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Abstract: In this paper, the local fractional variational iteratioretimod (LFVIM) is employed to obtain approximate analytical
solution to system of linear/nonlinear coupled partiafedi#ntial equations within local fractional operator. LIW/yields solutions

in convergent series forms with easily computable termsie@aly, the closed form of the exact solution or its expanss obtained
without any noise terms. Test examples demonstrate théeeific of local fractional variational iteration method.
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1 Introduction follows. In Section 2, we give analysis of the local
fractional variational iteration method. In Section 3, we

There are many analytical and numerical methods used teaonsider some illustrative examples. Finally, in Section 4

solve local fractional partial differential equations Buc we present our conclusions.

as, local fractional function decomposition methag?],

local fractional Adomian decomposition methog, 3],

local fractional series expansion method,5], local 2 | ocal Fractional Variational |teration

fractional Laplace transform method6,¥], local

fractional Fourier series method][ local fractional Method (LFVIM)

Laplace decomposition metho®, 0], local fractional

Laplace variational iteration methodl1,12,13], and

another methods.

The local fractional variational iteration method was
applied to solve the partial differential equations agsin
in mathematical physics, for example, Laplace equation ! , , . i
[2], wave and diffusion equationd4,15], Fokker Plank Lati(x ) +R(U) +N(U) =gi(x )1 =1,2,....n, (1)
equation 6], heat conduction problentf, 18], damped \uith the initial conditions
wave and dissipative wave equationsd] Helmholtz

In order to illustrate variational iteration method, we
investigate systems of local fractional partial diffeiaht
equations as follows:

equation p0], Poisson equation2[l], and also it used to ui(x,0) = fi(x), )
solve integro-differential equation23]. In this paper, our

aim is to present the local fractional variational iteratio a7
method, and to used it to solve the system of coupledVNere U = [Ui(xt),uz(X,t),....un(X,)], La = ot

partial differential equations within local fractional denotes linear local fractional derivative operator ofesrd
derivative operators. The structure of the paper is asx, R denote remaining linear local fractional derivative
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operatorsN; denote nonlinear local fractional derivative Examplel.Let us consider the system of linear coupled

operators and(x,t) is a source term of nondifferentiable
functions.

According to the rule of local fractional variational
iteration method 18,19 , the correction local fractional
functional for (1) can be set in the form:

Ui(my1)(t) = Uim(t) + ®3)

ril+a)

where U = [Tm, Uam, - - -, Onm), are fractal

partial differential equations involving local fractidna
operator:

Lagrange multipliers, and the local fractional operator be

defined as

b

109 = g /) fO@)°
1 N—-1

ZO f(tj)(At).

J:

= ——— lim
I‘(1+a) At—0

with the partition of the intervala,b] is denoted as
(tj,tj+1),j = 0,..,N —1tp = a and ty = b with
Atj =tj1 —tj and At = max{ Atg, Aty, ... }.

Making the local fractional variation oBf, we have

8% Uims 1) (t) = 8%Uim(t) +o 1" (4)

8 (g [Lotim(E) + RGO + NG - 0] )

The extremum condition af,11(X,t) is given by
8% Uj(my1) (%,t) = 0. (5)

From @) and 6), we have the following stationary
conditions

Ai(8)C B Ai(8)9 (a) B
e 0 Faa) e O
This in turn gives
Ai(€)Y
rara ")
so that iteration is expressed as
Ui(m+1) (1) = Uim(t) + (8)
ol [Latim(&) + Ri(Um) + N (Um) — Gi(&)].
Finally, we obtain the solution ofif as follows:
Ui(x,t) = lim uim(x,t) 9)

3 Applications

To illustrate local fractional variational iteration meth
for system of local fractional coupled partial differemtia
equations we take three examples in this section.

d%u(x,t) = d%v(x,t) B
Jia ENG —u(xt) —v(xt) =0,
d%v(x,t)  d%u(x,t) B
Jia o v(X,t) —u(x,t) =0, (10)
with initial conditions
u(x,0) = sinhy (x),
V(x,0) = coshy (x%). (11)

According to local fractional variational iteration metho
formula @) for (10) can be expressed in the following
form:

o (a) dGUm 0an
Um+1(X,t) — Um_o It |:0t—0 0x0 - Um_Vm 5
o (g) 0an 0GUm
Vmt1(X,t) = Vm—olt [at—a+a7—vm—um (12)

Suppose that an initial approximation has the following
form which satisfies the initial condition:

Up(X,t) = sinhy (X¥),

Vo(X,t) = coshy (x%). (13)

Now by iteration formula12) , we obtain the following
approximations:

() = toixt) o) | T2 + 508~ vo o
wmwzwmwwWﬂ%? %%—w—ﬂ
H a 1 t a a
= sinhy (X )+7F(1+a)/o [coshy (x7)] (dT)
a 1 t H a a
= coshy () + gy 1 SR 0] (@)
= sinhy (x%) + Fita) coshy (x%),
a ta H a
= coshy (X )+msmh,(x ),
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. (a) (9O{U1 d“vl .
(X, t) = ur(x,t) —oly [m—“ + FVa Ui —Vvq form:
(a) d“vl (9O{U1
Vo(X,t) = va(X,t) —1 1y {— + Vi — U 1
ta a t) = t) - ————
i oX Um+1(X, ) Um(X, ) I'(1—|—a) X
= sinhy (X)) + ——— coshy (x* t[ga 2a a a
h7( ) r(1+a) h:(( ) / a li{m a zlim—zuma lim _ a [uﬁ;vm]:| (dr)a’
1 1 @ 0|01 ox ox ox
+ / [ coshy (x* ] dr)“ 1
rl+a)lo ;(1+ a) (%) | () Vme1(X,t) = Vm(X,t) — m X a7)
— a _ - qj a t [ Hd 2a o o
cosO) g Sl [ [rin Zoin 2o 0% g
1 1 L@ o |01 ox ox ox
sinhy (x¥) | (d1)?
e | e s @)
_ a Suppose that an initial approximation has the following
= sinhy (x*) + —=——— coshy (x?) form which satisfies the initial condition:
ril+a)
20
H a
+I’(1+20{) sinfu (<), Uo(X,t) = cosy (x¥),
a Vo(X,t) = cosgy (X7). (18)
_ a H a
= coshy (X )+7F(1+a) sinhy (x%)
2a Now by iteration formula 17), we obtain the following
a [l
+I'(1+ 2a) coshy (x7), approximations

and so on for other components. The series solutions are

i 1
therefore given by U (%,t) = Uo(x,t) — »
o 4a r1+a)
u(x,t) = sinhy (x) [1+ + +- ] /‘ 9%  0%up , 9%  3%[ugvol o
ril+2a) I (1+4a) o | ata T o 2ug oxa Ix@ (d1)
a ta t3d 1
cosh (x ){I‘(1+a) =N '}’ Vl(x’t):VO(X’t)_7F(1+a) X
t20 4o t [ Ha 2a a a
v(x,t) = coshy (x%) |1+ + e 9%vo  9%'Vo 9%vo 9% [uovol
0k0) = cos () | L+ s+ g [ 5o+ S - 205 - 0 e
iy () | g+ = +] 1 [ os (@) (d0)°
Fire Traren T =K g f, sl @)
, - . 1 t
and finally in its closed form gives _ a / N (d7)?
CO%y (X )+I'(1+a) A [cosy (x)] (dT)
u(x,t) = sinhy (x9 +t%), ta
a
V(x,t) = coshy (x* +1%). (14) = cog(X7) [1+m )
a
Example 2.Consider the following system of coupled = cog,(x*) [1+t7 7
Burger’s equations with local fractional derivati2g[: ri+a)
9% 9%%u 0% 9%
ota  gx2a oxa  ogxa 7
% 9%v _ 9% 99wy 1
g7 B Vi - 1 — _
PTG M v MR (19 Wl t) = W) = =y >
subject to the initial conditions /t (0% 0%%up U 9% 9%uvq]
a o | dT9 = oIx2 L oxa axa
u(x,0) = cos (x7), - 1
V(x,0) = cosy (X¥). (1e)  Va(xt) =vi(xt)— F(it+a) X
According to local fractional variational iteration metho t[9%y %%y o 0% 09uvy)
formula @) for (15 can be expressed in the following /0 ot " gxa  “Vgxa T T axa
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tC{
_ a - a .
= CO% (X )+l'(1+a) Co% (X7) form: .
1 trr¢ ] Uni1(X,t) = Um(X,t) — =——— x
T cos: (x%) | (d1)° 1% m
r(1+a)/o Ty ey e[ (@D } Fita)
@ /‘ 0%m  0%Vm 0%Wn 1| @nye
_ a a - - ’
= CO% (X )+l'(1+a) cog (x7) o | 019 oxa  gy“ -
1 trotf ] Vm1(X,t) = V(X t) — =——— x (22)
+ cog, (x9) | (d1)@ ML mEY T ra
r(1+a)/o Ty ey e[ (@D . o s
= ay 11 a a a :
cos (x") JrI'(1+a)+l'(1+a) olot oxt 9y .
ta tao W1 (X, 1) = wim(X,t) — _ X
:COS;((XG)[1+ + r(l+a)
rl+a) r(l+a a a a
/t 17} Wm+[9 Umd Vm_5 (d_l_)a
ara axa  gya '
Um(X,t) = COS (X Suppose that an initial approximation has the following
% r 1+ ka)’ form which satisfies the initial condition:
x4 2y®
Un(X,t) = cO% (X Z)r 1+ka Uo(xy:t) = Frita) Fdt+a)
. . . vyt = =Y (23)
Therefore, the series solutions can be written in the form: Vo(X,Y,1) = Fil+a) Ti+a)
ta tZG x4 ZyC{
t) = ay 11 Wo(X,Y,t) = — + .
Hixt) = cosa(x )[ TTara) Tatan " } 0N = A
t? t20 Now by iteration formula 22), we obtain the following
t) = ay 11 ) . !
u(x,t) = cogy (x") [ + rl+a) + r(1+2a) + } ’ approximations
) o . 1
and finally in its closed form gives t) = - — —
Ul(X, ) Uo(X ) r(1+a) X
u(x,t) = Eq (t%) cosy (x), /t (0% 0%Vvo 0°Wo 1' (dr)®
ux,t) = Eq (t%) cos (x), (19) 0| dta 9xa gy | ’

1
Example 3.Consider the system of nonlinear coupled vl(x,t):vo(x,t)—mx

partial differential equations with local fractional

operators: '[9%0 990U ] (d7)°.
0| 019  Jx% oJy“
0% 9% dw 1 1
dt—o’_WW =1, Wl(x,t):wo(x,t)—m X
0% 0°wd%u t19%p 0% 0% |
ot 9xa gyT = 20 /o ot? N oxa gyd —5](d*.
0%w 9% ad% 0 a
-t = 5’ _ X 2y / a
ata  gxa gy rita) + Fita) + Fa<a) Jo 3(dr)
with the initial conditions ¥ __» 1 /‘3 o)
@ 2y ri+a) r(l4a) rl+a
U(X7y7 0) = + ’ _ Xa 2ya 1 /t a
r(ij“) r(;;;“) S TTara) rata)  rasa) b @Y
V(Xa Y, O) = - ) (21) X7 Zya 3t
r ra =
( +X‘;') ( ;‘;} FA+a) Tta) T(A+a)
W(Xa Y, O) = + ) _ X7 _ ZyC{ 3t
Fi+a) T+a) T FAta) TAta) Fdta)
According to local fractional variational iteration metho xd 2y9 3t
formula @) for (20) can be expressed in the following — T r(l+a) + ri+a) + rl+a)’
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1
Uz(X,t) = U1 (xt) — Fi+a) X
t _0GU1 0GV1 0C{W1 | a
/o @ aa oy @0
1
Va(Xt) = va(x,t) — fita) X
t 'd"vl d“wl d"ul | a
/o | 919 Ox@ gy@ _5_ (dr)”.
1
W (X, t) = wi(Xt) — Fi+a) X
t 0GW1 0GU1 0C{V1 a
/()[dra+0x0’ S 5| (@0
o a a
_ X n 2y n 3t ’
ri+a) r(l1+a) r(l+a)
B XG B ZyC{ + 3tC{
Fl+a) Fl+a) rl+a)
a a
X n 2y n 3t ’
Fri+a) rl+a) rld+a
x4 2y9 3t
Un$ YY) = Firay Y rare) T Fara)
x4 2y7 3t
YY) = Far e T Fara)  TaTa)
X0 2y 3t
WYY = e T e T Fara)
Therefore, the series solutions can be written in the form
xa 2y? 3t
WYY = Far e Tt e) T Fara)
XA 2y 3t
VoY) = rl+a) r(1+a) + ri+a)’ (24)
B X0 2y 3ta
WX yt) = _I'(1+a)+l'(1+a)+l'(1+a)’

4 Conclusions

The local fractional variational iteration method is a
powerful method which is able to handle linear/nonlinear
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