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A system of a Cooper pair box interacting with a field in the binomial state is considered
in the dispersive regime. The system is coupled to the environment through phase
damping. The effects of the different parameters on the purity of the states of the total
system and the subsystems are considered. It is found that damping does not affect the
state of the box. While it affects the state of the field and the total system. The initial
state of the box has the dominant effect on the heights of oscillations on both the field
and the box states.
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1 Introduction

Recent developments of quantum computation have inspired many interesting ideas
in a variety of fields. Ideas for novel cavity quantum electrodynamics (CQED) analogs
have been recently suggested by using nanomechanical resonators [1,2] discrete LC cir-
cuits [3],large Josephson-junction [4] and Cooper pair boxes coupled to transmission line
resonators [5]. It is found that a solid state mesoscopic system may bear many features
common to CQED in quantum optics [5]. The role of the atom is played by the Cooper
pair box as an artificial atom and the cavity is replaced by the transmission line resonator.
At large detuning , i.e when the detuning parameter is larger than the coupling parameter
between the field and the artificial atom, the dispersive regime takes place [6-8] whereas
the interaction Hamiltonian can be considered as small perturbation. An alternative point
of view is by applying a unitary transformation on the Hamiltonian and keeping to the first
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order of the ratio between the coupling and the detuning parameters [6,7]. Use of the effec-
tive Hamiltonian in this regime facilitates the calculations a great deal and in some cases
closed form solutions are obtained. The environment would affect the considered system,
because dissipations and fluctuations make the primary state of the system collapse from a
correlated state into a statistical mixture state irreversibly [9]. Such effect amounts to deco-
herence or purity loss. Pure dephasing can be incorporated by introducing the appropriate
Liadblad phase damping operators in the master equation for the total density operator [10].

In this article we shall investigate the evolution of a Cooper pair box model under phase
damping and a nonclassical state of the photons. The organization of this article runs as
follows. In section 2, we setup the Hamiltonian of the model of a Cooper pair box in a
resonator. We consider the dispersive regime and dissipation through phase damping. The
solution of the master equation for the density operator is given. The linear entropy is in-
vestigated to discuss purity loss and decoherence. When the field initial state is considered
to be a nonclassical state, namely a binomial state. This is exhibited in section 3. Section 4
comprises the discussion and conclusion.

2 The model and the dispersive regime

We consider a Cooper pair box which is a mesoscopic super conducting island con-
nected to a larger reservoir through a Josephson junction whose energy is EJ and capaci-
tance CJ . It is voltage baised from a lead with a capacitance Cg to the island. When the
charging energy Ec = e2

2(CJ+Cg)
is much larger than EJ

4 and the gate charge representing

the total polarization charge injected into the island Ng =
CgVg

2e is restricted to the range
[0,1], then only a pair of the adjacent charge states are relevant, and the Hamiltonian in this
case can be mapped to the one of a pseudo-spin- 12 particle. At the charge degenercy point
(where Ng = 1

2 ), the Hamiltonian for the box coupled to a single mode of the resonator
can be written in the form [5,11]

H = ~ω(â†â+
1

2
) + ~

Ω

2
σz −

eCg

Cg + CJ

√
~ω
LC

σx(â
† + â) (2.1)

when ω, â(â†) and Ω are the frequency, the annihilation (creation) operator for the field
mode and Ω = EJ

~ the energy splitting of the qubit, σx and σz are the Pauli matrices
describing the spin 1

2 particle. When we neglect rapidly oscillating terms, the Hamiltonian

(2.1) reduces to the standard Jaynes-Cummings Hamiltonian [12] with ~g =
−eCg

Cg+CJ

√
~ω
LC .

The dispersive limit for this Hamiltonian is obtained when the interaction Hamiltonian can
be considered as a perturbation to the non-interacting subsystems. It comes out due to large
detuning such that g

∆ ≪ 1 where ∆ = Ω− ω is the detuning parameter. The Hamiltonian
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of the system in the dispersive regime takes the form.

Heff = ~(ω +
g2

∆
σz)â

†â+
~
2
(Ω +

g2

∆
)σz (2.2)

It is clear from this expression that the atom transition is Stark shifted by g2

∆ (n+ 1
2 ), with

n the number of the photons in the field mode. Also it is apparent that σ̂z and n̂ = â†â are
constants of motion of the effective Hamiltonian(2.2). Thus eigen states of either σz or n̂
would be eigen states of Heff .

The system is coupled to a reservoir through phase decay. We may understand this
damping in the framework of the spin-depolarization observed in nuclear magnetic reso-
nance experiments [13,14]. Besides the importance of the phase-damping model in describ-
ing physical situations, it gives insight in the problems involved by allowing for analytical
treatments for different quantities that are needed of discussing related phenomena [15,16].
The master equation for the density operator ρ(t) is given under phase-damping dissipation
by the expression [10]

∂ρ

∂t
= −i[Heff , ρ] + γ{2â†âρâ†â− (â†â)2ρ− ρ(â†â)2} (2.3)

where Heff is given by (2.2) and γ is the rate of dissipation.
We assume that at t = 0, the density operator for the system is given by

ρ(0) = ρB(0)⊗ ρF (0) (2.4)

where ρB is the box initial density operator and ρF (0)is the initial density operator for the
field, showing that the box is decoupled from the field initially. We further assume that
both the box and the field are initially in pure states i.e.

ρB(0) = |ΨB(0)⟩ ⟨ΨB(0)| , |ΨB(0)⟩ = be |e⟩+ bg |g⟩

ρF (0) = |ΨF (0)⟩ ⟨ΨF (0)| , |ΨF (0)⟩ =
∑
n

βn|n⟩ (2.5)

where |be|2 + |bg|2 = 1,|e⟩ (|g⟩) is the excited (ground) state of the box and βn is the
amplitude for the nth state of the field,

∑
n |βn|2 = 1. By writing λ = g2

2∆ , we obtain the
solution of Eq.(2.3) under the conditions (2.4,2.5)in the form

ρ(t) =
∑
m,n

{A(m,n) |e,m⟩ ⟨e, n|+B(m,n) |e,m⟩ ⟨g, n|

+B∗(m,n) |g,m⟩ ⟨e, n|+ C(m,n) |g,m⟩ ⟨g, n|} (2.6)

where

A(m,n) = |be|2βmβ∗
n e−γt(m−n)2−2i(m−n)λt

B(m,n) = beb
∗
gβmβ∗

n e−γt(m−n)2−2i(m+n+1)λt (2.7)

C(m,n) = |bg|2βmβ∗
n e−γt(m−n)2+2i(m−n)λt



Purity loss for a Cooper pair box interacting dispersively with a nonclassical field .... 125

We wish to draw some remarks about the solution (2.7). If we take the box initially in
one of its eigenstates excited (or ground )state i.e. we take be(or bg) = 1; then it will
stay in this state and never jump to the other state, if the field assumes a Fock state at the
beginning, then the diagonal terms in ρ will be time-independent, while the off diagonal
terms are oscillatory. In both of these cases, which are eigenstates of either σ̂z or n̂, and
hence eigenstates of Heff as mentined before, the phase damping never exhibits any effect.
Therefore for the phase damping to be effective for this model, both the box and the field
should have neither Fock state nor eigenstates of the box but should have superposition
states. Further, we note that the damping appears through the factor γ(m − n)2 in the
exponent, which means that the diagonal terms in the field states will show no damping.
This shows up when we consider the density for the subsystem of either the box or the field.
This will be discussed in the following section.

3 Purity loss

Once decoherence is introduced, pure states are to be changed into mixed states. How-
ever, one requires a state of high purity and large amount of entanglement in many cases
of quantum information processing. Thus it is necessary to investigate purity losses in the
system displayed in the previous section. We use the idempotency defect, defined by the
linear entropy as a measure of the degree of the purity of the state, in analogy to the way the
entanglement is treated in terms of the von Neumann entropy which has similar behavior
[17,18]. In order to analyze what happens to the purity loss in the Cooper pair box we
trace over the field states to get ρB(t) = TrF ρ(t), while we trace over the box states to
get ρF (t) = TrBρ(t) to discuss what happens to the field. The idempotency defect as a
measure of purity loss is defined by

SB(F ) = TrρB(F )(1− ρ2B(F )) (3.1)

while for the total system we use S = Trρ(1 − ρ). The state is pure when S or SB(F )is
zero, and purity is lost if it does not vanish. When we use the formula for ρ(t) of Eqn.(2.6),
we obtain

ρB(t) =
∑
n

|βn|2{|be|2 |e⟩ ⟨e|+ |bg|2 |g⟩ ⟨g|

+ beb
∗
ge

−2iλt(2n+1) |e⟩ ⟨g|+ b∗ebge
2iλt(2n+1) |g⟩ ⟨e|}

ρF (t) =
∑
n

|βn|2 |n⟩ ⟨n|+
∑
m̸=n

βmβ∗
n e−γt(m−n)2

× {|be|2e−2i(m−n)λt + |bg|2e2i(m−n)λt} |m⟩ ⟨n| (3.2)

We can look at ρB(t) as its |ΨB⟩ = be |e⟩+ bg |g⟩ has evolved in the nth sector of the field
space as bee−iλt(2n+1) |e⟩+ bge

iλt(2n+1) |g⟩. These pure states with changes of phases are
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superposed with the weight |βn|2 for each n state of the field. Thus superposition gives rise
to a loss of purity in the state of the box.

The remarks above mentioned after Eq.(2.7) appear here very clearly. The diagonal
terms do not depend on the damping parameter. The diagonal and off-diagonal of ρB also
do not depend on γ, while the off-diagonal terms oscillate regularly. The parameter γ

appears only in the off-diagonal terms of the reduced density of the field.

4 Discussion and conclusion

In what follows we set to study the effects due to the field being in a nonclassical state.
This state is taken to be the binomial state [19]

|η,M⟩ =
M∑
n=0

βn|n⟩, with βn = ηn(
√
1− |η|2 )M−n

√
(Mn )

with mean photon number= M |η|2 and we consider different values of η,M . It tends to
the coherent state as M → ∞, η → 0 such thatM |η|2 is finite. Also we consider the effect
of different values of the damping parameters γ. The effect of the atomic coherence is
taken into consideration. These effects are illustrated in Figs. (4.1-4.4).

Figure 4.1: The linear entropy S (solid line), the box entropy SB (dash line) and the field entropy SF

(dot line) as functions of the scaled time λt for (a): M = 10, η2 = 0.3, γ = 0.01 and be = bg = 1√
2

, (b): M = 30, η2 = 0.3, γ = 0.01 and be = bg = 1√
2

and (c): M = 50, η2 = 0.3, γ = 0.01 and
be = bg = 1√

2
.

We plot the linear entropy for the whole system S which shows monotonic increase as
the time increases to settle to the fully mixed state with S(∞) = 1−

∑M
n=0 | βn |4. Also,

we consider the linear entropy for the field SF (t). We note that this function oscillates
with the S(t) curve as its lower envelope. As time increases the amplitudes of the oscil-
lations die out until the curve coincides asymptotically with S(∞) of the whole system.
On contrast the curves of the atomic linear entropy have periodic behavior since it is of the
form SA(t) = 2|be|2|bg|2(1 −

∑
m,n |βn|2|βm|2 cos 4λt(m − n)), which is periodic with
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period π
2 in the scaled time(λt). The effects of the different parameters are discussed in

what follows in some detail.

Figure 4.2: The linear entropy S (solid line), the box entropy SB (dash line) and the field entropy SF

(dot line) as functions of the scaled time λt for (a): M = 30, η2 = 0.1, γ = 0.01 and be = bg = 1√
2

, (b): M = 30, η2 = 0.5, γ = 0.01 and be = bg = 1√
2

and (c): M = 30, η2 = 0.8, γ = 0.01 and
be = bg = 1√

2
.

(i) The binomial parameter M :-

In Figs. 4.1 we display the effect of this parameter by fixing the other parameters as
follows γ

λ = 0.01, be = bg = 1√
2

and η2 = 0.3 and we take M = 10 (Fig 4.1a),M =

30 (Fig 4.1b) and M = 50 (Fig 4.1c). We note that the amplitudes of the box linear
entropy are not affected by the change in the number M of the photons in the state. For
the field linear entropy, we note that by increasing the parameter M , the amplitudes of the
function decrease and consequently settle to the stationary limit faster(compare Fig. 4.1a
with 4.1b,4.1c).On the other hand, we find that the linear entropy for the total system tends
faster to the stationary state by increasing the parameter M .

(ii) The parameter η:-
In Figs. 4.2 we exhibit the effect of the parameter η where we fix the values of γ, be, bg

as before, and fix M = 30 while η2 takes the values 0.1(Fig. 4.2a),0.5(Fig. 4.2b),0.8(Fig.
4.2c). As before the box state is affected slightly by this parameter. The fluctuation in
the fields entropy are affected by the change in η2. The amplitudes of these fluctuations
decrease as η2 increases until it reaches 1

2 , then these amplitudes increase. These are due
to the fact that as η2 increases towards the value 1, the few states near the state |M⟩ are the
most effective . The effect of η2 on the total entropy is almost the same as the parameter M .

(iii) The box coherence:-
The effect of changing be, bg on the idempotency defect, is displayed in Figs. 4.3. By

writing |be| = sin θ and |bg| = cos θ, we note that the dependence on |bebg|2 i.e (sin22θ)

which has its maximum values when θ = π
4 . The amplitudes of the oscillations in both
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Figure 4.3: The linear entropy S (solid line), the box entropy SB (dash line) and the field entropy SF

(dot line) as functions of the scaled time λt for (a): M = 30, η2 = 0.5, γ = 0.01, be = sin π
10

and
bg = cos π

10
, (b): M = 30, η2 = 0.5, γ = 0.01, be = sin π

8
and bg = cos π

8
and (c): M = 30,

η2 = 0.5, γ = 0.01, be = sin π
6

and bg = cos π
6

.

the box and field entropies dependence on (sin22θ) is clearly shown in these Figs. The
maximum amplitudes exist at θ = π

4 as comparison of the figures in 4.3 with Fig. 4.2b
shows. As θ moves away from this value the amplitudes decrease.

(iv) The damping rate:-
Figs 4.4 shows the dependence of the purity loss on the damping rate γ. This is exhib-

ited through considering different values for γ = 0.0001 while keeping M = 30, η2 = 0.5

and be = bg = 1√
2

(Fig. 4.4a),γ = 0.001(Fig. 4.4b) and γ = 0.1(Fig. 4.4c). As it has been
mentioned before,this parameter does not affect the state of the box. It is demonstrated
here, the behavior of the quantity SB which is the same in the different figures. For the
field, we note that increasing γ results in suppressing the oscillations of the quantity SF

and brings it to the stationary limit faster. This fast arrival to the stationary limit also noted
in the quantity S of the total system as comparison of the different figures of Figs. 4.4 and
fig. 4.2b clearly shows.

A practical schemes for triggering evolution of entanglement between qubits has been
presented [20]. The schemes are especially appealing as they require no experimentally
difficult dynamical control and addressing of individual atoms. It is shown that the evo-
lution of a stable or frozen entanglement can be triggered by varying the parameters of a
given system such as coupling constants between atoms and the field modes or detunings
between the atomic and field frequencies. Our discussion can be extended to test such ob-
servation. They also addressed the issue of a controlled (steered) evolution of entanglement
between desired pairs of qubits that can be achieved by varying the parameters of a given
system [21,22].

In conclusion the system of a Cooper pair box in interaction with a field in the binomial
state in the dispersive limit shows under phase damping the following features: partial gain



Purity loss for a Cooper pair box interacting dispersively with a nonclassical field .... 129

Figure 4.4: The linear entropy S (solid line), the box entropy SB (dash line) and the field entropy
SF (dot line) as functions of the scaled time λt for (a): M = 30, η2 = 0.5, γ = 0.0001 and
be = bg = 1√

2
,(b): M = 30, η2 = 0.5, γ = 0.001 and be = bg = 1√

2
and (c): M = 30, η2 = 0.5,

γ = 0.1 and be = bg = 1√
2

.

of purity for the box state with periodicity π
2λ and the amount of purity loss is governed by

the initial state of the box and slightly by the distribution of the photons in the field. The
dependence on the coherency of the box is shown clearly. The box purity loss curves have
their maximum heights when be = bg = 1√

2
. The damping rate does not affect the purity

of the box state. The field state is affected by the decay rate, however. It oscillates and
settles to a mixed state in the limit as t tends to infinity. The heights of the oscillations are
governed by the initial state of the box and the field. The dependence of the amplitudes
of the oscillations on the field parameters varies according to the increase of M and η2.
These amplitudes decrease by increasing M . However for η2, amplitudes decrease as
η2 increases until it reaches η2 = 0.5; after that they increase. Therefore this may be
dependent on the variance of the field state which has its maximum value at η2 = 0.5.
Correlation to the environment is noted through the idempotency defect of the total system.
It is increased monotonically and settles to a statistical mixture as t → ∞ which coincides
with the limiting state of the field.
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