On the oscillation of higher-order half-linear delay difference equations

Yaşar Bolat ${ }^{1}$ and Jehad O. Alzabut ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Literatures, Kastamonu University, 37110- Kastamonu, Turkey
${ }^{2}$ Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia

Received: Jul 17, 2011; Revised Oct. 24, 2011; Accepted Oct. 16, 2011
Published online: 1 Sep. 2012

Abstract

In this paper, sufficient conditions are established for the oscillatory and asymptotic behavior of higher-order half-linear

 delay difference equation of the form$$
\Delta\left(p_{n}\left(\Delta^{m-1}\left(x_{n}+q_{n} x_{\tau_{n}}\right)\right)^{\alpha}\right)+r_{n} x_{\sigma_{n}}^{\beta}=0, n \geq n_{0}
$$

where it is assumed that $\sum_{s=n_{0}}^{\infty} 1 / p_{s}^{1 / \alpha}<\infty$. The main theorem improves some existing results in the literature. An example is provided to demonstrate the effectiveness of the main result.

Keywords: Oscillation; Delay difference equation; Higher-order half-linear difference equation.

1. Introduction

Due to its numerous applications in fields such as economics and mathematical biology, the oscillation theory of difference equations has been receiving intensive attention in the last few decades; we refer the reader to the monographs [1-3] and the references cited therein. In particular, the study of oscillatory and asymptotic behavior of second and third order difference equations has occupied a great part of interest among researchers [4-14]. Although it is considered as natural generalization, higher-order difference equations has received considerably less attention [15-20].

In view of the above quoted papers, one can conclude that most of their results have investigated various forms of the following difference equation

$$
\begin{equation*}
\Delta\left(p_{n}\left(\Delta^{m-1}\left(x_{n}\right)^{\alpha}\right)+r_{n} f\left(x_{\sigma_{n}}\right)=0, \quad n \geq n_{0}\right. \tag{1}
\end{equation*}
$$

where $m \geq 2$ and under the assumptions

$$
\sum_{s=n_{0}}^{\infty} \frac{1}{p_{s}^{1 / \alpha}}=\infty \text { and } \triangle p_{n} \geq 0
$$

[^0]purpose, we assume that equation (2) possesses such a solution. A solution of (2) is called oscillatory if it is neither eventually positive nor negative and otherwise it is called non-oscillatory.

2. Main results

To obtain our main results, we need the following lemmas. The first of these is the discrete analog of the well-known Kiguradze's lemma.

Lemma 1.[1] Let x_{n} be defined for $n \geq n_{0} \in$, and $x_{n}>0$ with $\Delta^{m} x_{n}$ of constant sign for $n \geq n_{0}$ and not identically zero. Then, there exists an integer $k, 0 \leq k \leq m$ with $(m+k)$ odd for $\Delta^{m} x_{n} \leq 0$ and $(m+k)$ even for $\Delta^{m} x_{n} \geq$ 0 such that
(i) $k \leq m-1$ implies $(-1)^{m+i} \Delta^{i} x_{n}>0$ for all $n \geq$ $n_{0}, k \leq i \leq m-1$,
(ii) $k \geq 1$ implies $\Delta^{i} x_{n}>0$ for all large $n \geq n_{0}$, $1 \leq i \leq k-1$.

Lemma 2.[1] Let x_{n} be defined for $n \geq n_{0}$, and $x_{n}>$ 0 with $\Delta^{m} x_{n} \leq 0$ for $n \geq n_{0}$ and not identically zero. Then, there exists a large integer $n_{1} \geq n_{0}$ such that

$$
x_{n} \geq \frac{1}{(m-1)!}\left(n-n_{1}\right)^{m-1} \Delta^{m-1} x_{2^{m-k-1} n}, \quad n \geq n_{1}
$$

where k is defined as in Lemma 1. Further, if x_{n} is increasing, then

$$
x_{n} \geq \frac{1}{(m-1)!}\left(\frac{n}{2^{m-1}}\right)^{m-1} \Delta^{m-1} x_{n}, \quad n \geq 2^{m-1} n_{1}
$$

For the sake of convenience, the function z is defined as

$$
\begin{equation*}
z_{n}=x_{n}+q_{n} x_{\tau_{n}} . \tag{4}
\end{equation*}
$$

Theorem 1. Let $m \geq 2$. Assume that (3) is satisfied. Further, assume that the difference equation

$$
\begin{equation*}
\Delta y_{n}+r_{n}\left(\frac{\sigma_{n}^{m-1}}{(m-1)!p_{\sigma_{n}}^{1 / \alpha}}\right)^{\beta} y_{\sigma_{n}}^{\beta / \alpha}=0 \tag{5}
\end{equation*}
$$

is oscillatory. If
$\limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}\left[M^{\beta-\alpha} r_{s} \frac{2^{(4-2 m) \beta} \sigma_{s}^{\beta(m-2)}}{2((m-2)!)^{\beta}} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right]=\infty$
holds for every constant $M>0$ where $\delta_{s}:=\sum_{s=n_{0}}^{\infty} \frac{1}{p_{s}^{1 / \alpha}}$, then every solution of equation (2) either oscillates or tends to zero.

Proof. Assume, on the contrary, that equation (2) has a bounded non-oscillatory solution x_{n}. Without loss of generality, we assume that x_{n} is eventually positive (the proof is similar when x_{n} is eventually negative). That is, $x_{n}>$
$0, x_{\tau_{n}}>0$ and $x_{\sigma_{n}}>0$ for all $n \geq n_{1} \geq n_{0}$. Further, suppose that x_{n} does not tend to zero as $n \rightarrow \infty$. By (2) and (4), we have

$$
\begin{equation*}
\Delta\left(p_{n} \Delta^{m-1} z_{n}\right)^{\alpha}=-r_{n} x_{\sigma_{n}}^{\beta} \leq 0, \quad n \geq n_{1} \tag{7}
\end{equation*}
$$

Since x_{n} is bounded and does not tend to zero as $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} q_{n} x_{\tau_{n}}=0$. Then, we can find a $n_{2} \geq n_{1}$ such that $z_{n}=x_{n}+q_{n} x_{\tau_{n}}>0$ eventually and z_{n} is also bounded for sufficiently large $n \geq n_{2}$. In virtue of Lemma 1 , it follows from equation (2) that there exist two possible cases:
(i) $z_{n}>0, \Delta^{m-1} z_{n}>0, \Delta^{m} z_{n}<0$, and $\Delta\left(p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\right)<0$,
(ii) $z_{n}>0, \Delta^{m-2} z_{n}>0, \Delta^{m-1} z_{n}<0$, and $\Delta\left(p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\right)<0$,
for all $n \geq n_{2}$. Then there exists a large enough $n_{3} \geq n_{2}$ so that

$$
x_{n}=z_{n}-q_{n} x_{\tau_{n}} \geq \frac{1}{2} z_{n}>0
$$

for all $n \geq n_{3}$. We may find a $n_{4} \geq n_{3}$ such that for $n \geq n_{4}$ we have

$$
\begin{equation*}
x_{\sigma_{n}} \geq \frac{1}{2} z_{\sigma_{n}}>0 \tag{8}
\end{equation*}
$$

In view of (7) and (8), we obtain

$$
\begin{equation*}
\Delta\left(p_{n} \Delta^{m-1} z_{n}\right)^{\alpha}+\frac{1}{2} r_{n} z_{\sigma_{n}}^{\beta} \leq 0 \tag{9}
\end{equation*}
$$

for $n \geq n_{4}$.
Assume that case (i) holds. From Lemma 2, we have

$$
\begin{equation*}
y_{n} \geq \frac{1}{(m-1)!p_{n}^{1 / \alpha}}\left(\frac{n}{2^{m-1}}\right)^{m-1}\left(p_{n}^{1 / \alpha} \Delta^{m-1} y_{n}\right) \tag{10}
\end{equation*}
$$

where $n \geq n_{5}=2^{m-1} n_{4}$. Hence by (2), we see that $y_{n}:=p_{n}\left(\Delta^{m-1} y_{n}\right)^{\alpha}$ is a positive solution of the difference inequality

$$
\Delta y_{n}+r_{n}\left(\frac{\sigma_{n}^{m-1}}{(m-1)!p_{\sigma_{n}}^{1 / \alpha}}\right)^{\beta} y_{\sigma_{n}}^{\beta / \alpha} \leq 0, n \geq n_{5}
$$

Therefore, by Lemma 5 of Section 2 in [15], the difference equation

$$
\Delta y_{n}+r_{n}\left(\frac{\sigma_{n}^{m-1}}{(m-1)!p_{\sigma_{n}}^{1 / \alpha}}\right)^{\beta} y_{\sigma_{n}}^{\beta / \alpha}=0
$$

has an eventually positive solution for $n \geq n_{5}$. This contradicts the fact that (5) is oscillatory.

Assume that case (ii) holds. Define the function w by

$$
\begin{equation*}
w_{n}:=\frac{p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}}, \quad n \geq n_{1} \tag{11}
\end{equation*}
$$

One can easily figure out that $w_{n}<0$ for $n \geq n_{1}$. Taking into consideration that $p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}$ is decreasing, we have

$$
p_{s}^{1 / \alpha} \Delta^{m-1} z_{s} \leq p_{n}^{1 / \alpha} \Delta^{m-1} z_{n}, \quad s \geq n \geq n_{1} .
$$

Dividing the above inequality by $p_{s}^{1 / \alpha}$ and summing up from n to $l-1$, we obtain

$$
\Delta^{m-2} z_{l} \leq \Delta^{m-2} z_{n}+p_{n}^{1 / \alpha} \Delta^{m-1} z_{n} \sum_{s=n}^{l-1} \frac{1}{p_{s}^{1 / \alpha}}
$$

Letting $l \rightarrow \infty$, we have

$$
0 \leq \Delta^{m-2} z_{n}+p_{n}^{1 / \alpha} \Delta^{m-1} z_{n} \delta_{n}
$$

which yields

$$
-\frac{p_{n}^{1 / \alpha} \Delta^{m-1} z_{n}}{\Delta^{m-2} z_{n}} \delta_{n} \leq 1
$$

Thus, by (11) we obtain

$$
\begin{equation*}
-\delta_{n}^{\alpha} w_{n} \leq 1 \tag{12}
\end{equation*}
$$

In view of (11), we have

$$
\begin{align*}
\Delta w_{n} & =\frac{\Delta\left(p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\right)-p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha} \Delta\left(\Delta^{m-2} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \\
& =\frac{\Delta\left(p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \\
& -\frac{p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\left(\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}-\left(\Delta^{m-2} z_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \\
& =\frac{\Delta\left(p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\right)}{\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \\
& -\frac{p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}}+\frac{p_{n}\left(\Delta^{m-1} z_{n}\right)^{\alpha}\left(\Delta^{m-2} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \\
& \leq-\frac{1}{2} r_{n} \frac{z_{\sigma_{n}}^{\beta}}{\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}}-w_{n} \\
& +w_{n} \frac{\left(\Delta^{m-2} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} . \tag{13}
\end{align*}
$$

We observe that since $\Delta^{m-1} z_{n}<0$, we deduce that $\Delta^{m-2} z_{n}$ is decreasing. Therefore $\Delta^{m-2} z_{n} \geq \Delta^{m-2} z_{n+1}>0$ and $w_{n} \frac{\left(\Delta^{m-2} z_{n}\right)^{\alpha}}{\left(\Delta^{m-2} z_{n+1}\right)^{\alpha}} \leq w_{n}$ for all $n \geq n_{1}$.

Hence, (13) becomes

$$
\Delta w_{n} \leq-\frac{1}{2} r_{n} \frac{z_{\sigma_{n}}^{\beta}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}}
$$

On the other hand, by Lemma 2 we get

$$
x_{n} \geq \frac{1}{(m-2)!} \frac{n^{m-2}}{2^{2 m-4}} \Delta^{m-2} x_{n}, n \geq n_{2}=2^{m-2} n_{1}
$$

Thus, we have

$$
z_{\sigma_{n}} \geq \frac{2^{4-2 m}}{(m-2)!} \sigma_{n}^{m-2} \Delta^{m-2} z_{\sigma_{n}}
$$

for sufficiently large $n \geq n_{3} \geq n_{2}$. Then, there exists a constant $M>0$ such that

$$
\begin{aligned}
\Delta w_{n} & \leq-\frac{1}{2} r_{n}\left(\frac{2^{4-2 m}}{(m-2)!} \sigma_{n}^{m-2}\right)^{\beta} \frac{\left(\Delta^{m-2} z_{\sigma_{n}}\right)^{\beta}}{\left(\Delta^{m-2} z_{n}\right)^{\alpha}} \\
& \leq-\frac{1}{2} r_{n}\left(\frac{2^{4-2 m}}{(m-2)!} \sigma_{n}^{m-2}\right)^{\beta} M^{\beta-\alpha}, n \geq n_{3}
\end{aligned}
$$

Multiplying the above inequality by δ_{n}^{α} and summing up from n_{3} to $n-1$, we obtain

$$
\begin{align*}
\delta_{n}^{\alpha} w_{n} & -\delta_{n_{3}}^{\alpha} w_{n_{3}}-\sum_{s=n_{3}}^{n-1} w_{s} \Delta \delta_{s}^{\alpha} \\
& +\sum_{s=n_{3}}^{n-1} M^{\beta-\alpha} r_{s} \frac{2^{(4-2 m) \beta} \sigma_{s}^{\beta(m-2)}}{2((m-2)!)^{\beta}} \delta_{s}^{\alpha} \leq 0 . \tag{14}
\end{align*}
$$

From (14), we have
$\sum_{s=n_{3}}^{n-1}\left(M^{\beta-\alpha} r_{s} \frac{2^{(4-2 m) \beta} \sigma_{s}^{\beta(m-2)}}{2((m-2)!)^{\beta}} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right) \leq \delta_{n_{3}}^{\alpha} w_{n_{3}}+1$.
By using (11) and the fact that $\Delta \delta_{s}^{\alpha}<0$, we arrive at a contradiction to (6). This completes the proof.
Corollary 1. Let $m \geq 2$. Assume that (3) is satisfied. Further, assume that $\alpha=\beta$. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{s=\sigma_{n}}^{n-1} r_{s} \frac{\left(\sigma_{s}^{m-1}\right)^{\alpha}}{p_{\sigma_{s}}}>\frac{((m-1)!)^{\alpha}}{e} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{s=n_{0}}^{n-1}\left[r_{s} \frac{2^{(4-2 m) \beta} \sigma_{s}^{\beta(m-2)}}{2((m-2)!)^{\beta}} \delta_{s}^{\alpha}+\frac{\Delta \delta_{s}^{\alpha}}{\delta_{s}^{\alpha}}\right]=\infty \tag{16}
\end{equation*}
$$

hold, then every solution of equation (2) either oscillates or tends to zero.

Corollary 2. Let $m \geq 2$. Assume that (3) is satisfied. Further, assume that $\alpha>\beta, \sigma_{n}$ is a strictly increasing sequence and

$$
\limsup _{n \rightarrow \infty} \sum_{s=\sigma_{n}}^{n-1} r_{s} \frac{\left(\tau_{s}^{m-1}\right)^{\beta}}{\left(p_{\tau_{s}}\right)^{\frac{\beta}{\alpha}}}>0
$$

If (6) holds for every constant $M>0$, then every solution of equation (2) either oscillates or tends to zero.

Remark. Let $m=3$ and $\alpha=\beta$, then equation (2) reduces to equation (1.1) studied in [14]. Let m be even number, $p_{n}=1$ and $\alpha=\beta=1$, then (2) reduces to equation (1) studied in [20].

Example 1. Consider the fourth order delay difference equation
$\Delta\left(e^{n} \Delta^{3}\left(x_{n}+\frac{1}{n} x_{n-2}\right)\right)+(n+1) e^{n-1} x_{n-1}=0, n \geq 3$,
where $m=4, \alpha=\beta=1, p_{n}=e^{n}, q_{n}=\frac{1}{n}, r_{n}=$ $(n+1) e^{n-1}, \tau_{n}=n-2, \sigma_{n}=n-1$ and $n_{0}=3$. Then, one can easily see that the assumptions on equation (2) are satisfied. Moreover, $\sum_{s=3}^{\infty} \frac{1}{e^{s}}=\frac{1}{e^{2}(e-1)}$ and thus condition (3) holds as well. It remains to check conditions (15) and (16) of Corollary 1. We observe that
$\liminf _{n \rightarrow \infty} \sum_{s=n-1}^{n-1}(s+1) e^{s-1} \frac{(s-1)^{3}}{e^{s-1}}=\liminf _{n \rightarrow \infty} n(n-2)^{3}>\frac{6}{e}$
and

$$
\limsup _{n \rightarrow \infty} \sum_{s=3}^{n-1}\left[\frac{(s+1)(s-1) e^{s-1}}{64 e^{2}(e-1)}+\frac{1-e}{e}\right]=\infty
$$

Therefore, every solution of equation (17) either oscillates or tend to zero.

Concluding remark

In this paper, we have studied higher-order half-linear delay difference equation of the form (2) by establishing new sufficient conditions to show that every solution of this equation either oscillates or tends to zero. To the best of authors' observation, most existing results in the literature regarding second, third and higher order equations have been obtained under the assumptions $\sum_{s=n_{0}}^{\infty} 1 / p_{s}^{1 / \alpha}=$ $\infty, \Delta p_{n} \geq 0$ and $\alpha=\beta$; see in particular $[13,14,18,20]$. In this paper, however, one can easily see that these assumptions have been bypassed and new results have been established. Therefore, the main theorem of this paper improves some previously obtained results and thus presents a new approach.

References

[1] R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, (Kluwer, Dordrecht, 1997).
[2] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, (Marcel Dekker, New York, 2000).
[3] S. Elayadi, An Introduction to Difference Equations, Third Edition, (Springer, New York, 2005).
[4] J. W. Hooker, M. K. Kwong, W. T. Patula, Oscillatory second order linear difference equations, SIAM J. Math. Anal. 18 (1987), 54-63.
[5] P. Rehak, Oscillatory criteria for second order half-linear difference equations, J. Differ. Equations Appl. 7 (2001), 483-505.
[6] X. Li, D. Zhu New results for the asymptotic behavior of a nonlinear second-order difference equation, Appl. Math. Lett. 16 (5) (2003), 627-633.
[7] R. P. Agarwal, S. R. Grace, D. ORegan, On the oscillation of certain second order difference equations, J. Differ. Equations Appl. 9 (2003), 109-119.
[8] H. A. El-Morshedy, S. R. Grace, Comparison theorems for second order nonlinear difference equations, J. Math. Anal. Appl. 306 (2005), 106-121.
[9] B. Smith, Linear third-order difference equations: Oscillatory and asymptotic behavior, Rocky Mountain J. Math. 22 (1992), 1559-1564.
[10] R. P. Agarwal and S. R. Grace, Oscillation of certain thirdorder difference equations, Comp. Math. Appl. 42 (2001), 379-384.
[11] Z. Dosla, A. Kobza, Global asymptotic properties of thirdorder difference equations, Comp. Math. Appl. 48 (2004), 191-200.
[12] S. H. Saker, J. O. Alzabut, A. Mukheimer, On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Elec. J. Qual. Theo. Diff. Eqn. 67 (2010), 1-16.
[13] S. H. Saker, J. O. Alzabut, Oscillatory behavior of third order nonlinear difference equations with delayed argument, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 707-723.
[14] E. Thandapani, M. Vijaya, T. Li, On the oscillation of third order half-linear neutral type difference equations, Elec. J. Qual. Theo. Diff. Eqn. 76 (2011), 1-13.
[15] G. Ladas, C. Qian, Comparison results and linearized oscillations for higher order difference equations, Internat. J. Math. \& Math. Sci. 15 (1992), 129-142.
[16] A. Zafer, R.S. Dahiya, Oscillation of a neutral difference equation, Appl. Math. Lett. 6 (2) (1993), 71-74.
[17] W. T. Li, Oscillation of higher-order neutral nonlinear difference equations, Appl. Math. Lett. 11 (4) (1998), 1-8.
[18] R. P. Agarwal, On the oscillation of higher-order difference equations, Soochow J. Math. 31 (2) (2005), 245-259.
[19] Y. Bolat, Oscillation criteria for a higher order functional difference equation with oscillating coefficient, Demons. Math. 40 (1) (2007), 161-168.
[20] Y. Bolat, Ö. Akin, H. Yildirim, Oscillation criteria for a certain even order neutral difference equation with an oscillating coefficient, Appl. Math. Lett. 22 (2009) 590-594.

Yaşar Bolat received his Ph.D. degree in 2004 from Ankara University in Ankara, Turkey. He served as an assistant professor in Afyon Kocatepe University during the period 20042010. Sice then, he has been working as an associate professor in the same university. His research interests concern with the qualitative properties of differential, difference equations and the unification of these two theories (Time Scale Theory). Dr. Yaşar has published more than 15 papers in international journals most of them are cited in SCI. He supervised five master students as well as one Ph. D. student. Attending some national and international conferences is among of his activities. He has been a referee for several peer reviewed journals.

Jehad O. Alzabut received his Ph.D. degree in 2004 from Middle East Technical University in Ankara, Turkey. He served as an assistant professor of applied mathematics in Çankaya University during the period 20022007. Currently, he is an associate professor of applied mathematics at Prince Sultan University in Riyadh, Saudi Arabia. With more than 10 years academic experience, Dr. Jehad has shown excellent teaching and research performance. He has the ability to teach many mathematics courses of different disciplines. An author of more than 40 refereed articles published in peer reviewed international journals most of them are cited in SCI and enjoying high impact factor, Dr. Jehad's research interests are focused on qualitative properties of solutions of differential equations, difference equations, impulsive delay differential equations, fractional differential equations and dynamic equations. Population models governed by the above mentioned equations are also among his interest. He has been invited to give a talk in many international conferences organized in different disciplines in applied mathematics. Refereeing and reviewing of papers has also kept him aware of recent developments.

[^0]: * Corresponding author: E-mail: jalzabut@psu.edu.sa

