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In this paper, by using the Lyapunov-Krasovskii functional approach, we study a kind
of fifth order delay differential equations and obtain some new sufficient conditions
for the instability of the zero solution of the equations considered. By this work, we
improve some instability results obtained in the literature for a fifth order nonlinear
differential equation without delay to the instability of solutions of certain fifth order
nonlinear differential equations with delay.
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1 Introduction

In a recent paper Li and Duan [8] proved some instability theorems for the fifth order
nonlinear differential equation without delay,

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x
′′) + f2(x

′) + f1(x) = 0. (1)

In this paper, instead of Eq. (1), we consider the fifth order nonlinear delay differential
equations of the form

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x, x(t− r), ..., x(4), x(4)(t− r))x′′

+f2(x
′(t− r)) + f1(x(t− r)) = 0.

(2)

We write Eq. (2) in system form as

x′ = y, y′ = z, z′ = w,w′ = u,

u′ = −f5(w)u− f4(z)w − f3(x, x(t− r), ..., u, u(t− r))z − f2(y)− f1(x)

+
t∫

t−r

f ′
2(y(s))z(s)ds+

t∫
t−r

f ′
1(x(s))y(s)ds,

(3)
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where r is a positive constant, the primes in Eq. (2) denote differentiation with respect to
t, t ∈ ℜ+, ℜ+ = [0,∞); f5, f4, f3, f2 and f1 are continuous functions on ℜ, ℜ, ℜ10,

ℜ and ℜ, respectively, with f1(0) = f2(0) = 0, and satisfy a Lipschitz condition in their
respective arguments. Hence, the existence and uniqueness of the solutions of Eq. (2) are
guaranteed (see Èl’sgol’ts [2, pp.14, 15]). We assume in what follows that the functions
f1 and f2 are also differentiable, and x(t), y(t), z(t), w(t) and u(t) are abbreviated as
x, y, z, w and u, respectively.

It should be noted that, since 1978 by now, the instability of solutions of various fifth
order nonlinear scalar and vector differential equations without delay has been investigated
and is still being studied by some authors (see Ezeilo [3-5], Li and Yu [9], Sadek [11],
Sun and Hou [12], Tiryaki [13], Tunç [14-16], Tunç and Erdoğan [17], Tunç and Karta
[18], Tunç and Şevli [19]). In the all mentioned papers, the authors used suitable Lya-
punov’s functions and based on the Krasovskii’s properties (seeKrasovskii [7]) to discuss
the instability of solutions of the equations considered therein.

Further, the qualitative theory of nonlinear differential equations of higher order has
wide applications in science and technology (see, for example, Chlouverakis and Sprott
[1] and Linz [10]). It is also crucial to obtain information on the qualitative behaviors of
solutions of differential equations while there is no analytical expression for solutions. For
this purpose, the theory of Lyapunov functions and functionals is a global and the most
effective approach toward determining qualitative behaviors of solutions of higher order
nonlinear differential equations. On the other hand, from the past by now, the construction
and definition of suitable Lyapunov functions and functionals for higher order differential
equations without delay and with delay remain as a general problem in the literature. In this
paper, by defining two appropriate Lyapunov functionals we prove our results. The moti-
vation for this paper comes from the above mentioned papers and that of Ko [6]. Our aim
is to carry out some results established by Li and Duan [8] to nonlinear delay differential
equations of the form (2) for the instability of solutions. To the best of our observations,
there exists no paper establishing conditions for the instability of the solutions of delay dif-
ferential equations of fifth order in the literature. By this work, we improve the mentioned
results from the case of without delay to the case of delay. Thus, our results are completely
different from those mentioned above. Here, we only study the theoretical aspect of the
subject and give two examples to illustrate the theoretical analysis in this work.

Let r ≥ 0 be given, and let C = C([−r, 0], ℜn) with

∥ϕ∥ = max
−r≤s≤0

|ϕ(s)| , ϕ ∈ C.

For H > 0 define CH ⊂ C by

CH = {ϕ ∈ C : ∥ϕ∥ < H}.

If x : [−r, a] → ℜn is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt in C is
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defined by
xt(s) = x(t+ s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous delay differential
system with finite delay

ẋ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F (0) = 0, F : G → ℜn is continuous and maps closed and bounded sets into
bounded sets. It follows from the conditions on F that each initial value problem

ẋ = F (xt), x0 = ϕ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution will be
denoted by x(ϕ)(.) so that x0(ϕ) = ϕ.

Definition. The zero solution, x = 0, of ẋ = F (xt) is stable if for each ε > 0 there
exists δ = δ(ε) > 0 such that ∥ϕ∥ < δ implies that |x(ϕ)(t)| < ε for all t ≥ 0. The zero
solution is said to be unstable if it is not stable.

Theorem A. Suppose there exists a Lyapunov function V : G → ℜ+ such that V (0) =

0 and V (x) > 0 if x ̸= 0. If either
(i) V̇ (ϕ) > 0 for all ϕ in G for which

V [ϕ(0)] = max
−s≤t≤0

V [ϕ(s)] > 0

or (ii) V̇ (ϕ) > 0 for all ϕ in G for which

V [ϕ(0)] = min
−s≤t≤0

V [ϕ(s)] > 0 ,

then the solution x = 0 of ẋ = F (xt) is unstable (see Ko [6]).

2 Main results

Our first main result is the following theorem.
Theorem 1. In addition to all the assumptions imposed on the functions f5, f4, f3,

f2 and f1 in Eq. (2), assume that there exist constants a3, a4, ā5 and a5 such that the
following conditions hold:

f1(0) = f2(0) = 0, f1(x) ̸= 0, (x ̸= 0), f2(y) ̸= 0, (y ̸= 0),

ā5 ≤ f ′
1(x) ≤ a5 < 0, 0 ≤ |f ′

2(y)| ≤ a4, (a4 > 0), f5(w) ≤ 0 for arbitrary x, y, w

and

f3(x, x(t− r), ..., u, u(t− r)) ≥ a3 > 0 for arbitrary x, x(t− r), ..., u, u(t− r).
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Then, the zero solution, x = 0, of Eq. (2) is unstable provided that

r < min

{
2a5
ā5

,
2a3

2a4 − ā5

}
.

Remark. To prove Theorem 1, we follow a standard pattern. Namely, we need to
show that, subject to the conditions in the theorem, there exists indeed a Lyapunov func-
tional V = V (xt, yt, zt, wt, ut) which satisfies the three Krasovskii properties (K1),

(K2) and (K3) (see Krasovskii [7]): (K1) In every neighborhood of (0, 0, 0, 0, 0), there
exists a point (ξ, η, ζ, µ, σ) such that V (ξ, η, ζ, µ, σ) > 0, (K2) the time derivative
V̇ = d

dtV (xt, yt, zt, wt, ut) along solution paths of the corresponding equivalent differ-
ential system for Theorem 1 is positive semi-definite, (K3) the only solution (x, y, z, w, u)

= (x(t), y(t), z(t), w(t), u(t)) of (3) which satisfies d
dtV (xt, yt, zt, wt, ut) = 0 is the triv-

ial solution (0, 0, 0, 0, 0). It worth mentioning that the satisfaction of the three Krasovskii
properties (K1), (K2) and (K3) is a sufficient condition for the instability of the zero so-
lution of Eq. (2). That is, the Krasovskii properties guarantee the instability of the zero
solution of Eq. (2).

Proof. Consider the Lyapunov functional V = V (xt, yt, zt, wt, ut) defined by

V = 1
2w

2 − yf1(x)− zu− z
w∫
0

f5(s)ds−
z∫
0

f4(s)sds−
y∫
0

f2(s)ds

−λ1

0∫
−r

t∫
t+s

y2(θ)dθds− λ2

0∫
−r

t∫
t+s

z2(θ)dθds,
(4)

where s is a real variable such that the integrals
0∫

−r

t∫
t+s

y2(θ)dθds and
0∫

−r

t∫
t+s

z2(θ)dθds

are non-negative, and λ1 and λ2 are some positive constants which will be determined later
in the proof.

It is clear that

V (0, 0, 0, ε, 0) =
1

2
ε2 > 0

for all sufficiently small ε. Hence, in every neighborhood of the origin, (0, 0, 0, 0, 0), there
exists a point (0, 0, 0, ε, 0) such that V (0, 0, 0, ε, 0) > 0, which shows that V has the
property (K1).

By an elementary differentiation, time derivative of the functional V (xt, yt, zt, wt, ut)

in (4) along the solutions of (3)gives that

d
dtV (xt, yt, zt, wt, ut) = −f ′

1(x)y
2 + f3(x, x(t− r), ..., u, u(t− r))z2 − w

w∫
0

f5(s)ds

−z
t∫

t−r

f ′
2(y(s))z(s)ds− z

t∫
t−r

f ′
1(x(s))y(s)ds

−λ1ry
2 + λ1

t∫
t−r

y2(s)ds− λ2rz
2 + λ2

t∫
t−r

z2(s)ds.
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The assumptions of Theorem 1 and the estimate 2 |mn| ≤ m2 + n2 imply that

−z
t∫

t−r

f ′
1(x(s))y(s)ds ≥ |z|

t∫
t−r

f ′
1(x(s)) |y(s)| ds

≥ 1
2

t∫
t−r

f ′
1(x(s)) (z

2(t) + y2(s))ds

≥ 1
2 ā5rz

2 + 1
2 ā5

t∫
t−r

y2(s)ds,

−z
t∫

t−r

f ′
2(y(s))z(s)ds ≥ − |z|

t∫
t−r

|f ′
2(y(s))| |z(s)| ds

≥ − 1
2

t∫
t−r

|f ′
2(y(s))| (z2(t) + z2(s))ds

≥ − 1
2a4rz

2 − 1
2a4

t∫
t−r

z2(s)ds

so that

d
dtV (xt, yt, zt, wt, ut) ≥ (−a5 − λ1r)y

2 + {a3 + (2−1ā5 − 2−1a4 − λ2)r}z2

+
(
1
2 ā5 + λ1

) t∫
t−r

y2(s)ds+
(
λ2 − 1

2a4
) t∫
t−r

z2(s)ds.

Let λ1 = −1
2 ā5 and λ2 = 1

2a4. Hence

d

dt
V (xt, yt, zt, wt, ut) ≥ (−a5 + 2−1ā5r)y

2 + {a3 + (2−1ā5 − a4)r}z2 > 0

provided that r < min
{

2a5

ā5
, 2a3

2a4−ā5

}
, which verifies that V has the property (K2).

On the other hand, d
dtV (xt, yt, zt, wt, ut) = 0 if and only if y = z = 0, which implies

that
y = z = w = u = 0.

Besides, by f1(0) = f2(0) = 0, f1(x) ̸= 0 for all x ̸= 0, f2(y) ̸= 0 for all y ̸= 0 and the
system (3), we can conclude that d

dtV (xt, yt, zt, wt, ut) = 0 if and only if x = y = z = w

= u = 0. Thus, the property (K3) is fulfilled by V relative to (2). By the foregoing
discussion, we conclude that the zero solution of Eq. (2) is unstable. The proof of Theorem
1 is completed.

Example 1. Consider nonlinear fifth order delay differential equation of the form

x(5) − 1
1+(x′′′)2x

(4) + 9x′′′ + {2 + exp(−x2 − x2(t− r)− ...− u2 − u2(t− r))}x′′

+sinx′(t− r)− x(t− r)− 4arctgx(t− r) = 0.
(5)

We write Eq. (5) in system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,



On the instability of solutions 117

u′ = u
1+w2 − 9w − {2 + exp(−x2 − ...− u2(t− r)}z

− sin y + x+ 4arctgx−
t∫

t−r

y(s)ds

+
t∫

t−r

cos y(s)z(s)ds− 4
t∫

t−r

1
1+x2(s)y(s)ds.

It follows that Eq. (5) is special case of Eq. (2) and

f5(w) = − 1

1 + w2
≤ 0,

f4(z) = 9,

f3(x, ..., u(t− r)) = 2 + exp{−x2 − ...− u2(t− r)} ≥ 2 = a3,

f2(y) = sin y,−π

2
≤ y ≤ π

2
,

f2(0) = 0, f ′
2(y) = cos y, |cos y| ≤ 1 = a4,

f1(x) = −x− 4arctgx,−π

2
< x <

π

2
,

f1(0) = 0, f ′
1(x) = −1− 4

1 + x2
,

and
ā5 = −5 ≤ −1− 4

1 + x2
≤ −1 = a5.

In view of the above estimates, we conclude that all the assumptions of Theorem 1 hold.
Hence, we conclude that the zero solution x = 0 of Eq. (5) is unstable provided that r < 2

5 .

We now consider the special case of Eq. (2) with f2(x
′(t − r)) = f2(x

′(t)), namely,
the fifth order delay differential equation

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x, x(t− r), ..., x(4), x(4)(t− r))x′′

+f2(x
′(t)) + f1(x(t− r)) = 0.

(6)

We write Eq. (6) in system form as

x′ = y, y′ = z, z′ = w,w′ = u,

u′ = −f5(w)u− f4(z)w − f3(x, x(t− r), ..., u, u(t− r))z − f2(y)

−f1(x) +
t∫

t−r

f ′
1(x(s))y(s)ds.

(7)

Our second main result is the following theorem.
Theorem 2. In addition to all the assumptions imposed to the functions f5, f4, f3, f2

and f1 in Eq. (6), assume that there exist constants a3, ā5 and a5 such that the following
conditions hold:

f1(0) = 0, f1(x) ̸= 0, (x ̸= 0), ā5 ≥ f ′
1(x) ≥ a5 > 0, (x ̸= 0),
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f2(y) ̸= 0, (y ̸= 0), f5(w) ≥ 0 for arbitrary x, w,

f3(x, x(t− r), ..., u, u(t− r)) ≤ a3 < 0 for arbitrary x, x(t− r), ..., u, u(t− r).

Then, the zero solution, x = 0, of Eq. (6) is unstable provided that

r <
2

ā5
min{a5,−a3}.

Proof. Consider the Lyapunov functional V 1 = V1(xt, yt, zt, wt, ut) defined by

V1 = − 1
2w

2 + yf1(x) + zu+ z
w∫
0

f5(s)ds+
z∫
0

f4(s)sds+
y∫
0

f2(s)ds

−λ3

0∫
−r

t∫
t+s

y2(θ)dθds,
(8)

where s is a real variable such that the integral
0∫

−r

t∫
t+s

y2(θ)dθds is non-negative, and λ3

is a positive constant which will be determined later in the proof.
Let M = max

|z|≤1
|f4(z)| , there exists a positive constant e such that Me < 1 and 0 <

e < 1.

Then, it follows that

V1(0, 0, e
2, 0, e) = e3 +

e2∫
0

f4(s)sds ≥ e3 − 1

2
Me4 > 0

for all sufficiently small e. Hence, in every neighborhood of the origin, (0, 0, 0, 0, 0),

there exist a point (0, 0, e2, 0, e) such that V1(0, 0, e
2, 0, e) > 0, which shows that V1

has the property (K1). By an elementary differentiation, time derivative of the functional
V1(xt, yt, zt, wt, ut) in (8) along the solutions of (7)yields that

d
dtV1(xt, yt, zt, wt, ut) = f ′

1(x)y
2 − f3(x, x(t− r), ..., u, u(t− r))z2 + w

w∫
0

f5(s)ds

+z
t∫

t−r

f ′
1(x(s))y(s)ds− λ3ry

2 + λ3

t∫
t−r

y2(s)ds.

The assumption ā5 ≥ f ′
1(x) ≥ a5 > 0 and the estimate 2 |mn| ≤ m2 + n2 imply that

z
t∫

t−r

f ′
1(x(s))y(s)ds ≥ − |z|

t∫
t−r

f ′
1(x(s)) |y(s)| ds

≥ − 1
2

t∫
t−r

f ′
1(x(s)) (z

2(t) + y2(s))ds

≥ − 1
2 ā5rz

2 − 1
2 ā5

t∫
t−r

y2(s)ds,

f ′
1(x)y

2 ≥ a5y
2 ≥ 0,−f3(x, x(t− r), ..., u, u(t− r))z2 ≥ −a3z

2
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so that

d

dt
V1(xt, yt, zt, wt, ut) = (a5−λ3r)y

2+{−a3−2−1ā5r}z2+
(
λ3 −

1

2
ā5

) t∫
t−r

y2(s)ds.

Let λ3 = 1
2 ā5. Hence

d

dt
V1(xt, yt, zt, wt, ut) = (a5 − 2−1ā5r)y

2 + {−a3 − 2−1ā5r}z2 > 0

provided that r < 2min
{

a5

ā5
, − a3

ā5

}
, which verifies that V1 has the property (K2). The

remainder of the proof follows as before, Theorem 1.
Example 2. Consider nonlinear fifth order delay differential equation of the form

x(5) + 1
1+(x′′′)2x

(4) + x′′′ − {3 + exp(−x2 − x2(t− r)− ...− u2 − u2(t− r))}x′′

+x′(t)− x(t− r)− 4arctgx(t− r) = 0.
(9)

We write Eq. (9) in system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,

u′ = − u
1+w2 − w + {3 + exp(−x2 − ...− u2(t− r)}z

−y + x+ 4arctgx

−
t∫

t−r

y(s)ds− 4
t∫

t−r

1
1+x2(s)y(s)ds.

It follows that Eq. (9) is special case of Eq. (6) and

f5(w) =
1

1 + w2
≥ 0,

f4(z) = 1,

f3(x, ..., u(t− r)) = −3− exp{−x2 − ...− u2(t− r)} ≤ −3 = a3,

f2(y) = y, f2(0) = 0,

f1(x) = x+ 4arctgx,−π

2
< x <

π

2
, f ′

1(x) = 1 +
4

1 + x2

and

ā5 = 5 ≥ 1 +
4

1 + x2
≥ 1 = a5.

In view of the above estimates, we conclude that all the assumptions of Theorem 2 hold.
Hence, we conclude that the zero solution, x = 0, of Eq. (9) is unstable provided that
r < 2

5 .
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