of the inverse burr negative binomial distidn (IBNB) is gven by

E(X') = éoiwj,im,kw +ye(1-(CERLEDEL ;L)

a

Proof. See Appendix B(1) O
The mean of IBNB is simply obtained by setting- 1 in (4) where as the variance take the following form

0 00

VaiiX) = 3 5 wii0KIB(i+ 1B (1— B +2)+1),1_§>

S 3 2
. {JZOiZ)Wj,i()\,k)B(j +28(1- (80 +1)+1>,1_§>}

(14)
3.2 Quantile and median
By inverting the cdf of the IBNB we obtained the quantile ftinoo (for 0 < q< 1) as
1 -(7)
1[0k —gfa-K -1 P k|’
the median is simply obtained by settigg- 0.5 in (15)
The skewness and kurtosis for IBNB can be obtained from th@iiong equations respectively.
G _3uu®@ +2u3
= E——HE (16)
(u@) —p2)?
4 _24uu® +6u2u®@ —3u4
v = H HH Kol H (17)

(@)~ p2)?

wherep is the meanu@, u® andu® are the second, third, and fourth moment respectively.
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3.3 Entropy

The entropy of a random variablewith density f (x) is a measure of variation of the uncertainty. A large valuéhef
entropy indicates the greater uncertainty in the data. TéreyRentropy is defined by

Ir(F) = %Iog [/Rff(x)dx] (18)

wherer > 0 andr # 1

Theorem S.et X be distributed according to IBNB, the Renyi entropy @ ¥iven by

_ 1 AB g COWEALDM(i+1)
IR(r)_l—rlog[[[(l—k))‘ k+ 12020 1— |( 1 '/_(|+1—J) (|+1)

(aB+1)+ (a+1)>}

r

xB(l—(B(i+r)+r),1—

Proof. See Appendix B(2) O
The Shannon entropy is defined By log f (x)], this is a special case of the Renhi entropy wheri..

3.4 Reliability

In the context of reliability, the stress-strength modedatibes the life of a component which has a random streXdth
that is subjected to a random str&& The component fails at the instant that the stress apiig@xceeds the strength,
and the component will function satisfactorily wheneXdr> X2. HenceR = P(X2 < X1) is a measure of component
reliability see [7]. It has many applications especially in the area of engingeWe derive the reliabilitR when X1
and X2 have independedBNB(A1;ks; a; 3) and IBNB(A2;ky; a; B) distributions. From equationd2) and (13), the
reliability reduces to

R=P(X1>X2) = / f1 (X Fa(x)dx
0
Substituting forf1 (x) andF,(x) from the above integral, we obtain that
R=Y 5 wiihukowiiOke) [ g0xa. B +1)G0x B +1)
j=0i= 0

whereg(x;a,B(j + 1)), G(x;a,B(j +1)) is the pdf and cdf of the inverse burr with parametersand 3(j + 1)
respectively. Therefore, by making small algebra we haat th

R=3 5 wiilhukowii O ke) | oxcen@acny i

now letu = (1+x~%), consequently, we obtain the reliability as follows

2(a+1)

R= z Wji(A1,K)wji(A2, k2)B(2B(j + 1),
j,I=0

+1)

4 Statistical Inference

In this section, we consider the method of maximum likelithestimators(MLES) for the estimation. This is because the
MLEs possess under fairly regular conditions with someroatiproperties.
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4.1 Estimation

Let X3,...X, be a random sample with observed valugs..x, from the class with parameters, 3, s, k. Let © =
(a,B,A,k)T be the parameter vector.The log likelihood function is gisg

6) = mlog(aBA k) —nlog (1K) ~1] + (@B 1) 5 logx — (B 3 i)

—(A+1)éilog{1—k[1—ﬁ} (19)

wheret; = (1+x7). The log-likelihood can be maximized either directly or mpvéng the nonlinear likelihood equation

obtained by differentiating(x; a, 8, k) above. The components of the score vetter (2L, gﬁ';, 2, 9T are given by
d n nl-k-~ "Iog 1 k) &
— == I 1-k 1— — 20
A A [a-K- ~ 2,9 (9
al n xfa_l) N x7logx (xat )AL
—=—+B logx —a(B+1)Y —— —kB(A +1) a (21)
RTINS PNy P P

Ot HP log('t )
zilogxI Zilogt. k(A +1) i; {1—k{1—%” (22)

d _n_ nd-kA 2 P
KR TaRT ATk %)

wheret; = (14 x). For interval estimation and hypothesis tests on the moalelmpeters, we require the observed
information matrix. The 4 4 unit observed information matrik= J(0) is obtained as

(23)

Joa JC{B ‘Ja/\ Jak
3— | Isa Iss Ipr Ipk
Ia hp har I
Ja Jg I Ik

where the expressions for the elementd afe given in Appendix A.
Under conditions that are fulfilled for parameters in thesiittr of the parameter space but not on the boundary,
asymptotically

V(8 - 8) ~Ny(0,174(0))

Observe tha® is consistent estimator d@ and thus, the validity of the asymptotic normality startsftithe fisher
information matrix | is replaced by the observed fisher |nfat|on.J(6) In this case, a7100% approximate asymtotic
interval for each component parameﬁ;zrof Bis given by

(al_zl%y Jaa,mz%ﬂ/aaa)

whereJ89 is the diagonal element d(é)_l corresponding to each paramdter (a, 3,A,k) andZHy is the quantile

1+V of the standard normal distribution. The likelihood rat{tuRR) statistics is used for testing IBNB dlstrlbuuon agstin

some of the existing models. Considering the partiflor (8] ,601)7, tests of hypothesis of the typ : 81 = 0 9 ys
Hi:01+# 6(10) can be done by LR statistics which is givenusy= Z{I @)—( 9)}, wheref, 8 are the MLEs 0 under

H; andHg respectively. Under the null hypothesj\s,g Xé, whereq is the dimension of the vectd; of interest. The LR
test rejectdy if w> &g, whereéy is the upper 106 point of thexg distribution.
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5 Simulation

This section provides the outcomes of simulation study.ution were performed in order to investigate the proposed
estimator ofa, 3, A, k of the proposed MLE method. We generate 15000 samples ohsi&e, 50, 100, 200, 500, and
800 from IBNB distribution. We assess the correctness oagiproximation of the standard error of the MLE determined

through the fisher information matrix. The approximate ealofsd(&), sd(8), sd(A ), andsd(k) are calculated.

Table 1: The average of 15000 MLEs and standard error simulated fRix®BI

AE SD

n (a,B,A, K a B A k | sd(&) sd(B) sd(A) sdk)
30 (0.5,0.5,2.0,2.0)) 0.628 0.861 2.985 3.103| 0.519 0.557 3.518 4.424
(1.0,2.0,1.0,2.0)) 2.158 2.058 2.977 3.001| 4.632 4.551 3.775 6.223
(3.0,0.9,7.0,5.0) 3.559 3.033 10.267 7.952| 6.694 1.677 6.575 7.331
(7.0,7.0,2.0,4.0)) 9.566 8.464 3.429 4.311| 9.625 8.045 3.205 6.223
50 (0.5,0.5,2.0,2.0)) 0.611 0.662 2.575 3.120| 0.349 0.547 3.118 3.422
(1.0,2.0,1.0,2.0)) 1.888 2.355 1.977 2.988| 4.437 3.221 2.895 4.222
(3.0,0.9,7.0,5.0)) 4.119 4.333 8.777 7.925| 5.994 1566 6.435 7.221
(7.0,7.0,2.0,4.0) 8.552 8.334 2.998 4.291| 8.777 8.005 3.122 6.111
100 | (0.5,0.5,2.0,2.0) 0.588 0.567 2.485 2.994| 0.219 0.451 2.544 3.112
(1.0,2.0,1.0,2.0)) 1.158 1.958 1.978 2.031| 4.326 3.112 2.112 3.343
(3.0,0.9,7.0,5.0) 3.199 3.999 8.208 7.752| 4.193 0.977 5.776 6.141
(7.0,7.0,2.0,4.0) 7.544 7.234 2400 4.111| 7.225 7.123 2.146 5.333
200 | (0.5,0.5,2.0,2.0)) 0.528 0.555 2.179 2.419| 0.222 0.337 2.423 2.555
(1.0,2.0,1.0,2.0)) 1.058 1.558 1.777 2.011| 3.992 2.666 1.996 3.112
(3.0,0.9,7.0,5.0) 3.559 3.214 7.287 7.152| 4.024 0.167 4.998 5.068
(7.0,7.0,2.0,4.0)) 7.152 7.001 2.389 4.119| 7.222 6.033 1.999 4.997
500 | (0.5,0.5,2.0,2.0) 0.522 0.561 2.089 2.103| 0.135 0.133 1.555 1.414
(1.0,2.0,1.0,2.0)) 1.188 1.358 1.908 2.000| 3.113 2.441 1.679 2.113
(3.0,0.9,7.0,5.0)) 3.009 3.033 7.208 7.077| 3.444 0.077 4.223 4.661
(7.0,7.0,2.0,4.0) 7.552 7.111 2.029 4.333| 6.664 5.145 1.200 3.573
800 | (0.5,0.5,2.0,2.0)) 0.518 0.533 2.006 1.999| 0.119 0.125 1.239 0.924
(1.0,2.0,1.0,2.0)) 1.100 1.051 1.231 1.981| 2.632 1.991 0.987 1.983
(3.0,0.9,7.0,5.0) 3.011 3.123 7.009 6.992| 2.977 0.045 3.567 3.771
(7.0,7.0,2.0,4.0)) 7.211 7.000 2.111 4.033| 5.555 4.124 1.102 3.341

6 Application

In this section, an applications of the IBNB distributionthvihe estimation of the parameters using the method of
maximum likelihood and likelihood ratio (LR) test for compson of the IBNB distribution with some popular models
for given sets of data are presented. The examples has shevilexibility of the IBNB distribution in comparison with
other models including the Exponential Poisson (EP), Gaization of Exponential Poisson (GEP) distributions fatal
modeling. The MLEs of the IBNB parametéesA, a andf3 are computed by maximizing the objective function udig
software. The estimated values of the parameters,lotjiHid®d statistic, Akaike Information Criterion,
AIC = 2p— 2log(L), Bayesian Information CriteriorBIC = plog(n) — 2log(L), and Consistent Akaike Information

Criterion, CAIC = AIC + Zﬁ(p—gﬂ , whereL = L(0) is the value of the likelihood function evaluated at the pzater

estimates, n is the number of observations, prid the number of estimated parameters for the two sets ofatata
shown in(6.1) and(6.2) respectively. The IBNB distribution is fitted to the datassand these fits are compared to the
fits using the EP, GEP, distributions.

6.1 Dataset 1

The source of this data set is the Open University (1993).folhaving data are the prices of the 31 different childrens
wooden toys on sale in a Suffolk craft shop in April 1991: 42,2, 1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.B% 05, 0.99,
115,512,009, 199, 624, 26, 3, 122, 7.36, 475, 1159, 869, 98, 1.85, 199, 135, 10, 065, 145.
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Table 2: MLEs of the prices of the 31 different childrens wooden togssale in a Suffolk craft shop in April 1991

a B ) K 1(9) AIC CAIC _ BIC
EPBG,A) - 0.0077 308795 - 750447 1558804 15632 15876
GEP@,B,7) 2.3144 02369 19821 - ~736629 1533258 15421 15763

IBNB(a,B,A,k) 3.10801427 313855928 (74857029 —0.07335403 —68129 1453258 14686 15106

A comparison of the proposed model with two of the existinglelas performed in Tabl@). Therefore, considering
the significant level of 5%, we reject the null hypothesis.

Table 3: LR statistics for the data

Model Hypothesis Statisticw p-value
IBNBvs GEP Ho:a=1vsH;:a #1 110678 | 8.784x 104
IBNBVSEP | Hp:B=A=1vsH;:B#A#1| 156314 | 4034x10 2

hist versus fitted PDFs ecdf versus fitted CDFs

0.30
|
1.0

— IBNB
— GEP

0.25
1
0.8
1

0.20
1

f(x)
0.15
|
CDF

0.4

0.2

0.0

Fig. 3: fitted densities and cdf for the first data

6.2 Data set 2

This data set is given byLP] and consists of thirty sucessive values of March predipita(in inches) in Minneapolis/St
Paul. The data are. 07, 174, 081, 12, 195, 12, 047, 143, 337, 22, 3, 309, 151, 21, 052, 162, 131, 032, 059,
0.81,281, 187,118, 135,475, 248,096, 189, 09, 205.
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Table 4: MLEs of the prices of the 31 different childrens wooden togssale in a Suffolk craft shop in April 1991

a B A K 1(9) AIC __CAIC__ BIC
EPBG,A) - 0.0186 319785 - 457935 05587 9603 9839
GEP@,B,7) 2.7329 07336 08003 - ~397229 854458 8637 8965

IBNB(a,B,A,k) 3.3591898 3513528 10284761 —0.2839195 -—-36.8475 81695 83295 87299

A comparison of the proposed model with two of the existinglgids performed in Tablés). Therefore, considering
the significant level of 5%, we reject the null hypothesis.

Table 5: LR statistics for the data

Model Hypothesis Statisticw p-value
IBNBvs GEP Ho:a=1vsHi:a #1 5.7508 0.0164811
IBNBvsEP Ho:B=A=1vsHi:B#A#1| 176534 | 1.468x10 %

hist versus fitted PDFs ecdf versus fitted CDFs
o _ o |
o ——— IBNB -
—— GEP
< «©
s 7 S ]
™ ©
S 7] S ]
— w
X [a)
= o
~N | ~
o o
- N ]
o o
o o |
o o
[ T T T T 1 T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
X X

Fig. 4: fitted pdf and cdf for the second data

7 Conclusion

We introduce the inverse burr negative binomial distribtiBNB. The new distribution brings a very vital result as it
fits some real data better than some existing model. The ptdfeohew model is decreasing, a constant and unimodal
depending on the values of the parameter. The hazard ratédons also decreasing, increasing and a bathtube shape.
Statistical properties are investigated and the parasmetethe IBNB are estimated using the method of maximum
likelihood and the information matrix is obtained . We tdst tiypothesis using LR test and the simulation study have
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shown that, the model parameters performed very well. Tieulreess of the IBNB distribution is enunciated in two
application to a real data sets. The new proposed model givesre flexible result for fitting lifetime data in reliabiljt
biology and other areas.
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Appendix A

The elements of the # 4 information matrix are given by
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Appendix B

1.Proof. of (4). The rth moment is given by

E(X'):/0 X)dx = EO%W“ (A k/ Xg(xa,B(j+1))

whereg(x; a, 3(j+1)) is the pdf of the inverse burr with parameterandf3(j + 1). We therefore obtain the following
E(X") = Zozjw,-,i (A.KaB(j+ 1)/ X TOBUH =11 4 xR+ -1
j=0i= 0

letu=1+x9 implies —(1—u) = x_* which shows thak = —(1— u)*% and alsodx = _W and after some
algebra, we obtain
S . r+ap(j+1)+1
X)= 3 3 wia B+ e (1- (FOELERED 4 1)
gogo bt a a
O

2 Proof. of (5). The Renhi entropy is given by

taking the integral we have that,

0 o —r(A+1)
/ 7 (x)dx = 1kﬁ)aﬁ }/ Xr<aB—1>(1+x")—r<ﬁ+1>{1_k[1_(x_)ﬁ]} dx.
0

using(10) and(11), we obatain

IR(1) = - log [[[(1_ ]
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