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Abstract: In this paper, sufficient conditions are established for the oscillatory and asymptotic behavior of higher–order half–linear
delay difference equation of the form

∆(pn(∆m−1(xn + qnxτn))α) + rnxβ
σn

= 0, n ≥ n0,

where it is assumed that
∑∞

s=n0
1/p

1/α
s < ∞. The main theorem improves some existing results in the literature. An example is

provided to demonstrate the effectiveness of the main result.
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1. Introduction

Due to its numerous applications in fields such as eco-
nomics and mathematical biology, the oscillation theory of
difference equations has been receiving intensive attention
in the last few decades; we refer the reader to the mono-
graphs [1–3] and the references cited therein. In particular,
the study of oscillatory and asymptotic behavior of sec-
ond and third order difference equations has occupied a
great part of interest among researchers [4–14]. Although
it is considered as natural generalization, higher–order dif-
ference equations has received considerably less attention
[15–20].

In view of the above quoted papers, one can conclude
that most of their results have investigated various forms
of the following difference equation

∆(pn(∆m−1(xn)α) + rnf(xσn) = 0, n ≥ n0, (1)

wherem ≥ 2 and under the assumptions

∞∑
s=n0

1

p
1/α
s

= ∞ and 4pn ≥ 0.

The purpose of this paper is to relax these conditions and
derive some oscillation and asymptotic criteria for higher–
order half–linear delay difference equation of the form

∆(pn(∆m−1(xn+qnxτn))α)+rnxβ
σn

= 0, n ≥ n0, (2)

where ∞∑
s=n0

1

p
1/α
s

< ∞ (3)

and without using that4pn ≥ 0

Throughout the paper, we assume thatα, β are the ratio
of odd positive integers,β ≤ α, pn > 0 for n ≥ n0, qn

is an oscillating sequence satisfyinglim
n→∞

qn = 0, rn > 0
with ∆rn > 0 for n ≥ n0, τn < n with τn → +∞
as n → +∞ andσn < n with σn → +∞ as n → +∞.

Let Z andR be the sets of integer and real numbers,
respectively. By a solution of equation (2), we mean a non-
trivial sequencexn : Z → R which is defined for all
n ≥ min

i≥0
{τi, σi} and satisfies equation (2) for sufficiently

largen. We restrict our attention to those solutions of (2)
which satisfysup{|xn| : n ≥ N} for all N ≥ Nx. For our
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purpose, we assume that equation (2) possesses such a so-
lution. A solution of (2) is called oscillatory if it is neither
eventually positive nor negative and otherwise it is called
non–oscillatory.

2. Main results

To obtain our main results, we need the following lemmas.
The first of these is the discrete analog of the well–known
Kiguradze’s lemma.

Lemma 1.[1] Letxn be defined forn ≥ n0 ∈, andxn > 0
with∆mxn of constant sign forn ≥ n0 and not identically
zero. Then, there exists an integerk, 0 ≤ k ≤ m with
(m+k) odd for∆mxn ≤ 0 and (m+k) even for∆mxn ≥
0 such that

(i) k ≤ m − 1 implies(−1)m+i∆ixn > 0 for all n ≥
n0, k ≤ i ≤ m− 1,

(ii) k ≥ 1 implies ∆ixn > 0 for all large n ≥ n0,
1 ≤ i ≤ k − 1.

Lemma 2.[1] Let xn be defined forn ≥ n0, and xn >
0 with ∆mxn ≤ 0 for n ≥ n0 and not identically zero.
Then, there exists a large integern1 ≥ n0 such that

xn ≥ 1
(m− 1)!

(n− n1)m−1∆m−1x2m−k−1n, n ≥ n1,

wherek is defined as in Lemma 1. Further, ifxn is increas-
ing, then

xn ≥ 1
(m− 1)!

( n

2m−1

)m−1

∆m−1xn, n ≥ 2m−1n1.

For the sake of convenience, the functionz is defined
as

zn = xn + qnxτn . (4)

Theorem 1. Let m ≥ 2. Assume that (3) is satisfied.
Further, assume that the difference equation

∆yn + rn

(
σm−1

n

(m− 1)!p1/α
σn

)β

yβ/α
σn

= 0 (5)

is oscillatory. If

lim sup
n→∞

n−1∑
s=n0

[
Mβ−αrs

2(4−2m)βσ
β(m−2)
s

2
(
(m− 2)!

)β
δα
s +

∆δα
s

δα
s

]
= ∞

(6)
holds for every constantM > 0 whereδs :=

∑∞
s=n0

1

p
1/α
s

,

then every solution of equation (2) either oscillates or tends
to zero.

Proof. Assume, on the contrary, that equation (2) has a
bounded non–oscillatory solutionxn. Without loss of gen-
erality, we assume thatxn is eventually positive (the proof
is similar whenxn is eventually negative). That is,xn >

0, xτn > 0 andxσn > 0 for all n ≥ n1 ≥ n0. Further,
suppose thatxn does not tend to zero asn → ∞. By (2)
and (4), we have

∆(pn∆m−1zn)α = −rnxβ
σn
≤ 0, n ≥ n1. (7)

Sincexn is bounded and does not tend to zero asn →∞,
we have lim

n→∞
qnxτn

= 0. Then, we can find an2 ≥ n1

such thatzn = xn + qnxτn > 0 eventually andzn is also
bounded for sufficiently largen ≥ n2. In virtue of Lemma
1, it follows from equation (2) that there exist two possible
cases:

(i) zn > 0, ∆m−1zn > 0, ∆mzn < 0, and
∆(pn(∆m−1zn)α) < 0,

(ii) zn > 0, ∆m−2zn > 0, ∆m−1zn < 0, and
∆(pn(∆m−1zn)α) < 0 ,

for all n ≥ n2. Then there exists a large enoughn3 ≥ n2

so that

xn = zn − qnxτn ≥
1
2
zn > 0

for all n ≥ n3. We may find an4 ≥ n3 such that for
n ≥ n4 we have

xσn ≥
1
2
zσn > 0. (8)

In view of (7) and (8), we obtain

∆(pn∆m−1zn)α +
1
2
rnzβ

σn
≤ 0 (9)

for n ≥ n4.
Assume that case(i) holds. From Lemma 2, we have

yn ≥ 1

(m− 1)!p1/α
n

( n

2m−1

)m−1

(p1/α
n ∆m−1yn),

(10)
wheren ≥ n5 = 2m−1n4. Hence by (2), we see that
yn := pn(∆m−1yn)α is a positive solution of the differ-
ence inequality

∆yn + rn

(
σm−1

n

(m− 1)!p1/α
σn

)β

yβ/α
σn

≤ 0, n ≥ n5.

Therefore, by Lemma 5 of Section 2 in [15], the difference
equation

∆yn + rn

(
σm−1

n

(m− 1)!p1/α
σn

)β

yβ/α
σn

= 0

has an eventually positive solution forn ≥ n5. This con-
tradicts the fact that (5) is oscillatory.

Assume that case(ii) holds. Define the functionw by

wn :=
pn(∆m−1zn)α

(∆m−2zn)α
, n ≥ n1. (11)
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One can easily figure out thatwn < 0 for n ≥ n1. Taking
into consideration thatpn(∆m−1zn)α is decreasing, we
have

p1/α
s ∆m−1zs ≤ p1/α

n ∆m−1zn, s ≥ n ≥ n1.

Dividing the above inequality byp1/α
s and summing up

from n to l − 1, we obtain

∆m−2zl ≤ ∆m−2zn + p1/α
n ∆m−1zn

l−1∑
s=n

1

p
1/α
s

.

Letting l →∞, we have

0 ≤ ∆m−2zn + p1/α
n ∆m−1znδn,

which yields

−p
1/α
n ∆m−1zn

∆m−2zn
δn ≤ 1.

Thus, by (11) we obtain

−δα
nwn ≤ 1. (12)

In view of (11), we have

∆wn =
∆(pn(∆m−1zn)α)− pn(∆m−1zn)α∆(∆m−2zn)α

(∆m−2zn)α(∆m−2zn+1)α

=
∆(pn(∆m−1zn)α)

(∆m−2zn+1)α

− pn(∆m−1zn)α((∆m−2zn+1)α − (∆m−2zn)α)
(∆m−2zn)α(∆m−2zn+1)α

=
∆(pn(∆m−1zn)α)

(∆m−2zn+1)α

− pn(∆m−1zn)α

(∆m−2zn)α
+

pn(∆m−1zn)α(∆m−2zn)α

(∆m−2zn)α(∆m−2zn+1)α

≤ −1
2
rn

zβ
σn

(∆m−2zn+1)α
− wn

+ wn
(∆m−2zn)α

(∆m−2zn+1)α
. (13)

We observe that since∆m−1zn < 0, we deduce that∆m−2zn

is decreasing. Therefore∆m−2zn ≥ ∆m−2zn+1 > 0 and

wn
(∆m−2zn)α

(∆m−2zn+1)α ≤ wn for all n ≥ n1.
Hence, (13) becomes

∆wn ≤ −1
2
rn

zβ
σn

(∆m−2zn)α
.

On the other hand, by Lemma 2 we get

xn ≥ 1
(m− 2)!

nm−2

22m−4
∆m−2xn, n ≥ n2 = 2m−2n1.

Thus, we have

zσn
≥ 24−2m

(m− 2)!
σm−2

n ∆m−2zσn
,

for sufficiently largen ≥ n3 ≥ n2. Then, there exists a
constantM > 0 such that

∆wn ≤ −1
2
rn

(
24−2m

(m− 2)!
σm−2

n

)β (∆m−2zσn
)β

(∆m−2zn)α

≤ −1
2
rn

(
24−2m

(m− 2)!
σm−2

n

)β

Mβ−α, n ≥ n3.

Multiplying the above inequality byδα
n and summing up

from n3 to n− 1, we obtain

δα
nwn − δα

n3
wn3 −

n−1∑
s=n3

ws∆δα
s

+
n−1∑
s=n3

Mβ−αrs
2(4−2m)βσ

β(m−2)
s

2((m− 2)!)β
δα
s ≤ 0. (14)

From (14), we have

n−1∑
s=n3

(
Mβ−αrs

2(4−2m)βσ
β(m−2)
s

2
(
(m− 2)!

)β
δα
s +

∆δα
s

δα
s

)
≤ δα

n3
wn3+1.

By using (11) and the fact that∆δα
s < 0, we arrive at a

contradiction to (6). This completes the proof.

Corollary 1. Let m ≥ 2. Assume that (3) is satisfied.
Further, assume thatα = β. If

lim inf
n→∞

n−1∑
s=σn

rs
(σm−1

s )α

pσs

>

(
(m− 1)!

)α

e
(15)

and

lim sup
n→∞

n−1∑
s=n0

[
rs

2(4−2m)βσ
β(m−2)
s

2
(
(m− 2)!

)β
δα
s +

∆δα
s

δα
s

]
= ∞

(16)
hold, then every solution of equation (2) either oscillates
or tends to zero.

Corollary 2. Let m ≥ 2. Assume that (3) is satisfied.
Further, assume thatα > β, σn is a strictly increasing
sequence and

lim sup
n→∞

n−1∑
s=σn

rs
(τm−1

s )β

(pτs)
β
α

> 0.

If (6) holds for every constantM > 0, then every solution
of equation (2) either oscillates or tends to zero.

Remark. Let m = 3 andα = β, then equation (2) re-
duces to equation (1.1) studied in [14]. Letm be even num-
ber,pn = 1 andα = β = 1, then (2) reduces to equation
(1) studied in [20].
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Example 1. Consider the fourth order delay difference
equation

∆
(
en∆3(xn +

1
n

xn−2)
)
+(n+1)en−1xn−1 = 0, n ≥ 3,

(17)
wherem = 4, α = β = 1, pn = en, qn = 1

n , rn =
(n + 1)en−1, τn = n − 2, σn = n − 1 andn0 = 3.
Then, one can easily see that the assumptions on equation
(2) are satisfied. Moreover,

∑∞
s=3

1
es = 1

e2(e−1) and thus
condition (3) holds as well. It remains to check conditions
(15) and (16) of Corollary 1. We observe that

lim inf
n→∞

n−1∑
s=n−1

(s+1)es−1 (s− 1)3

es−1
= lim inf

n→∞
n(n−2)3 >

6
e

and

lim sup
n→∞

n−1∑
s=3

[ (s + 1)(s− 1)es−1

64e2(e− 1)
+

1− e

e

]
= ∞.

Therefore, every solution of equation (17) either oscillates
or tend to zero.

Concluding remark

In this paper, we have studied higher–order half–linear de-
lay difference equation of the form (2) by establishing new
sufficient conditions to show that every solution of this
equation either oscillates or tends to zero. To the best of
authors’ observation, most existing results in the literature
regarding second, third and higher order equations have
been obtained under the assumptions

∑∞
s=n0

1/p
1/α
s =

∞, 4pn ≥ 0 andα = β; see in particular [13,14,18,20].
In this paper, however, one can easily see that these as-
sumptions have been bypassed and new results have been
established. Therefore, the main theorem of this paper im-
proves some previously obtained results and thus presents
a new approach.
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