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Abstract: Total Variation denoising, proposed by Rudin, Osher and Fatemi in [22], is an image processing variational technique that
has attracted considerable attention in the past fifteen years. It is an advantageous technique for preserving image edges but tends to
sharpen excessively smooth transitions. With the purpose of alleviating this staircase effect some generalizations of Total Variation
denoising have been introduced in [17,18,19]. In this paper we propose a fast and robust algorithm for the solution of the variational
problems that generalize Total Variation image denoising [22]. This method extends the primal-dual Newton method, proposed by
Chan, Golub and Mulet in [7] for total variation restoration, to these variational problems. We perform some experiments for assessing
the efficiency of this scheme with respect to the fixed point method that generalizes the lagged diffusivity fixed point method proposed
by Vogel and Oman in [24].

Keywords: image denoising, total variation, staircase effect, primal-dual problem, Newton’s method, Huber function, robust estima-
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1. Introduction

The presence of blur and/or noise is inherent to many im-
age acquisition devices. This noise and blurring should be
removed in the earlier stages of the image processing, for
their presence can be a burden for the later phases of the
image processing.

Many algorithms for noise removal and deblurring are
based on linear filters (convolutions) and are implemented
with Fast Fourier Transforms in the frequency domain.
These algorithms do not perform well near discontinuities
(edges), giving excessively blurred outputs and Gibbs phe-
nomena. To overcome this difficulty a technique based on
the minimization of the Total Variation seminorm subject
to some noise constraints is proposed by Rudin, Osher and
Fatemi in [22]. The solution of this variational problem is
a function of bounded variation admitting discontinuities,
in contrast to other variational models that assume some
regularity of the solution.

In spite the success of the Total Variation restoration
technique, it has some aspects that could be improved,
such as the feature that the image output is close to a piece-

wise constant function (staircase effect), thus preventing
some natural smooth transitions between image levels.

In [17,18,19] some variational formulations with func-
tionals that generalize the Total Variation functional have
been proposed with the goal of taking the best properties
of the space of functions of bounded variation and the
Sobolev space H1, which is preserving the strong gradi-
ents of the image while, at the same time, smoothing ho-
mogeneous regions without discontinuities. Another ap-
proach, based on using higher order derivatives in the ob-
jective functional is explored in [6].

The Euler-Lagrange equations associated to these gen-
eralized Total Variation minimization problems have the
same difficulties as the original equations in [22], since
they are highly nonlinear elliptic partial differential equa-
tions. The simplest scheme for their solution is a time march-
ing scheme, similar to the one proposed in [22]. Since the
convergence of this scheme can be slow due to stability
constraints in the time step size, an alternative is a fixed
point method, analogous to the one proposed in [24].

The convergence of this fixed point scheme is global,
much faster than that of the time marching scheme, but it is
linear, a fact that can limit its efficiency if full convergence

∗ Corresponding author: mulet@uv.es

c© 2012 NSP
Natural Sciences Publishing Cor.
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is pursued. A primal-dual Newton method was proposed in
[7] for the fast and robust solution of the Euler-Lagrange
equations of the minimization of the Total Variation func-
tional. In this paper we propose a similar technique for the
generalized Total Variation problems and prove by exper-
iment that, in terms of efficiency, it is highly competitive
when compared to the fixed point method.

The organization of this paper is as follows: in section
2 we introduce the problem and the Euler-Lagrange equa-
tions associated to it. In section 3 we present some meth-
ods for the solution of these nonlinear equations. In sec-
tion 4 we propose the primal-dual linearization technique
for these equations. In section 5 we present some numeri-
cal results. Finally, in section 6 we give some concluding
remarks.

2. Generalized Total Variation denoising
problems

Assume that a gray level image u, regarded as a real func-
tion on the unit square Ω, has been degraded by white
Gaussian noise n, so that z = u +N . The objective of im-
age denoising is the estimation of u from the knowledge
of statistical parameters of N , such as its variance σ2, i.e.,
‖N‖2

L2 = σ2. From a variational point of view, this prob-
lem can be formulated as the minimization of some func-
tional G(u) (that may depend on derivatives of u) subject
to the quadratic noise constraint ‖u − z‖2

L2 = σ2, where
the objective functional F should be chosen according to
the a priori knowledge of u. This approach is related to
Tikhonov regularization [23]. If G(u) =

∫
Ω
|∇u|2dx, then

the Euler-Lagrange equation is a linear reaction-diffusion
equation that can be easily solved by Fourier transforms.
On the other hand, the solution is continuous, so the edges
of the images would appear blurred.

To overcome this drawback, the solution of the varia-
tional problem

min
u

∫
Ω

|∇u(x)|dx,

subject to
1
2

∫
Ω

(u(x) − z(x))2dx =
σ2

2
,

(1)

is proposed in [22] as the denoising output of the image
z ∈ L2(Ω). The Total Variation functional

∫
Ω
|∇u(x)|dx

measures the jumps in the intensity of the image, but do not
penalize excessively their existence, so that discontinuous
images can be obtained from this formulation. Of course,
for these images one needs to use the general definition of
the total variation as

sup{
∫

Ω

u div(w)dx : w ∈ (C∞)2,

w|∂Ω = 0, |w|∞ ≤ 1}.
or approximate it by

∫
Ω
|∇u(x)|βdx, for u in the Sobolev

space W 1,1(Ω), where |w|β =
√

w · w + β, β > 0 is in-

troduced to overcome the non-differentiability of the square
root at 0.

The image restoration model based on the TV tends to
yield piecewise constant images. Whereas this is certainly
useful for many applications, it can be a serious drawback
for many others. In particular, when applying this denois-
ing technique to an affine image degraded with noise, the
result will invariably be a staircase, thus creating over-
sharpening at smooth transitions.

To prevent this staircase effect, some functionals that
penalize small jumps more have been proposed in the liter-
ature [17,18,19,6,16,15]. In this paper we consider func-
tionals that generalize total variation, so that the denoising
problem reads:

min
u

∫
Ω

φ(|∇u(x)|β)dx,

subject to
1
2

∫
Ω

(u(x) − z(x))2dx =
σ2

2
,

(2)

for non-negative, non-decreasing and convex functions φ ∈
C1 and u belonging to a suitable functional space. The con-
ditions on φ to ensure existence and/or uniqueness of so-
lutions of (2) in this continuous setting may be rather in-
volved due to functional analytical details that fall out of
the scope of this paper. We refer to [1,2,10] and references
therein for some of those details.

We denote by F (u) the Lagrangian of (2) for a fixed
λ > 0

F (u) =
∫

Ω

(
φ(|∇u(x)|β)

+
λ

2
(u(x) − z(x))2

)
dx − λ

2
σ2.

(3)

The Euler-Lagrange equations for (2) can be obtained
by standard Fréchet differentiation of (3):

F ′(u) = −div

(
φ′(|∇u|β)
|∇u|β ∇u

)
+ λ(u − z) = 0,

∂u

∂−→n = 0,

(4)

with the Lagrange multiplier λ suitably chosen to enforce
the quadratic constraint and a Neumann boundary condi-
tion (−→n denotes the unit normal vector to ∂Ω pointing in
the outward direction). This nonlinear partial differential
equation is of elliptic type, since φ′(x) > 0 for x > 0.

Assuming φ ∈ C2, one can show, again by using Fréchet
differentiation, that the second variation of F (u) in (3) is

F ′′(u)(v) = −div
[φ′(|∇u|β)

|∇u|β ∇v

+ G(∇u)
∇u · ∇v

|∇u|2β
∇u
]

+ λv,

G(∇u) = φ′′(|∇u|β) − φ′(|∇u|β)
|∇u|β .

(5)
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2.1. Discretized problem

We discretize (2) on the grid points (ih, jh), i, j = 0, . . . , n−
1, h = 1/n, by using the rectangle rule for integrals and
forward differences approximations ∇x,∇y of ∂x and ∂y,
respectively, i.e.,

∇x(u)i,j =
ui+1,j − ui,j

h
, i < n − 1,

∇x(u)n−1,j = 0,

∇y(u)i,j =
ui,j+1 − ui,j

h
, j < n − 1,

∇y(u)i,n−1 = 0,

for any function u on the grid. With these choices, the dis-
cretization of the ∇ and −div operator are

∇h(u) =
[∇xu
∇yu

]
,

−divh

[
wx

wy

]
= ∇T

x wx + ∇T
y wy,

for grid function u,wx, wy and the discretization of prob-
lem (2) can be written as:

min
u

n−1∑
i,j=0

φ(|∇hui,j |β)dx,

subject to
1
2

n−1∑
i,j=0

(ui,j − zi,j))2dx =
σ2

2
,

(6)

where ui,j ≈ u(ih, jh), zi,j = z(ih, jh). It is easy to see
that the optimality conditions for problem (6) read:

−divh

(
φ′(|∇hu|β)
|∇hu|β ∇hu

)
+ λ(u − z) = 0, (7)

i.e., the corresponding discretization of the Euler-Lagrange
equations (4). Likewise, the Hessian of the Lagrangian Fh(u)
of (6) is

F ′′
h (u)(v) = −divh

[φ′(|∇hu|β)
|∇hu|β ∇hv+

G(∇hu)
∇hu · ∇hv

|∇hu|2β
∇hu

]
+ λv,

G(∇hu) = φ′′(|∇hu|β) − φ′(|∇hu|β)
|∇hu|β ,

that corresponds to the consistent discretization of F ′′(u)(v).
Consequently, we will drop the subscript h from the finite
difference operators whenever no confusion can arise.

Assuming that φ ∈ C2, it is easy to check that F ′′(u) is
positive definite and therefore F is strictly convex. Since it
is a continuous and coercive function (that is, limu→∞ |F (u)| =
∞), there exist a unique minimum of the discretized prob-
lem (e.g. see [9,21]).

3. Algorithms for generalized Total Variation
denoising

In this section we briefly review some algorithms for the
solution of (7). They are direct generalizations of the cor-
responding algorithms proposed for Total Variation resto-
ration.

3.1. Time Marching

Since (7) is of elliptic type, one can obtain its solution by
approximating the steady state of the associated parabolic
equation

ut = div

(
φ′(|∇u|β)
|∇u|β ∇u

)
− λ(u − z),

∂u

∂−→n = 0, u(x, 0) = z(x),
(8)

for the unknown function u = u(x, t). In principle, an
explicit Euler scheme could be applied to get the iteration:

un+1 = un + Δt
(

div
(φ′(|∇un|β)

|∇un|β ∇un
)

− λ(un − z)
)
, un

i,j ≈ u(ih, jh, nΔt).
(9)

This simple scheme, proposed and used in the seminal pa-
per [22], has the disadvantage of having severe CFL re-
strictions on Δt, caused not only by the parabolic nature,

but also for the fact that the diffusion coefficient φ′(|∇un|β)
|∇un|β

can be very large for small β. Implicit schemes could be
applicable, but their difficulty is comparable to the alter-
natives that appear below, hence it would not be clearly
effective when compared to them.

3.2. Fixed point

A natural linearization of (7) consists in the following fixed
point iteration:

− div

(
φ′(|∇un|β)
|∇un|β ∇un+1

)
+ λ(un+1 − z) = 0, n ≥ 0, u0 = z,

(10)

where at each step a linear reaction-diffusion equation has
to be solved, with the diffusivity computed from the previ-
ous step. This generalized the lagged diffusivity fixed point
scheme introduced by Vogel and Oman in [24] for Total
Variation restoration.

The natural discretization of this scheme converges to
the solution of (7) at a linear rate that can deteriorate to-
wards 1 as β → 0 (see [8] for a proof).
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3.3. Newton primal

In principle, a faster convergence can be obtained with
Newton’s method, which consists in the iteration:

F ′′(un)(δun) = −F ′(un),

un+1 = un + δun.

It is a quadratically convergent algorithm (since then we
can assure that F ′′(u) is always non singular), but their
convergence is not ensured, unless line search procedures
are used. But these procedures typically restrict the step-
length in a dramatic manner when β is small. Continuation
strategies on the parameter β can be used to cope with this
difficulty (see [5,7]).

4. Newton primal-dual

In [7], the Euler-Lagrange equations of the TV restoration
problem, that is, problem (7) with φ(x) = x, are enlarged
by introducing the variable (dual) w = ∇u

|∇u|β and the new

equation |∇u|βw − ∇u = 0. Then, Newton’s method is
applied to this enlarged system. The resulting algorithm
has proven to be very robust and fastly convergent. In the
literature one can find other approaches to the TV denois-
ing/restoration problem that use dual variables [3,12,25,
4].

In this paper we propose a primal-dual Newton’s me-
thod for generalized TV restoration. This method is an ex-
tension to the primal-dual method proposed in [7]. Follow-
ing those ideas, the Euler-Lagrange equation (7) is rewrit-
ten by introducing ∇u

|∇u|β as a new variable w:

−div (φ′(|∇u|β)w) + λ(u − z) = 0, (11)

|∇u|βw −∇u = 0, (12)

and then applying Newton’s method to this system:

− div
(
φ′(|∇u|β)δw

+ φ′′(|∇u|β)(
∇u

|∇u|β · ∇δu)w
)

+ λ(u − z)

= −(−div (φ′(|∇u|βw)) + λ(u − z)),

∇u · ∇δu

|∇u|β w −∇δu

+ |∇u|βδw = −(|∇u|βw −∇u).

From the latter equation δw can be expressed in terms of
δu:

δw = −(1 +
∇u · ∇δu

|∇u|2β
)w +

∇u

|∇u|β +
∇δu

|∇u|β , (13)

which, when substituted in the former equation, yields:

− div (K(u,w)∇δu) + λδu

= div

(
φ′(|∇u|β)
|∇u|β ∇u

)
− λ(u − z),

K(u,w)i,j =
φ′(|∇ui,j |β)
|∇ui,j |β I2+

G(∇ui,j)wi,j

( ∇ui,j

|∇ui,j |β

)T

,

G(∇ui,j) = φ′′(|∇ui,j |β) − φ′(|∇ui,j |β)
|∇ui,j |β . (14)

Due to the presence of the term

wi,j

( ∇ui,j

|∇ui,j |β

)T

,

the 2 × 2 matrices K(u,w)i,j are symmetric only when
w = ∇u

|∇u|β for each (i, j). Of course, the primal Newton’s
method is recovered with this setting. A key point here is
to substitute K(u,w) by its symmetrization (we omit the
i, j index)

K̃(u,w) =
1
2
(K(u,w) + K(u,w)T )

=
φ′(|∇u|β)
|∇u|β I2+

1
2
G(∇u)

(
w

( ∇u

|∇u|β

)T

+
∇u

|∇u|β wT

)
,

G(∇u) = φ′′(|∇u|β) − φ′(|∇u|β)
|∇u|β .

The resulting inexact Newton’s method can then use nu-
merical methods for the solution of the linear systems that
appear at each iteration without sacrificing the quadratic
convergence of Newton’s method (see [14, chap. 5 and 6]),
since the matrix

−div
(
K̃(u∗, w∗)∇

)
+ λI (15)

coincides with F ′′(u∗) at the solution

(u∗, w∗),

for which w∗ = ∇u∗
|∇u∗|β . The primal-dual Newton’s me-

thod that we propose as an extension of the one proposed
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Figure 1 Left: original image; right: noisy image.

in [7] reads:

−div
(
K̃(un, wn)∇δun

)
+ λδun

= div

(
φ′(|∇un|β)
|∇un|β ∇un

)
− λ(un − z)

δwn = −(1 +
∇un · ∇δun

|∇un|2β
)wn

+
∇un

|∇u|nβ
+

∇δun

|∇un|β ,

un+1 = un + δun, wn+1 = wn + sδwn,

(16)

where u0 = z, w0 = 0 and s is computed to enforce
|wn+1|∞ ≤ 1 in an efficient way by setting

s = min(0.95min{si, δwi �= 0}, 1),

si =
−zi +

√
z2
i + (1 − |wi|2)|δwi|2

|δwi|2 + 10−16
,

with zi = wi · δwi. The advantage of this approach is
that there are very efficient numerical methods for sparse
symmetric matrices (conjugate gradient or symmlq [20])
that can be therefore applied to the matrix in (16).

5. Numerical experiments

In this section we compare the convergence speed of the
fixed point method and the primal-dual Newton’s method
for several functions φ(x). We display in Fig. 1 the original
and noisy images that are used for all the experiments. The
noise level corresponds to an SNR=2 and σ2 ≈ 571.

Since we are testing full convergence, the stopping cri-
terion for the (outer) Newton’s iteration is a relative de-
crease of the nonlinear residual (i.e. the right hand side
member of (16)) by a factor of 10−8. We use a truncated
Newton’s algorithm, based on the conjugate gradient me-
thod with incomplete Cholesky, with a fill-in level of 3, as
preconditioner (cf. [11]). The stopping criterion for the n-
th inner linear iteration is a relative decrease of the linear
residual by a factor of ηn, where we follow the suggestion

primal-dual fixed point
β iterations CPU time iterations CPU time
1 18 28.5 137 131.9

10−5 23 50.7 150 183.7

1−10 25 57.1 154 391.2

Table 1 Number of iterations and CPU time for the first test with
φ(x) = x1.1 and β = 1, 10−5, 10−10.

of [14, Eq. 6.18] and set

ηn =

{
0.01 if n = 0,

min(0.01, 0.6||gn||2/||gn−1||2) , (17)

where gn denotes the gradient of the objective function i.e.
the right hand side of (16). We point out here that, although
we can only ensure the positive definiteness of the matrix
in (16) for n = 0 (for which w = 0 and the matrix is cer-
tainly positive definite) or near the minimum u∗ (at which
it coincides with F ′′(u∗)), the convergence of the conju-
gate gradient method has been extremely satisfactory in
all cases, requiring very few iterations at the early stages of
the outer iteration and some more when ηn is set to small
numbers when full convergence is near to take place.

For the fixed point iteration, we use the same linear
solver with a fixed relative tolerance on the residual set to
0.01.

In the first test we analyze the influence of the param-
eter β on the convergence speed of the algorithm. We run
both algorithms for φ(x) = x1.1, λ = 20.5, close to the
Lagrange multiplier that ensures the quadratic constraint
imposed by the noise variance, and β = 1, 10−5, 10−10

and display their convergence history in terms of the gra-
dient of the objective function versus iterations and CPU
time with vertical logarithmic scale in Fig. 2-4. From these
pictures, we deduce a quadratic convergence for the primal-
dual Newton method and a linear convergence for the fixed
point method and that the gradient of the objective func-
tion for each iteration of the primal-dual method is smaller
or equal than for the fixed point method. Regarding effi-
ciency, the pictures that display CPU time versus nonlinear
residual show that the fixed point method is slightly more
efficient than the primal-dual method at the early stages,
due to the fact that the cost per iteration of the linear solver
is about 30% higher for the latter.

As can be seen in Table 1, where we display the final
number of iterations and CPU time in each case, the dif-
ference between the computational cost of the fixed point
method with respect to the primal-dual method grows dra-
matically as β is reduced.

We perform more tests with another interesting func-
tion φ, the Huber function, used in robust Estimation (cf.
[13]):

φ(x) =

{
x2 x < ξ

2ξx − ξ2 x ≥ ξ
. (18)
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Figure 2 The convergence history in terms of the gradient of
the objective function, for φ(x) = x1.1, β = 1: gradient versus
iterations at the top; gradient versus CPU time at the bottom. The
results of primal-dual method are displayed with ◦ and those for
the fixed point method with +.

This function is convex and continuously differentiable,
but the second derivative is discontinuous at ξ. We set

φ′′(ξ) = φ′′(ξ+) = 0.

This function is designed to penalize small jumps more
than the total variation functional, as prescribed in [19] to
address the staircase effect.

The picture at the left side of figure 5 displays a piece
of the original picture. This piece contains smooth parts
(although the original picture contains some noise) and
edges. We plan to run the method that we propose and
the fixed point method for the Huber function φ with sev-
eral threshold parameters ξ and compare their (common)
output with that obtained with Total Variation denoising,
shown at the right side of figure 5. We also compare the
convergence history of both methods in terms of the non-
linear residual against iterations and CPU time. The pa-
rameter λ has been set to ensure, in every case, the con-
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Figure 3 The convergence history in terms of the gradient of the
objective function, for φ(x) = x1.1, β = 10−5: gradient versus
iterations at the top; gradient versus CPU time at the bottom. The
results of primal-dual method are displayed with ◦ and those for
the fixed point method with +.

straint:

∫
Ω

(u(x) − z(x))2 dx = σ2 ≈ 571.

The threshold parameters we have chosen for the Hu-
ber function are ξ = 1000 (results in Figures 6 and 7),
ξ = 500 (results in Figures 8 and 9) and ξ = 100 (results
in Figures 10 and 11). These results show edges that are
as well defined as those obtained with the Total Variation
functional. As expected, the higher the threshold parame-
ter ξ is set, the less staircase effect in the denoised images.
The conclusions, in terms of the convergence velocity, that
can be drawn from these tests are similar to the ones ob-
tained previously: the primal-dual method converges much
faster than the fixed point method, although the latter is
slightly more efficient than the former in the early stages.
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Figure 4 The convergence history in terms of the gradient of the
objective function, for φ(x) = x1.1, β = 10−10: gradient versus
iterations at the top; gradient versus CPU time at the bottom. The
results of primal-dual method are displayed with ◦ and those for
the fixed point method with +.

Figure 5 Enlarged views of a part of the original image (left)
and denoised image with the function φ(x) = x (Total Variation
denoising) with β = 1

Figure 6 Denoised image with the Huber function φ with ξ =
1000 (left) and enlarged view of a part of the denoised image.
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Figure 7 Convergence history for the Huber function φ with
ξ = 1000 with β = 1 and λ = 30000: top, iterations versus
nonlinear residual; bottom, CPU time versus nonlinear residual.
The results of primal-dual method are displayed with ◦ and those
for the fixed point method with +.

Figure 8 Denoised image with the Huber function φ with ξ =
500 (top) and enlarged view of a part of the denoised image.

6. Conclusions

Image restoration based on the minimization of the Total
Variation functional is a reliable technique for recovering
sharp edges of the restored images, but typically tends to
over-sharpen smooth transitions between gray levels, turn-
ing them into piecewise constant functions (staircase ef-
fect). In this paper we have proposed a numerical method
for solving generalized Total Variation problems, that aim
to alleviate this staircase effect, in a fast and robust man-
ner. We have shown that it is highly competitive compared
to the lagged diffusivity fixed point method, as our experi-
ments illustrates. The extension of the ideas herein to other
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Figure 9 Convergence history for the Huber function φ with ξ =
500 with β = 1 and λ = 15800: left, iterations versus nonlinear
residual; right, CPU time versus nonlinear residual. The results of
primal-dual method are displayed with ◦ and those for the fixed
point method with +.

Figure 10 Denoised image with the Huber function φ with ξ =
100 (left) and enlarged view of a part of the denoised image.
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Figure 11 Convergence history for the Huber function φ with
ξ = 100 with β = 1 and λ = 3300: left, iterations versus
nonlinear residual; bottom, CPU time versus nonlinear residual.
The results of primal-dual method are displayed with ◦ and those
for the fixed point method with +.

functionals and to image deblurring is a matter of future
research.
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