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Abstract: In this paper, the local fractional variational iteration method (LFVIM) is employed to obtain approximate analytical
solution to system of linear/nonlinear coupled partial differential equations within local fractional operator. LFVIM yields solutions
in convergent series forms with easily computable terms. Generally, the closed form of the exact solution or its expansion is obtained
without any noise terms. Test examples demonstrate the efficiency of local fractional variational iteration method.
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1 Introduction

There are many analytical and numerical methods used to
solve local fractional partial differential equations such
as, local fractional function decomposition method [1,2],
local fractional Adomian decomposition method [2,3],
local fractional series expansion method [4,5], local
fractional Laplace transform method [6,7], local
fractional Fourier series method [8], local fractional
Laplace decomposition method [9,10], local fractional
Laplace variational iteration method [11,12,13], and
another methods.

The local fractional variational iteration method was
applied to solve the partial differential equations arising
in mathematical physics, for example, Laplace equation
[2], wave and diffusion equations [14,15], Fokker Plank
equation [16], heat conduction problem [17,18], damped
wave and dissipative wave equations [19], Helmholtz
equation [20], Poisson equation [21], and also it used to
solve integro-differential equations [22]. In this paper, our
aim is to present the local fractional variational iteration
method, and to used it to solve the system of coupled
partial differential equations within local fractional
derivative operators. The structure of the paper is as

follows. In Section 2, we give analysis of the local
fractional variational iteration method. In Section 3, we
consider some illustrative examples. Finally, in Section 4,
we present our conclusions.

2 Local Fractional Variational Iteration
Method (LFVIM)

In order to illustrate variational iteration method, we
investigate systems of local fractional partial differential
equations as follows:

Lα ui(x, t)+Ri(U)+Ni(U) = gi(x, t), i = 1,2, . . . ,n, (1)

with the initial conditions

ui(x,0) = fi(x), (2)

where U = [u1(x, t),u2(x, t), . . . ,un(x, t)] , Lα =
∂ α

∂ tα
denotes linear local fractional derivative operator of order
α, Ri denote remaining linear local fractional derivative
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operators,Ni denote nonlinear local fractional derivative
operators andgi(x, t) is a source term of nondifferentiable
functions.

According to the rule of local fractional variational
iteration method [18,19] , the correction local fractional
functional for (1) can be set in the form:

ui(m+1)(t) = uim(t)+ (3)

0I(α)
t

(
λi(ξ )α

Γ (1+α)

[
Lα uim(ξ )+Ri(Ũm)+Ni(Ũm)−gi(ξ )

])
,

where Ũm = [ũ1m, ũ2m, . . . , ũnm],
λi(ξ )α

Γ (1+α)
are fractal

Lagrange multipliers, and the local fractional operator be
defined as

aI(α)
b f (x) =

1
Γ (1+α)

∫ b

a
f (t)(dt)α

=
1

Γ (1+α)
lim

△t−→0

N−1

∑
j=0

f (t j)(△t j)
α
.

with the partition of the interval[a,b] is denoted as
(t j, t j+1), j = 0, ...,N − 1, t0 = a and tN = b with
△t j = t j+1− t j and△t = max{△t0,△t1, . . .}.

Making the local fractional variation of (3), we have

δ α ui(m+1)(t) = δ α uim(t)+0 I(α)
t (4)

δ α
(

λi(ξ )α

Γ (1+α)

[
Lα uim(ξ )+Ri(Ũm)+Ni(Ũm)− gi(ξ )

])
,

The extremum condition ofun+1(x, t) is given by

δ α ui(m+1)(x, t) = 0. (5)

From (4) and (5), we have the following stationary
conditions

1+
λi(ξ )α

Γ (1+α
|ξ=t= 0,

[
λi(ξ )α

Γ (1+α

](α)

|ξ=t= 0. (6)

This in turn gives

λi(ξ )α

Γ (1+α
=−1. (7)

so that iteration is expressed as

ui(m+1)(t) = uim(t)+ (8)

0I(α)
t [Lα uim(ξ )+Ri(Um)+Ni(Um)− gi(ξ )] ,

Finally, we obtain the solution of (1) as follows:

ui(x, t) = lim
m→∞

uim(x, t) (9)

3 Applications

To illustrate local fractional variational iteration method
for system of local fractional coupled partial differential
equations we take three examples in this section.

Example 1.Let us consider the system of linear coupled
partial differential equations involving local fractional
operator:

∂ α u(x, t)
∂ tα +

∂ α v(x, t)
∂xα − u(x, t)− v(x, t) = 0,

∂ α v(x, t)
∂ tα +

∂ α u(x, t)
∂xα − v(x, t)− u(x, t) = 0, (10)

with initial conditions

u(x,0) = sinhα(x
α),

v(x,0) = coshα(xα ). (11)

According to local fractional variational iteration method,
formula (8) for (10) can be expressed in the following
form:

um+1(x, t) = um −0 I(α)
t

[
∂ α um

∂ tα +
∂ α vm

∂xα − um− vm

]
,

vm+1(x, t) = vm −0 I(α)
t

[
∂ α vm

∂ tα +
∂ α um

∂xα − vm− um

]
.(12)

Suppose that an initial approximation has the following
form which satisfies the initial condition:

u0(x, t) = sinhα(x
α),

v0(x, t) = coshα(x
α ). (13)

Now by iteration formula (12) , we obtain the following
approximations:

u1(x, t) = u0(x, t)−0 I(α)
t

[
∂ α u0

∂ tα +
∂ α v0

∂xα − u0− v0

]

v1(x, t) = v0(x, t)−0 I(α)
t

[
∂ α v0

∂ tα +
∂ α u0

∂xα − v0− u0

]

= sinhα(x
α )+

1
Γ (1+α)

∫ t

0
[coshα(xα)] (dτ)α

= coshα(xα)+
1

Γ (1+α)

∫ t

0
[sinhα(x

α)] (dτ)α

= sinhα(x
α )+

tα

Γ (1+α)
coshα(xα),

= coshα(x
α)+

tα

Γ (1+α)
sinhα(x

α),
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u2(x, t) = u1(x, t)−0 I(α)
t

[
∂ α u1

∂ tα +
∂ α v1

∂xα − u1− v1

]

v2(x, t) = v1(x, t)−1 I(α)
t

[
∂ α v1

∂ tα +
∂ α u1

∂xα − v1− u1

]

= sinhα(x
α )+

tα

Γ (1+α)
coshα(xα)

+
1

Γ (1+α)

∫ t

0

[
τα

Γ (1+α)
coshα(xα)

]
(dτ)α

= coshα(xα )+
tα

Γ (1+α)
sinhα(x

α)

+
1

Γ (1+α)

∫ t

0

[
τα

Γ (1+α)
sinhα(x

α)

]
(dτ)α

= sinhα(x
α )+

tα

Γ (1+α)
coshα(xα)

+
t2α

Γ (1+2α)
sinhα(x

α),

= coshα(xα )+
tα

Γ (1+α)
sinhα(x

α)

+
t2α

Γ (1+2α)
coshα(xα),

and so on for other components. The series solutions are
therefore given by

u(x, t) = sinhα(x
α)

[
1+

t2α

Γ (1+2α)
+

t4α

Γ (1+4α)
+ · · ·

]

+coshα(xα)

[
tα

Γ (1+α)
+

t3α

Γ (1+3α)
+ · · ·

]
,

v(x, t) = coshα(x
α )

[
1+

t2α

Γ (1+2α)
+

t4α

Γ (1+4α)
+ · · ·

]

+sinhα(x
α )

[
tα

Γ (1+α)
+

t3α

Γ (1+3α)
+ · · ·

]
,

and finally in its closed form gives

u(x, t) = sinhα(x
α + tα),

v(x, t) = coshα(xα + tα). (14)

Example 2.Consider the following system of coupled
Burger’s equations with local fractional derivative [23]:

∂ α u
∂ tα +

∂ 2α u
∂x2α −2u

∂ αu
∂xα −

∂ α [uv]
∂xα = 0,

∂ α v
∂ tα +

∂ 2α v
∂x2α −2v

∂ αv
∂xα −

∂ α [uv]
∂xα = 0, (15)

subject to the initial conditions

u(x,0) = cosα(x
α),

v(x,0) = cosα(xα). (16)

According to local fractional variational iteration method,
formula (8) for (15) can be expressed in the following

form:

um+1(x, t) = um(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α um

∂τα +
∂ 2α um

∂x2α −2um
∂ α um

∂xα −
∂ α [umvm]

∂xα

]
(dτ)α

,

vm+1(x, t) = vm(x, t)−
1

Γ (1+α)
× (17)

∫ t

0

[
∂ α vm

∂τα +
∂ 2α vm

∂x2α −2vm
∂ α vm

∂xα −
∂ α [umvm]

∂xα

]
(dτ)α

.

Suppose that an initial approximation has the following
form which satisfies the initial condition:

u0(x, t) = cosα(xα ),

v0(x, t) = cosα(xα). (18)

Now by iteration formula (17), we obtain the following
approximations

u1(x, t) = u0(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α u0

∂τα +
∂ 2α u0

∂x2α −2u0
∂ α u0

∂xα −
∂ α [u0v0]

∂xα

]
(dτ)α

v1(x, t) = v0(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α v0

∂τα +
∂ 2α v0

∂x2α −2v0
∂ α v0

∂xα −
∂ α [u0v0]

∂xα

]
(dτ)α

= cosα(xα)+
1

Γ (1+α)

∫ t

0
[cosα(xα)] (dτ)α

= cosα(x
α)+

1
Γ (1+α)

∫ t

0
[cosα(x

α)] (dτ)α

= cosα(xα)

[
1+

tα

Γ (1+α)

]
,

= cosα(xα)

[
1+

tα

Γ (1+α)

]
,

u2(x, t) = u1(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α u1

∂τα +
∂ 2α u1

∂x2α −2u1
∂ α u1

∂xα −
∂ α [u1v1]

∂xα

]

v2(x, t) = v1(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α v1

∂τα +
∂ 2α v1

∂x2α −2v1
∂ α v1

∂xα −
∂ α [u1v1]

∂xα

]

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


48 H. Jafari, H. K. Jassim: Application of LFVIM to solve systemof coupled...

= cosα(xα )+
tα

Γ (1+α)
cosα (xα)

+
1

Γ (1+α)

∫ t

0

[
τα

Γ (1+α)
cosα(xα)

]
(dτ)α

= cosα(xα )+
tα

Γ (1+α)
cosα (xα)

+
1

Γ (1+α)

∫ t

0

[
τα

Γ (1+α)
cosα(xα)

]
(dτ)α

= cosα(x
α )

[
1+

tα

Γ (1+α)
+

tα

Γ (1+α)

]
,

= cosα(xα )

[
1+

tα

Γ (1+α)
+

tα

Γ (1+α)

]
,

...

um(x, t) = cosα(xα )
m

∑
k=0

tkα

Γ (1+ kα)
,

um(x, t) = cosα(xα )
m

∑
k=0

tkα

Γ (1+ kα)
,

Therefore, the series solutions can be written in the form:

u(x, t) = cosα(xα)

[
1+

tα

Γ (1+α)
+

t2α

Γ (1+2α)
+ · · ·

]
,

u(x, t) = cosα(x
α)

[
1+

tα

Γ (1+α)
+

t2α

Γ (1+2α)
+ · · ·

]
,

and finally in its closed form gives

u(x, t) = Eα(t
α)cosα(xα),

u(x, t) = Eα(t
α)cosα(x

α), (19)

Example 3.Consider the system of nonlinear coupled
partial differential equations with local fractional
operators:

∂ α u
∂ tα −

∂ α v
∂xα

∂ α w
∂yα = 1,

∂ α v
∂ tα −

∂ α w
∂xα

∂ α u
∂yα = 5, (20)

∂ α w
∂ tα +

∂ α u
∂xα

∂ α v
∂yα = 5,

with the initial conditions

u(x,y,0) =
xα

Γ (1+α)
+

2yα

Γ (1+α)
,

v(x,y,0) =
xα

Γ (1+α)
−

2yα

Γ (1+α)
, (21)

w(x,y,0) =−
xα

Γ (1+α)
+

2yα

Γ (1+α)
,

According to local fractional variational iteration method,
formula (8) for (20) can be expressed in the following

form:

um+1(x, t) = um(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α um

∂τα −
∂ α vm

∂xα
∂ α wm

∂yα −1

]
(dτ)α

,

vm+1(x, t) = vm(x, t)−
1

Γ (1+α)
× (22)

∫ t

0

[
∂ α vm

∂τα −
∂ α wm

∂xα
∂ α um

∂yα −5

]
(dτ)α

.

wm+1(x, t) = wm(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α wm

∂τα +
∂ α um

∂xα
∂ α vm

∂yα −5

]
(dτ)α

.

Suppose that an initial approximation has the following
form which satisfies the initial condition:

u0(x,y, t) =
xα

Γ (1+α)
+

2yα

Γ (1+α)
,

v0(x,y, t) =
xα

Γ (1+α)
−

2yα

Γ (1+α)
, (23)

w0(x,y, t) =−
xα

Γ (1+α)
+

2yα

Γ (1+α)
.

Now by iteration formula (22), we obtain the following
approximations

u1(x, t) = u0(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α u0

∂τα −
∂ α v0

∂xα
∂ α w0

∂yα −1

]
(dτ)α

,

v1(x, t) = v0(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α v0

∂τα −
∂ α w0

∂xα
∂ α u0

∂yα −5

]
(dτ)α

.

w1(x, t) = w0(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α w0

∂τα +
∂ α u0

∂xα
∂ α v0

∂yα −5

]
(dτ)α

.

=
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

1
Γ (1+α)

∫ t

0
3(dτ)α

=
xα

Γ (1+α)
−

2yα

Γ (1+α)
+

1
Γ (1+α)

∫ t

0
3(dτ)α

= −
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

1
Γ (1+α)

∫ t

0
3(dτ)α

=
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

=
xα

Γ (1+α)
−

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

= −
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,
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u2(x, t) = u1(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α u1

∂τα −
∂ α v1

∂xα
∂ α w1

∂yα −1

]
(dτ)α

,

v2(x, t) = v1(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α v1

∂τα −
∂ α w1

∂xα
∂ α u1

∂yα −5

]
(dτ)α

.

w2(x, t) = w1(x, t)−
1

Γ (1+α)
×

∫ t

0

[
∂ α w1

∂τα +
∂ α u1

∂xα
∂ α v1

∂yα −5

]
(dτ)α

.

=
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

=
xα

Γ (1+α)
−

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

= −
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

...

um(x,y, t) =
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

vm(x,y, t) =
xα

Γ (1+α)
−

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

wm(x,y, t) = −
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

Therefore, the series solutions can be written in the form

u(x,y, t) =
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

v(x,y, t) =
xα

Γ (1+α)
−

2yα

Γ (1+α)
+

3tα

Γ (1+α)
, (24)

w(x,y, t) = −
xα

Γ (1+α)
+

2yα

Γ (1+α)
+

3tα

Γ (1+α)
,

4 Conclusions

The local fractional variational iteration method is a
powerful method which is able to handle linear/nonlinear
local fractional differential equations. The method has
been applied to system of local fractional coupled partial
differential equations in order to find its approximate
analytical solutions. The results show that the applied
method is suitable and inexpensive for obtaining the
approximate solutions.
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