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Abstract: Asfor variational inequality problems, we define the optimal value function of trust region subproblems, study the properties
of it. And then under strongly monatonic conditions, we use the optimal value function to provide aglobal error estimatefor thefeasible

solution .
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1. Introduction and symbols

The optimization problems are widely used in engineer-
ing design, optimal control, information technology, eco-
nomic equilibrium and other areas [1-3]. In [4] and [5],
we know that there is a closed relationship between an op-
timization problem and a variational inequality problem
(VIP for short). In specia circumstances, the variational
inequality problem contains some optimization problems,
such as complementarity problems,fixed point problems,
and so on. When afunction with asymmetric Jacobian, the
variational inequality problem can be reformulated as an
optimization problem. However, when the symmetry con-
dition and the positive semi-definiteness condition don't
hold, it ismore difficulty to handle by optimization theory,
then the variational inequality isthe more general problem
in that case [5-8]. The trust region method is a important
method for solving an optimization problem[9, 10], which
also has wide applications [11,12].

A variational inequality problemistofind z* € S such
that:

< F(z*),x —a*>>0, Yz €5,

where (-, -) denotestheinner productsin R", F'(z) amap-
ping from S to "™ is a continuous, the set

S={xeR"ci(x) <0,i=1,---,m},

¢ M — N"(i = 1,---,m) are continuously differen-
tiable functions, so S isaclosed convex set.

Now we consider the trust region method of the VI P,
which isaiterative method, and at each iterative point = €
S, an often used subproblem is

(@P(, 4)
max {(F(a).2 =)= 5 (B@)— o).y~ )}
where

§4(x) = S(x) NV (@),

S(z) = {y € R"|ci(z)

+(Vei(z),y —x) <0,i=1,---,m},
Viz) ={y e R"[|ly —z|| < AHA>0),

Ve, isgradient of ¢;, B(x) isasymmetric positive definite
matrix, V(x) is called the trust region, and the positive
number A iscalled thetrust region radius. The function of
form

&(x,A) = max
yeSA ()

1
{(F (), 2—y) =5 (B(z)(y—2),y-2)},
is called the optimal value function of the trust region sub-
problems.
Inthis paper, for the matrix B(x), we assumethat there
are positive numbers i, and Ay, such that

)\Inin S ||B($)H S )\Inaxa vx S S
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Thepoint y of thepolyhedral set S(z) = {y € R"|c;(x)+ only if there exist Lagrange multipliers Aj > 0 and A} >

(Vei(x),y —x) <0,i=1,---,m} isthe intersection of
the half-hyperspace ¢;(z) + (Ve (x),y — z) < 0, so the
set S(z) isclosed. Thetrust region V' (x) is a generalized
ball with z isacenter and A isradius. Thence S4(z) isa
convex set by the operation properties of the convex sets.
Thus the constraints set of subproblem (QP(z,4)) isa
convex set. We can obtain S C S(x) by convexity of ¢;(-).

Let x € S, if there exist A\;(x) > 0(i = 1,---,m),
such that

F(z) + 32, Ai(@)Vei(z) =0, @
)\Z(IE)CZ(Z) =0,i=1,---,m, )

then z isa K K'T pointsto problem (VI P). In this paper,
we denote by S* and S the solutions and K KT" points for
the V1P, respectively. The optimal solution of the sub-
problem (QP(x, A)) is expressed as y*(x, A), or smply
Y.

Let A C R™ be anonempty subset, the projection of a
point z € R™ on A isdefined as

P(x]A) = argmin{[ly — || |y € A},
and the distance from x € R to A isgiven by
dist(xz, A) = ||z — P(z]A)].

A mapping F'(x) from R™ into R™ is Lispchitz contin-
uous at z* € S, if there exists a positive constant L, for
Vz € S, we have

[1F(z) = F(a")|| < Lllx — 2™,

or F(x) isL-continuous at * for short.
A mapping F'(z) from R" into " is monotone on S,
if
(F(y) — F(z),y —x) >0, Vz,y € S.

A mapping F(z) : R* — R" is strongly monotone at
apoint x* € S if there exists a constant o > 0 such that
forany z € S,

(F(z) = F(z"), 2 —a") > allz — 27|,

Clearly, if F(z) is strongly monotone at a point x*,
then z* must be the unique solution of the VI P.

2. Properties of the optimal value function

It can be seen &(z, A) > 0, from the definition of the
subproblem (QP(z, A)) that for Vo € Sand A > 0. As
SA4(x) is the intersection of the polyhedral set S(x) and
the trust region ball V'(z), the Abadie constraint qualifica-
tion holds at every point of S4(x). Then, we have

Lemmal ForVx € Sand A > 0,apointy € S4(z) is
the unique solution y* of subproblem (QP(z, A)) if and

0(i =1,---,m) such that

F(a)+ B@)(y—2)+ 3 y—2)+ 3 NV (@) = 0,3)

i=1

Aollly — || = A =0,
{ Ai’z[@(w) +(Vei(z),y — )] =0, (4)

wherein order to simplcity we use A§ and A} to denote La-
grange multipliers A§(x, A) and A} (x, A) associated with
the unique solution to problem (QP(xz, A)), respectively.
Theorem1l ForVz € Sand A > 0,

1 * * * (], %
P(w,4) > S(B@)(y" = 2),y" — ) + Aglly” — =,

where \; isthe Lagrange multiplier associated with y* and
satisfies Equation (3) and (4).

Proof. For the optimal solution y*, by the definition of
&(x, A),

Bz, 8) = (F@). 2~ y7) ~ 3 (BE)(y" — )" — 2.

Then multiplying the two sides of (3) by (z — y*)*, and
using the second equality of (4), we have
1
Oz, 4) - 5 (B@)(y’
= (F(z),z—y") — (B(@)(y" —z),y" —x)
~Nolly* — z||?

=Y XY@y —a)
i=1

—2),y" —a) = Aglly" — z|?

- —i)\fci(x) > 0.
i=1

Theorem 2 For Vz € S and A > 0, we have
1) &(z,4) = [3Amin + A] - ly* — 2%
2) Lsign(A)®(z, A) > Aj - A,
where sign(\) isasign function, i.e.
A > 0;

L
sign(A) = ¢ 0, A=0;
-1, A <0.

Proof. The conclusion 1) is obtained by the assumption
for B(x) and Theorem 1.

When A§ = 0, the conclusion 2)holds apparently, and
when A\ > 0, from the first equality of (4), we know that
|y* — x| = A, and hence from Theorem 1 we obtain the
conclusion 2) immediately.

By Lemma 1 and the definition of K KT point, we ob-
tain the next theorem.

Theorem 3 The following three conclusions are equiva-
lent.

1)z isa KKT point of the VIP.

2)x € S,and @(x, A) = 0forvVA > 0.
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3)x € S,andz = y* for VA > 0.

Proof. If z isa K KT point of the VIP, z € S satisfy the
definition of the K K'T' point, that is exist A\;(x) > 0(i =
1,.--,m) such that

m

+Z/\ )Vei(z) =0,

)\z(x)cl(x) =0,i=1,---,m
Then multiplying the two sides of (1) by (z — y*)7, we

have
(F(x),z —y*) + 250 Mi(@)(Vei(2), @

And using (2),
(F(z),x—y")

Z Ai(x)(Vei(x), y* — x)

—y*) =0.

ﬁ
Il
-

m

Xi(@)(Vei(@),y™ =)+ Y Nil@)ei(w)

i=1

o

Q
Il
-

Ai()lei(x) +(Vei(@),y™ — )]

.

@
Il
-

<0.

Theinequality is obtained by y* € S4(z) C S(z).
For the positive definite of B(x), we have

Bz, 8) = (F(a),7—y")~ L (Ba)(y" ), " ) < 0.
It can be seen from subproblem (Q P(z, A)) that for Vo €
Sand A > 0, we have d(x, A) > 0

Thus, &(z, A) = 0, the conclusion 1) and the conclu-
sion 2) are equivalent.

By Theorem 1, for Vz € S and A > 0,we have

Dz, A) > S(B(2)(y" —2).y" — ) + Xolly" — =]

N~

If the conclusion 2) holds, it implies

1

S(B@)(y" —).y" —a) + Nlly" —a]* <.
Because B(x) is a symmetric and positive semidefinite
matrix and Aj; > 0, then

1

S(B(@)(y" —z),y" —

5 —z|? > 0.

z) + Aolly”

Hence,

1

S B@)(y" —2)y" —2) + Aglly” — z[|* =0,

thatisx = y*.
Therefore, the conclusion 2) signify the conclusion 3).

Wefinally show that the conclusion 3) impliesthe con-
clusion 1). Let the conclusion 3) holds, then by the defi-
nition of S C S(z) and V(x), for z € S, we have z €
S(x) NV (z) = S2(z).

Using Lemma 1, we obtain

F(z)+ B(x)(z — z) + \j(z — x)

Z A Vei(z) =0,

Mei(z) + (Vei(x),x —x)] =0, i=1,---,m,
where \f isLagrange multipliers \f (x, A) associated with
the optimal solution of subproblem (QP(z, A)).

Let X (z) = \i(z, Q), for VA > 0, then

+Z)\ YWei(z) =0,

A (x)e;(x) = 0.

Thus, z isa K KT point of the VIP.

From conclusions 1) and 2) of Theorem 3 and the non-
negativity of ®(x, A) > 0, it isimmediate to have
Corollary 1 Suppose the VIP has K KTpoints. Then
x* isa K KT point of the VI P if and only if for any A >
0, z* isan optimal solution of problem

min{®(z, A)|x € S}.

Inthiscase, @(x*, A) = 0, 2* = y*(z*, A).

3. A global error bound

In this section, under the condition that F'(x) is strongly
monotone, we present aglobal error bound for dist(x, 5*)
by using the property of optimal value function @(z, A).
Under this condition, S* isasingleton set.

Firstly we introduce alemma.
Lemma?2 ForVz € S,VA > 0,Vz € S(z), we have

(F(z) + B(x)(y" —x) + Xo(y" —2),2—y") 20. (9
where y* and A are the optimal solution of subproblem
(QP(x, A)) and an associate Lagrange multiplier, respec-
tively.

Proof. Let z € S(z), we have

cl(x)+<vcl($>7z_x> SO’ 2217,77’7/ (6)
Multiplying the two sides of (3) by (z — y*)7, and using
(4) and (6),we obtain

<F( )+ B(@)(y" —x) + Ao (y" — ), 2 —y")

) y" = z)
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Lemma3 |If z* is KKT point of the VIP, then there  Adding (7) and (8),and using the L, — continuity of F'(x),
exist \;(z*)(1 <1i < m)thatforve € S, A > 0,wehave  wehave

. 0 < (F(x)— F(z*),2" —y* +LQZ)\ Ma™ — x| -
(F(z*),y*—x* —|—Z/\ WVei(x")=Ve(x), y"—z) > 0. P
ly* =zl + (B(x)(y" —z,2" —y))
where \; (z*) are Lagrange multipliersto meet (1) and (2). YOy — ), 2% — )
Proof. Multiplying both sides of (1) by (y* — 2*)”, notic- 0 o, . .
ing that y* € S4 (). Using convexity of ¢;(z) and (2), we - <F(“7) - F(a%), 2" —a) + (F(z) = F(z"),z —y")
obtain
_ i)\i(x*chi(x*) Tt — y*) —l—(B(x)(y —z,2" — ) — (B(x)(y" —),y" — )
i=1 A —a),2* — )5y —«?
i)\( (Veula®) & (Vo) ) < <F(x)— F(z"), 2" —x) + [|[F(z) = F2")| - lz — v
= (" ci(x®), " —x) + (Ve (x¥), 2 — y*
i=1 +L2Z/\ ™ =2l - ly* =zl + Amaxly™ — 2| -
Z LNl ke (Ve ) o = 1l — Dnlly” — I + 3l " — 1

“Xolly — x|?

> ) Ni(@)[(Veila) = Vei(z),z = y7) <F($>_F<x*)7x*_m>+[L1+L2iMm

=1 S

HVei(z),x —y*) — ci(@)] S o

m FAmax + Aollly™ — 2| - |z — 2”|]
> Y M@ (Ve(a?) = Vei(e),z —y"))- ~I26 + Al ly” — -

i—1 Thus,

Lemma4 Supposethat * is K KT pointof theVIP,F(-) (F(z) — F(z*), 2" — 2) + [As 4+ Amin] " — 2|2
and Ve;(1)(i = 1,---,m) are Ly — continuous and Ly— < 5+ (@) ly* -2l - ||z — 2|

continuous at =*,respectively. Then, for Vo € Sand VA > =70 o

0, we obtain Wheren(ff*) = Amax + L1 + Lo Z )\z(x*)

(F(z) = F(2*), — %) + [A§ + Amin] [ly* — 2]? - 4. Suppossthet F( )f:; | . |
<\ T TR IR eorem 4. Suppose x) isstrongly monotone an
< Do +0@)]lly” =2l - fle =27, L,— continuous at z* € S, and V¢;(z)(1 < i < m) is
where n(z*) = Amax + L1 + Lo Z Ni(z*). Lo— continuous at z*, and the point z* isa K KT point

of the problem (VI P). Then z* is the unique solution of
Proof. Dueto S C S(z), we can choosez =2"in(5).  the VIP, and there exist constants 7, (z*) > 0,75 > 0,

Hence we have such that for Vo € S and A > 0, we have
F(z)+ B(x)(y" —x) + X\j(y" —x),z* —y*) >0, . . 1 . o Pz, A
=B o) o = 2| < (o) )} + masign(ng) - 22,
that is a4
o . % _ ¥ Proof. The uniqueness is obvious due to strongly mono-
<F*(I)*’ Ty *> + <*B(I)(y z),2" = y) 0 tonicity of F'(«). From strongly monotonicity of F'(z) and
+ Ao(y" — ), 2" —y*) > 0. Lemma 4, there exist constants a > 0, and we have
By Lemma 3 and Lipschitz continuity of Ve¢;(x), we ob- ollz —x*|? < (F(z) — F(z*),z — x*)
tain "

< (F(z) = F(z"), 2 — 2%) 4 A5 + Amin] [y — 2]

0= (Fa%),y" —27) < g+ @)y — = - o — 2"

m

+ Z )\z (LIZ*)<VCZ (l'*) _ VCfL‘ (ZIJ), y* _ ZIJ> Therefore, by Theorem 2,We obtain
=1 o 77(1'*) * ﬁ *
e lz — 2% < ly* — || + —ly* — =
< (F(z"),y" — ") «
m 77(33*) 2 1 1 1 ( A)
* * * S - \3 2@ 7A 2 + -
L3 M@ Vea) - Va@ -yt —all @ S a ) T A 8000
1=1 1 A
= (e )2, )%+ mosign(yg) - 7D,
< (F(2%),y" — 2" +LQZ)\ M =z - [ly* — |- o ()

i=1
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4. Conclusion

In this paper, we employ the trust region methods to ana-
lyze the variational inequality problems, and structure the
the optimal value function of it. By the properties of the
optimal value function, we obtain some lemmas and theo-
rems. And the last Theorem provide aglobal error estimate
between the feasible solution and the optimal solution by
using the value function &(z, A).
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