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Abstract: As for variational inequality problems, we define the optimal value function of trust region subproblems, study the properties
of it. And then under strongly monotonic conditions, we use the optimal value function to provide a global error estimate for the feasible
solution .
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1. Introduction and symbols

The optimization problems are widely used in engineer-
ing design, optimal control, information technology, eco-
nomic equilibrium and other areas [1–3]. In [4] and [5],
we know that there is a closed relationship between an op-
timization problem and a variational inequality problem
(V IP for short). In special circumstances, the variational
inequality problem contains some optimization problems,
such as complementarity problems,fixed point problems,
and so on. When a function with a symmetric Jacobian, the
variational inequality problem can be reformulated as an
optimization problem. However, when the symmetry con-
dition and the positive semi-definiteness condition don’t
hold, it is more difficulty to handle by optimization theory,
then the variational inequality is the more general problem
in that case [5–8]. The trust region method is a important
method for solving an optimization problem [9,10], which
also has wide applications [11,12].

A variational inequality problem is to find x∗ ∈ S such
that:

< F (x∗), x − x∗ >≥ 0, ∀x ∈ S,

where 〈·, ·〉 denotes the inner products in �n, F (x) a map-
ping from S to �n is a continuous, the set

S = {x ∈ �n|ci(x) ≤ 0, i = 1, · · · ,m},
ci : �n → �n(i = 1, · · · ,m) are continuously differen-
tiable functions, so S is a closed convex set.

Now we consider the trust region method of the V IP ,
which is a iterative method, and at each iterative point x ∈
S, an often used subproblem is
(QP (x,Δ))

max
y∈SΔ(x)

{〈F (x), x − y〉 − 1
2
〈B(x)(y − x), y − x〉},

where

SΔ(x) = S(x) ∩ V (x),
S(x) = {y ∈ �n|ci(x)
+〈∇ci(x), y − x〉 ≤ 0, i = 1, · · · ,m},
V (x) = {y ∈ �n|‖y − x‖ ≤ Δ}(Δ > 0),

∇ci is gradient of ci, B(x) is a symmetric positive definite
matrix, V (x) is called the trust region, and the positive
number Δ is called the trust region radius. The function of
form

Φ(x,Δ) = max
y∈SΔ(x)

{〈F (x), x−y〉−1
2
〈B(x)(y−x), y−x〉},

is called the optimal value function of the trust region sub-
problems.

In this paper, for the matrix B(x), we assume that there
are positive numbers λmin and λmax such that

λmin ≤ ‖B(x)‖ ≤ λmax, ∀x ∈ S.
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The point y of the polyhedral set S(x) = {y ∈ �n|ci(x)+
〈∇ci(x), y − x〉 ≤ 0, i = 1, · · · ,m} is the intersection of
the half-hyperspace ci(x) + 〈∇ci(x), y − x〉 ≤ 0, so the
set S(x) is closed. The trust region V (x) is a generalized
ball with x is a center and Δ is radius. Thence SΔ(x) is a
convex set by the operation properties of the convex sets.
Thus the constraints set of subproblem (QP (x,Δ)) is a
convex set. We can obtain S ⊆ S(x) by convexity of ci(·).

Let x ∈ S, if there exist λi(x) ≥ 0(i = 1, · · · ,m),
such that

F (x) +
∑m

i=1 λi(x)∇ci(x) = 0, (1)

λi(x)ci(x) = 0, i = 1, · · · ,m, (2)

then x is a KKT points to problem (V IP ). In this paper,
we denote by S∗ and Ŝ the solutions and KKT points for
the V IP , respectively. The optimal solution of the sub-
problem (QP (x,Δ)) is expressed as y∗(x,Δ), or simply
y∗.

Let A ⊂ �n be a nonempty subset, the projection of a
point x ∈ �n on A is defined as

P (x|A) = argmin{‖y − x‖ |y ∈ A},

and the distance from x ∈ �n to A is given by

dist(x,A) = ‖x − P (x|A)‖.

A mapping F (x) from �n into �n is Lispchitz contin-
uous at x∗ ∈ S, if there exists a positive constant L, for
∀x ∈ S, we have

‖F (x) − F (x∗)‖ ≤ L‖x − x∗‖,

or F (x) is L-continuous at x∗ for short.
A mapping F (x) from �n into �n is monotone on S,

if
〈F (y) − F (x), y − x〉 ≥ 0, ∀x, y ∈ S.

A mapping F (x) : �n → �n is strongly monotone at
a point x∗ ∈ S if there exists a constant α > 0 such that
for any x ∈ S,

〈F (x) − F (x∗), x − x∗〉 ≥ α‖x − x∗‖2.

Clearly, if F (x) is strongly monotone at a point x∗,
then x∗ must be the unique solution of the V IP .

2. Properties of the optimal value function

It can be seen Φ(x,Δ) ≥ 0, from the definition of the
subproblem (QP (x,Δ)) that for ∀x ∈ S and Δ > 0. As
SΔ(x) is the intersection of the polyhedral set S(x) and
the trust region ball V (x), the Abadie constraint qualifica-
tion holds at every point of SΔ(x). Then, we have
Lemma 1 For ∀x ∈ S and Δ > 0, a point y ∈ SΔ(x) is
the unique solution y∗ of subproblem (QP (x,Δ)) if and

only if there exist Lagrange multipliers λ∗
0 ≥ 0 and λ∗

i ≥
0(i = 1, · · · ,m) such that

F (x)+B(x)(y−x)+λ∗
0(y−x)+

m∑
i=1

λ∗
i∇ci(x) = 0,(3)

{
λ∗

0[‖y − x‖ − Δ] = 0,
λ∗

i [ci(x) + 〈∇ci(x), y − x〉] = 0,
(4)

where in order to simplcity we use λ∗
0 and λ∗

i to denote La-
grange multipliers λ∗

0(x,Δ) and λ∗
i (x,Δ) associated with

the unique solution to problem (QP (x,Δ)), respectively.
Theorem 1 For ∀x ∈ S and Δ > 0,

Φ(x,Δ) ≥ 1
2
〈B(x)(y∗ − x), y∗ − x〉 + λ∗

0‖y∗ − x‖2,

where λ∗
0 is the Lagrange multiplier associated with y∗ and

satisfies Equation (3) and (4).
Proof. For the optimal solution y∗, by the definition of
Φ(x,Δ),

Φ(x,Δ) = 〈F (x), x − y∗〉 − 1
2
〈B(x)(y∗ − x), y∗ − x〉.

Then multiplying the two sides of (3) by (x − y∗)T , and
using the second equality of (4), we have

Φ(x,Δ) − 1
2
〈B(x)(y∗ − x), y∗ − x〉 − λ∗

0‖y∗ − x‖2

= 〈F (x), x − y∗〉 − 〈B(x)(y∗ − x), y∗ − x〉
−λ∗

0‖y∗ − x‖2

=
m∑

i=1

λ∗
i 〈∇ci(x), y∗ − x〉

= −
m∑

i=1

λ∗
i ci(x) ≥ 0.

Theorem 2 For ∀x ∈ S and Δ > 0, we have
1) Φ(x,Δ) ≥ [12λmin + λ∗

0] · ‖y∗ − x‖2;
2) 1

Δsign(λ∗
0)Φ(x,Δ) ≥ λ∗

0 · Δ,
where sign(λ) is a sign function, i.e.

sign(λ) =

⎧⎨
⎩

1, λ > 0;
0, λ = 0;
−1, λ < 0.

Proof. The conclusion 1) is obtained by the assumption
for B(x) and Theorem 1.

When λ∗
0 = 0, the conclusion 2)holds apparently, and

when λ∗
0 > 0, from the first equality of (4), we know that

‖y∗ − x‖ = Δ, and hence from Theorem 1 we obtain the
conclusion 2) immediately.

By Lemma 1 and the definition of KKT point, we ob-
tain the next theorem.
Theorem 3 The following three conclusions are equiva-
lent.

1)x is a KKT point of the V IP .
2)x ∈ S, and Φ(x,Δ) = 0 for ∀Δ > 0.
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3)x ∈ S, and x = y∗ for ∀Δ > 0.

Proof. If x is a KKT point of the V IP , x ∈ Ŝ satisfy the
definition of the KKT point, that is exist λi(x) ≥ 0(i =
1, · · · ,m) such that

F (x) +
m∑

i=1

λi(x)∇ci(x) = 0,

λi(x)ci(x) = 0, i = 1, · · · ,m.

Then multiplying the two sides of (1) by (x − y∗)T , we
have
〈F (x), x − y∗〉 +

∑m
i=1 λi(x)〈∇ci(x), x − y∗〉 = 0.

And using (2),

〈F (x), x − y∗〉

=
m∑

i=1

λi(x)〈∇ci(x), y∗ − x〉

=
m∑

i=1

λi(x)〈∇ci(x), y∗ − x〉 +
m∑

i=1

λi(x)ci(x)

=
m∑

i=1

λi(x)[ci(x) + 〈∇ci(x), y∗ − x〉]

≤ 0.

The inequality is obtained by y∗ ∈ SΔ(x) ⊆ S(x).
For the positive definite of B(x), we have

Φ(x,Δ) = 〈F (x), x−y∗〉− 1
2
〈B(x)(y∗−x), y∗−x〉 ≤ 0.

It can be seen from subproblem (QP (x,Δ)) that for ∀x ∈
S and Δ > 0, we have Φ(x,Δ) ≥ 0.

Thus, Φ(x,Δ) = 0, the conclusion 1) and the conclu-
sion 2) are equivalent.

By Theorem 1, for ∀x ∈ S and Δ > 0,we have

Φ(x,Δ) ≥ 1
2
〈B(x)(y∗ − x), y∗ − x〉 + λ∗

0‖y∗ − x‖2.

If the conclusion 2) holds, it implies

1
2
〈B(x)(y∗ − x), y∗ − x〉 + λ∗

0‖y∗ − x‖2 ≤ 0.

Because B(x) is a symmetric and positive semidefinite
matrix and λ∗

0 ≥ 0, then

1
2
〈B(x)(y∗ − x), y∗ − x〉 + λ∗

0‖y∗ − x‖2 ≥ 0.

Hence,

1
2
〈B(x)(y∗ − x), y∗ − x〉 + λ∗

0‖y∗ − x‖2 = 0,

that is x = y∗.
Therefore, the conclusion 2) signify the conclusion 3).

We finally show that the conclusion 3) implies the con-
clusion 1). Let the conclusion 3) holds, then by the defi-
nition of S ⊆ S(x) and V (x), for x ∈ S, we have x ∈
S(x) ∩ V (x) = SΔ(x).

Using Lemma 1, we obtain

F (x) + B(x)(x − x) + λ∗
0(x − x) +

m∑
i=1

λ∗
i∇ci(x) = 0,

λ∗
i [ci(x) + 〈∇ci(x), x − x〉] = 0, i = 1, · · · ,m,

where λ∗
i is Lagrange multipliers λ∗

i (x,Δ) associated with
the optimal solution of subproblem (QP (x,Δ)).

Let λ∗
i (x) = λ∗

i (x,Δ), for ∀Δ > 0, then

F (x) +
m∑

i=1

λ∗
i (x)∇ci(x) = 0,

λ∗
i (x)ci(x) = 0.

Thus, x is a KKT point of the V IP .
From conclusions 1) and 2) of Theorem 3 and the non-

negativity of Φ(x,Δ) ≥ 0, it is immediate to have
Corollary 1 Suppose the V IP has KKTpoints. Then
x∗ is a KKT point of the V IP if and only if for any Δ >
0, x∗ is an optimal solution of problem

min{Φ(x,Δ)|x ∈ S}.
In this case, Φ(x∗,Δ) = 0, x∗ = y∗(x∗,Δ).

3. A global error bound

In this section, under the condition that F (x) is strongly
monotone, we present a global error bound for dist(x, S∗)
by using the property of optimal value function Φ(x,Δ).
Under this condition, S∗ is a singleton set.

Firstly we introduce a lemma.
Lemma 2 For ∀x ∈ S,∀Δ > 0,∀z ∈ S(x), we have

〈F (x) + B(x)(y∗ − x) + λ∗
0(y

∗ − x), z − y∗〉 ≥ 0. (5)

where y∗ and λ∗
0 are the optimal solution of subproblem

(QP (x,Δ)) and an associate Lagrange multiplier, respec-
tively.
Proof. Let z ∈ S(x), we have

ci(x) + 〈∇ci(x), z − x〉 ≤ 0, i = 1, · · · ,m. (6)

Multiplying the two sides of (3) by (z − y∗)T , and using
(4) and (6),we obtain

〈F (x) + B(x)(y∗ − x) + λ∗
0(y

∗ − x), z − y∗〉

=
m∑

i=1

λ∗
i 〈∇ci(x), y∗ − z〉

=
m∑

i=1

λ∗
i [〈∇ci(x), y∗ − x〉 + 〈∇ci(x), x − z〉]

≥
m∑

i=1

λ∗
i [〈∇ci(x), y∗ − x〉 + ci(x)]

= 0.
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Lemma 3 If x∗ is KKT point of the V IP , then there
exist λi(x∗)(1 ≤ i ≤ m) that for ∀x ∈ S,Δ > 0, we have

〈F (x∗), y∗−x∗〉+
m∑

i=1

λi(x∗)〈∇ci(x∗)−∇ci(x), y∗−x〉 ≥ 0.

where λi(x∗) are Lagrange multipliers to meet (1) and (2).
Proof. Multiplying both sides of (1) by (y∗ −x∗)T , notic-
ing that y∗ ∈ SΔ(x). Using convexity of ci(x) and (2), we
obtain

〈F (x∗), y∗ − x∗〉

=
m∑

i=1

λi(x∗)〈∇ci(x∗), x∗ − y∗〉

=
m∑

i=1

λi(x∗)[〈∇ci(x∗), x∗ − x〉 + 〈∇ci(x∗), x − y∗〉]

≥
m∑

i=1

λi(x∗)[ci(x∗) − ci(x) + 〈∇ci(x∗), x − y∗〉]

≥
m∑

i=1

λi(x∗)[〈∇ci(x∗) −∇ci(x), x − y∗〉

+〈∇ci(x), x − y∗〉 − ci(x)]

≥
m∑

i=1

λi(x∗)[〈∇ci(x∗) −∇ci(x), x − y∗〉].

Lemma 4 Suppose that x∗ is KKT point of the V IP ,F (·)
and ∇ci(·)(i = 1, · · · ,m) are L1− continuous and L2−
continuous at x∗,respectively.Then, for ∀x ∈ S and ∀Δ >
0, we obtain

〈F (x) − F (x∗), x − x∗〉 + [λ∗
0 + λmin]‖y∗ − x‖2

≤ [λ∗
0 + η(x∗)]‖y∗ − x‖ · ‖x − x∗‖,

where η(x∗) = λmax + L1 + L2

m∑
i=1

λi(x∗).

Proof. Due to S ⊆ S(x), we can choose z = x∗ in (5).
Hence we have

〈F (x) + B(x)(y∗ − x) + λ∗
0(y

∗ − x), x∗ − y∗〉 ≥ 0,

that is

〈F (x), x∗ − y∗〉 + 〈B(x)(y∗ − x), x∗ − y∗〉 (7)

+ 〈λ∗
0(y

∗ − x), x∗ − y∗〉 ≥ 0.

By Lemma 3 and Lipschitz continuity of ∇ci(x), we ob-
tain

0 ≤ 〈F (x∗), y∗ − x∗〉

+
m∑

i=1

λi(x∗)〈∇ci(x∗) −∇ci(x), y∗ − x〉

≤ 〈F (x∗), y∗ − x∗〉

+
m∑

i=1

λi(x∗)‖∇ci(x∗) −∇ci(x)‖ · ‖y∗ − x‖ (8)

≤ 〈F (x∗), y∗ − x∗〉 + L2

m∑
i=1

λi(x∗)‖x∗ − x‖ · ‖y∗ − x‖.

Adding (7) and (8),and using the L1− continuity of F (x),
we have

0 ≤ 〈F (x) − F (x∗), x∗ − y∗〉 + L2

m∑
i=1

λi(x∗)‖x∗ − x‖ ·

‖y∗ − x‖ + 〈B(x)(y∗ − x, x∗ − y∗)〉
+〈λ∗

0(y
∗ − x), x∗ − y∗〉

= 〈F (x) − F (x∗), x∗ − x〉 + 〈F (x) − F (x∗), x − y∗〉

+L2

m∑
i=1

λi(x∗)‖x∗ − x‖ · ‖y∗ − x‖

+〈B(x)(y∗ − x, x∗ − x)〉 − 〈B(x)(y∗ − x), y∗ − x〉
+λ∗

0〈(y∗ − x), x∗ − x〉λ∗
0‖y∗ − x‖2

≤ 〈F (x) − F (x∗), x∗ − x〉 + ‖F (x) − F (x∗)‖ · ‖x − y∗‖

+L2

m∑
i=1

λi(x∗)‖x∗ − x‖ · ‖y∗ − x‖ + λmax‖y∗ − x‖ ·

‖x∗ − x‖ − λmin‖y∗ − x‖2 + λ∗
0‖y∗ − x‖ · ‖x∗ − x‖

−λ∗
0‖y∗ − x‖2

≤ 〈F (x) − F (x∗), x∗ − x〉 + [L1 + L2

m∑
i=1

λi(x∗)

+λmax + λ∗
0]‖y∗ − x‖ · ‖x − x∗‖

−[λ∗
0 + λmin]‖y∗ − x‖2.

Thus,

〈F (x) − F (x∗), x∗ − x〉 + [λ∗
0 + λmin]‖y∗ − x‖2

≤ [λ∗
0 + η(x∗)]‖y∗ − x‖ · ‖x − x∗‖,

where η(x∗) = λmax + L1 + L2

m∑
i=1

λi(x∗).

Theorem 4. Suppose that F (x) is strongly monotone and
L1− continuous at x∗ ∈ S, and ∇ci(x)(1 ≤ i ≤ m) is
L2− continuous at x∗, and the point x∗ is a KKT point
of the problem (V IP ). Then x∗ is the unique solution of
the V IP , and there exist constants η1(x∗) > 0, η2 > 0,
such that for ∀x ∈ S and Δ > 0, we have

‖x − x∗‖ ≤ η1(x∗)Φ(x,Δ)
1
2 + η2sign(λ∗

0) ·
Φ(x,Δ)

Δ
.

Proof. The uniqueness is obvious due to strongly mono-
tonicity of F (x). From strongly monotonicity of F (x) and
Lemma 4, there exist constants α > 0, and we have

σ‖x − x∗‖2 ≤ 〈F (x) − F (x∗), x − x∗〉
≤ 〈F (x) − F (x∗), x − x∗〉 + [λ∗

0 + λmin]‖y∗ − x‖
≤ [λ∗

0 + η(x∗)]‖y∗ − x‖ · ‖x − x∗‖.
Therefore, by Theorem 2,we obtain

‖x − x∗‖ ≤ η(x∗)
α

‖y∗ − x‖ +
λ∗

0

α
‖y∗ − x‖

≤ η(x∗)
α

(
2

λmin
)

1
2 Φ(x,Δ)

1
2 +

1
α

sign(λ∗
0)

Φ(x,Δ)
Δ

= η1(x∗)Φ(x,Δ)
1
2 + η2sign(λ∗

0) ·
Φ(x,Δ)

Δ
,

where,η1(x∗) = η(x∗)
α ( 2

λmin )
1
2 , η2 = 1

α .
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4. Conclusion

In this paper, we employ the trust region methods to ana-
lyze the variational inequality problems, and structure the
the optimal value function of it. By the properties of the
optimal value function, we obtain some lemmas and theo-
rems. And the last Theorem provide a global error estimate
between the feasible solution and the optimal solution by
using the value function Φ(x,Δ).
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