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Abstract: This review paper is intended for scholars with differentkzaounds, possibly in only one of the subjects covered, and
therefore little background knowledge is assumed. Thegastis an introduction to classical and quantum infornmatieeory (CIT,
QIT): basic definitions and tools of CIT are introduced, sashhe information content of a random variable, the tyealand some
principles of data compression. Some concepts and refu@$Toare then introduced, such as the qubit, the pure anddrsiates,
the Holevo theorem, the no-cloning theorem, and the quacamplementarity. In the second part, two applications of €@l open
problems in theoretical physics are discussed. The blalek(B#1) information paradox is related to the phenomenorheftiawking
radiation (HR). Considering a BH starting in a pure statégraits complete evaporation only the Hawking radiationl wéimain,
which is shown to be in a mixed state. This either describesnaumitary evolution of an isolated system, contradictimg evolution
postulate of quantum mechanics and violating the no-ctpttieorem, or it implies that the initial information contean escape the
BH, therefore contradicting general relativity. The pregg toward the solution of the paradox is discussed. Thematiaation group
(RG) aims at the extraction of the macroscopic descriptfom physical system from its microscopic description. Thasgage from
microscopic to macroscopic can be described in terms ofraesteps from one scale to another, and is therefore fozedlas the
action of a group. The c-theorem proves the existence, watin conditions, of a function which is monotonicallycteasing along
the group transformations. This result suggests an irg&@fon of this function as entropy, and its use to studyitfi@mation flow
along the RG transformations.
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4.2 The c-function and the linkto QIT . . . . . . . 28  of the facial expressions refers wmotional statesor
states of consciousnesand therefore involve some
degree of subjectivity in their definition (think e.g. at the
famous painting “Mona Lisa” by Leonardo da Vinci, and
its enigmatic facial expression, so difficult to define). As

. . . , usual in science, Shannon has overcome this type of
Classical mformapon theory has' been'mtroduced bydifficulty by first defining clearly thescope of his
Claude Shannon in 1948,[2]. In this seminal work he  efinition. His definition of “content of information” is

has devised a quantitative definiti.or']. of information ;yqeed limited to systems that can be described by a
content, and then other formal definitions of r6|evantrandom variable

guantities, in order to allow for a quantitative treatmeft o Since we need a precise definition of random variable

those and other related subjects. In the same Semin%llowing the notation of MacKay 3 we will use the

work he also demonstrated some important theoremg,cent ofensemblgi.e. the collection of three objects:
which hold for such quantities. In this first section we

give a summary of the main concepts of the classical X = (X,.9, Px) (1)
information theory introduced by Shannon.

1 Classical information theory

wherex represents the value of the random variablg,is
the set of the possible values it can assume, &ids its
probability distributionof those values (i.e. the set of the

1.1 Information content probabilities of each possible value).

The first important contribution of Shannon has been to

address the question: “What is information?”. More 1.1.1 Information content of a single outcome

precisely, he was looking for a way to measure the

amount of informationcontainedin a given physical Based on this concept we then introduce the following
system. This is a rather elusive concept, and it can dependefinition for theamount of informatiomyained from the
on things difficult to quantify, things such as the context, knowledge of a single outcome € % of the random

and the observer background knowledge. variableX:
To give an example, we can think at the amount of h(x) = 1 og : )
information contained in human facial expressions. We log2 = p(xi)

know at an intuitive level that a big amount of \yheren(x) e Py is the probability of the outcome. To
information is contained in a single facial expression (Seegive an intuition of this definition we can consider the

Egured 1), sincehvye sometimes take imrp])ortant decisionsg,ample of the weather forecast. Let's simplify, and
ased on such informations. But at the same IntuitVe ongider a situation where two only possible weather

level we can appreciate how difficult is to quantify this " . oy .
amount. Moreover, the type of information in the exampleCondltlons are possibleunny(i~) andrainy (”’,ﬁ)' S0, in )
our example the random variable is “tomorrow’s

weather”, the two possible values arg = {Xi?, %},
and there will be a probability distributiof?x = {p(ﬁ?),

p(7)}.

It is worth noting that the definition of Shannon is
totally independent from the actual value of the outcome,
and only depends on its probability. It is in order to stress
this concept that we have used the symk{dié, 7} for
the values of the outcome, that are not numerical, and do
not appear at all in2). It is also worth to stress that this
definition of “amount of information contained in a single
outcome” is a differential definition: the difference
between the amount of information we possess about the
random variable, before and after we know the outcome.

We can illustrate this concept of “differential

definition” using the weather variable: in a location where
there is a very high probability of sunny weather, with the
probability distribution 22 = {p(3¥) = 0.99,
p(77) = 0.01}, if tomorrow we see sunny weather, we
will have learnt very little information. On the other hand,
Figure 1: Examples of facial expressions. if tomorrow we find rainy weather, we will have gained a
lot of useful information, with respect to today.
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1.1.2 Information content of a random variable can notice that in the case of a very biased probability

, o . . distribution 2x = {p(¥*) = 0.01, p(7) = 0.99},
Using the definition 2) of the information content of a  ajthough the information content of the very unlikely
single outcome, we can define the information content Ofoutcomeh(i?) 1 |Og%01 is very high, its weight (i.e.

; . ~ Tog2
a whole random variable: probability) in the averages is very small. So we have

H(X) = Z p(x)h(x) that the highest value for the binary entropy is for the
| 3 uniform probability distribution Zx = {p(v\(?) = 0.5,

_ 1 5 p(x;)logi 3) p(7) = 0.5}, so thatp = 1/2 and all the outcomes are
log24 p(x) equiprobablelt can be shown that this is true not only for

the case of a binary variable, but for all the entropies of

This definition can be seen as thaverage of the  any random variable. This also explains the constant
information gained for each outcome expressed2n ( factor @ in the definitions of the entropies: it is a
averaged over all the possible outcomes. normalization factor, so that the maximum entropy is
This expression is formally equal (apart from constantnormalized to 1. The factqg, has also the advantage to
factors) to theentropy defined in thermodynamics, and ke the definitions3j and 59) independent of the choice

Shannon proposed the same name in the context Of¢ e pasis for the logarithms. Alternative and equivalent
information theory. This entropy is sometimes called yqfinitions are:

“Shannon entropy”, to distingush it from its quantum

counterpart, discussed in the following. In the case of a H=- Z p(xi)log, p(xi) (6a)
binary variable (i.e. variable with only two possible |
outcomes) we have: Hiz =—plog, p—(1-p)log(1—p).  (6b)
i ={0,1} (4a)  Withthis normalizationis said that the entropy is measured
Py =1{p,(1-p)} (4b) in bits, and the entropy of an unbiased binary variable is 1.

Sometimes another normalization is used, where thg log

and the entropy of a binary random variable gets thelS replaced by the natural logarithmanlog,; in this case
special name dbinary entropy it is said that the entropy is measurecdhiats

1
plog o +(1-p)log (5) 1.1.3 Comments

1
(1-p)

A plot of the binary entropy as a function pfis shown in
figure2.

H2) =502
g2
We can find an intuitive justification of the definitio)(
doing the following observations. First, the probabilify o
two independent variables is the product of the
probabilities of each outcome. On the other hand, for the
definition @) of “information from a single outcome” it is
reasonable that the information gained from two
1. outcomes from two independent variables is suen of
the information gained from each outcome. Thirdly, we
0.8 have emphasized that the information content only
depends on the probability. Given all this, when looking
= 0.6 for an expression of the information content, the
B logarithm of the probability fits all the requirements. The
T 0.4 last detail of using the logarithm of thiaverseof the
probability is coming from the requirement that the
0.2 entropy of a variable has to be maximal (and not minimal)
in the case of uniform probability distribution (see figure

08602 04 06 08 10 2).

Figure 2: Plot of the entropy of a binary variable (binary

entropy) shown in%). 1.2 Other important definitions

For the applications we want to introduce in the following
sections, we need to define few more quantities. The
Again as for the information content of a single definitions we need involve two random variables:

outcome, we can give some intuition for the definition of
the entropy (i.e. information content) of a random (X, 9 2%} (7a)
variable using the example of the weather forecast. We {Y, &, Py} (7b)
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1.2.1 Joint entropy other, thatthe set of possible values is identidal alle
the variables, and finally théte probability distributions

The joint probabilityp(x,y) is defined as the probability are identical This is usually summarized as the N

that the variableX has the outcomg andthe variableY variables beingndependent and identically distributed

has the outcomg. Based on this concept, it is easy to ori.i.d..

define thgoint entropyof two random variables as:

1

H(X.Y, > p(x,y)log
X7y

— 1.3.1 Typical set
Y= 1092 (8)

1

p(Xy)
Let’s consider a sequence of N i.ilinary variables. We

It is worth to recall from probability theory that the joint can write the sequence of variables(Xg, Xz, ..., Xn) =
probability is the product of the probabilities in the case XN and a single outcome will be a sequence of values as
of independent random variablesSo in the case of (X1,%2,...,xn) = XN, which in the case of a binary variable
independent variables the joint entropy is the sum of thecan be represented as a sequend¢oiies and zeroes. We
entropies. can callen the set of all the possible sequences, and we

Complementary to the concept of joint entropy is the can write it down, (e.g. using thexicographicorder) as
definition ofmutual informatiorof two random variables:  fgllows:

(X :Y) =H(X)+H(Y)—H(X,Y). ) (0,0,0,0,0,...,0)
(1,0,0,0,0,...,0)

We can use the intuition thanutual information is a
(0,1,0,0,0,...,0) (10)

measure of how much two random variables are not

independentlt is also useful to rephrase this and think

that mutual information is a measure of how much we '

know about a random variable X if we know about (1,1,11,1,....1)

random variable Y It is frequently used a graphical

representation to visualize the relationship between Given all this, the source coding theorem proves the

entropy, joint entropy and mutual information. Instead of existence of a subset e¥yn, calledtypical sef with the

the Venn diagrams4] 5], sometimes misleading, we property that "almost all" the information contained in the

prefer to use the alternative approach used e.g.3py [ random variable is indeed contained in this subset.

shown in figure3. Moreover, the theorem proves that for a sequenc#l of
i.i.d. variables with entropyH(X), the typical set has
2NH(X) elements in it. To be more precise, the theorem
can be verbally stated as follows:

[ | H(X.Y) Theorem 1(Source coding theorem)N i.i.d. random

H (X) | ] variables each with entropy £X) can be compressed into
[ JH(®Y) more than2NH(X) pits with negligible risk of information

I(X Y)Y [ loss, as N— o; conversely if they are compressed into

fewer than NH(X) bits it is “virtually certain” that some
information will be lost.
Figure 3: A graphical representation of the relationship

between entropy, joint entropy and mutual information. It is of course possible to have a more precise statement,

where instead of the “almost all” and “virtually certain”
phrases, the proper mathematical expressions, with “the
epsilons and the deltas” typical of the mathematical limits
are used. For a proof of the theorem see @[

1.3 Source coding theorem
1.3.2 Compression

After having introduced some definitions, we here
describe a theorem, calladurce coding theorem In figure 4 we can see a graphical representation of the

First, we have to introduce the notion of a source, typical set, along with the idea that it is possible to label
described as a black box producing sequences of valueghe elements of the typical set. The fundamental idea of
The way to model this is to consider those values as th&ompression is that if we use only tiNH(X) symbols
outcomes of random variables. So we consider a sequengeeeded to label the elements of the typical set, instead of
of N random variables, and we assume the followingusing theN symbols of the full sequences, we have a
hypotheses: that the variables &mdependent from each negligible probability to loose information.
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(0,0,0,0,0,0,0,0,0,0,...,0) traps [7, 8], quantum dots9, 10, nuclear spins, accessed
. via nuclear magnetic resonandel[12], colour defects in
: crystals [L3,14] and superconductive structureks[16)].
(0,0,1,1,0,0,0,1,0,1,..., 00— In this section we will review the usual axiomatic

0,1,0,1,0,0,0,0,0,1,..., 1y—x 2
(1,0,0,1,0,0,1,0,0,1,...,0—= 3

0,0,1,0,1,1,0,1,1,0,...,00——== v Hx)

a,1,1,1,1,1,1,1,1,1,..., 1)
(@)

(0,0,0,0,0,0,0,0,0,0,...,0) . . . )
. Figure 5: The Block sphere is a two dimensional

: manifold, and is used to represent the two dimensional
0,0,1,1,0,0,0,1,0,1,..., 00 —== 00000-- 01 Hilbert space of the states of a qubit.

©,1,0,1,0,0,0,0,0,1,..., 1)—== 00000 10
introduction of quantum mechanics (QM) and the formal
(1,0,0,1,0,0,1,0,0,1,..., 09— 00000--- 11 tools which are necessary to describe the applications of
: QIT presented in the following. Among the many
: references for the axiomatic introduction to quantum
0,0,1,0,1,1,0,1,1,0,...,0—== 11111--- 11 mechanics, and the statements of its postulates, we refer

—— mostly to [L7].
N H(X )

a,1,1,1,1,1,1,1,1,1,..., 1)

b
® The state of a quantum system is represented by an
Figure 4: The typical set as a subset of all the possibleelement of an Hilbert spac#’, of modulus one, which in
sequences of N i.i.d. random variables outcomes. (a) Thé¢he Dirac notation can be represented by a “ket”
typical set elements can be labeled with a number betweety)) € 5. In the case of a qubit (i.e. two-dimensional
1 and 2'H(X)_ (b) This number can be written withH(X)  system) the basis can be represented|@s, |1)} (called
binary simbols. computational basjs and the generic state of the qubit
will be |@) = a|0) + B|1), wherea, 3 € C, and the link
to the angles shown in figure 5b is
_ |y) = cosf |0) +€&?sind |1).
2 Quantum Information Theory In analogy to the concept of random variable
) introduced above, we need a formal tool to describe a
If the physical system used as support for thesjtyation where the state of the quantum system is
transmission and processing of information is a quantumynknown, and it is only know the set of possible states,
system, classical information theory is no more valid in with their probability distribution. If a system is in such
all its parts, and a different theory has to be developedconditions, it is said to be in mixed stateand the tool to

quantum information theory (QIT). As the classical describe mathematically a mixed state is ttensity
random variable with two possible values (the bit) is the gperator

building block of CIT, the quantum random variable with

its possible described by vectors of an Hilbert space of

dimension two (the qubit) is the building block of QIT 2.1.1 Density operator of a pure state

(see figure5). The experimental efforts to implement a

qubit in a physical system have already a long history.To introduce the density operator, let's first recall some
Among the different approaches we can mention iondetails on linear algebra. The scalar product in the Dirac

2.1 Mixed states and density operator formalism

(@© 2015 NSP
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notation is written as(@|y); if we choose a basis said amaximally mixed statdt is interesting to point out
{12),12),...,|ny,...} of the Hilbert space, it is possible to that whether the system is in a pure or a mixed state
compute the componenf8y) = ¢ and(¢|i) = ¢* ofthe  depends on both the systeandthe observer, because the
vectors and co-vectors, so to write them as one-columrknowledge about the system depends also on the
and one-row matrices respectively. In this notation, theobserver, and not only on the system itself. The density
scalar product can be seen as a dot product betweeoperators formalism is able to effectively represent this

matrices: type of states.
Indeed, if the possible states of the system are
%l {la1),|az),...,lan)}, with probabilities
) .
(D) = (01, B G- ) | (11a) 22:1, P2,-..,pn}, then the mixed state can be represented
Un Zi pi [ai) {ai- (14)
1=

- Z@ Lk (11b) This can be seen as a linear combination of the density

' operators associated to the pure states, where the
But if we invert the order, and write coefficients are the probabilities.

This is an abstract representation of the density

Un operators; if we fix a basis in the Hilbert space, we can

1) write a density operator as a matrix, that will be called

W) (9l = (P, @, ) (12a)  density matixA special and not uncommon case is when
the set of possible states of a mixed state is an

Un orthonormal basis for the Hilbert space. If we write this

U@ Y - g orthonormal basis ag]|1),/2),...,|n),...}, and then
| e Yo - g represent the density matrix associated fouge statein
= (12b) : . : )
this basis, the matrix elements will be all zero, apart from
UNG UNGs - UNGK one single element on the diagonal equal to one, in the

_ _ _ position corresponding to the position of the pure state in
we have a matrix, which can be interpreted as thethe basis:

representation, in the chosen basis, obaerator defined

on the same Hilbert space 0
This was written for two different statdg) and|¢).

But using this type of product we can associate to any

single vector of the Hilbert space an operator:

W) . 0000
1 .
s _|ooo0
S W= | Wntetn.) (130) 0010 o
m 000
‘/’1‘/’1; ww@t ‘/’1‘/’& If we then consider a mixed state such that the possible
Vo Yo - Wiy (13b)  states are all the elements of the basis:
UnUE N - U 3 pil (16)
®f b (13c) =

its density matrix, represented in this same basis will be
diagonal, with the probabilities as diagonal elements:
2.1.2 Density operator of a mixed state

pp 0 0 O
When a state of a quantum system can be represented as a 0.0 0
vector of an Hilbert space (i.e. a ket in Dirac notation), it p= 0 0' 0 a7)
is said to be in gure state But if we want to represent Pn
the quantum analog of a random variable, we have to use 00 0.

the concept of mixed state introduced above, where we

don’t know the state of the system, but only a set oflf represented in this basis, non-zero off-diagonal
possible states, and their respective probabilities. Aechix elements indicate that some of the possible states are
state for which all its possible states are equiprobable igjuantum superpositions of basis states. From the

(@© 2015 NSP
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normalization property of the probability distributionist ~ From the requirement that the sum of all the probabilities
then easy to see that: (21 is equal to 1 we have the propertyaimpletenesor

the set of projectors:
Tr(p)=>% pi=1, (18) .
2P S Pn=L (23)
m

whereTr(p) indicates the trace, defined as the sum of the ) .

diagonal elements. Since the trace is preserved undefhe expectation value of the measuremdrit the system
change of reference, we can conclude figp) = 1isa IS in the statgy) is:

property of any density matrix. Another property of any

density matrix is that the eigenvalues are non-negative. Ey(M) = ;m Py (M)
This can be proven rigorously, and can be easily seen in
the case of a diagonal density matrix7, where the = ;m<W|Pm|‘,U>

eigenvalues have the meaning of probabilities.

24
— i (R0 ) @9
m
2.2 Quantum measurement and quantum = (Y|M|y)
complementarity = (M)y.
Continuing with the axiomatic introduction of quantum and the standard deviation is:
mechanics, after the concept of mixed states, and the . - -
density operators formalism to describe them, we now AM) = /(M= (M)y)?)y
describe the measurement of the state of a quantum — - (25)
system. =4/ (M%)y — (M)j

In the following subsections we will give two possible
formalizations of the measurement process, namely th&vhere we have used the compact notatign: ) = (-)y.
projective measuremerdand thePOVM Finally, we will ~ Sometimes it is useful to write the projectors as:
see the concept @omplementarity - At
Pm - MmMm (26)

where M, are calledKrauss operators The equations
(19-(23) can be rewritten in terms of the Krauss

) . ) operators using2©).
A first way to formalize the measurement process is the

projective measuremerdr von Neumann measurement
(see L7, 18]). In this description we associate to the 2.2.2 POVMs
measurement an hermitian operatdvl, and its
decomposition over the projectors on its eigenspaces: It is possible to generalize the projective measurement
R R and define the POVM (positive operator-valued
M = z mPm (29) measurementlf]), where some of the hypotheses of the
m projective measurement are relaxed. In particular, we

) A . consider the collection of operators that represent the
where {m}, the eigenvalues oM, are the possible measurement:

outcomes of the measurement, and {Rg} operators are {Em} (27)
projectors, i.e. satisfy the following properties:

2.2.1 Projective measurement

and relax the hypothesis that those operators are

vm, P, is hermitian (20a) Projectors. Similarly to the projective measurement, the
I A robability that the outcome imif the systemis i is:
vm,nt, BBy = St B @00) P Y Y )
Py (M) = (| Enly). (28)
The probability that the outcome of the measurement is v "
when the system is in the stdig) is: Also for the POVM we have the property of
~ completenessy ,En = [, but as a consequence of the
Py (M) = (Y|Pn|Y); (21) (27 not being projectors, is that in general we can not

write them in terms of the Krauss operators, as46)(
and soon after such measurement the state of the systegihd therefore for the POVM measurement it is not defined
is: ~ the state of the systeafter the measurement
Pml|Y) (22) A common situation with POVM measurement is
\/W. when we have a quantum system in a mixed state, where

(@© 2015 NSP
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the set of possible states are represented by some vectors
of the Hilbert spacd|ym)}, not necessarily orthogonal to
each other, and we want a measurement in oi@&now

in which of the states of the set the systenTiis POVM |-)
is represented by the set of operators:

{Em: |’~l’m><’~l’m|} (29)

These last operators are indeed projectors; however, since
the {|Ym)} are not necessarily orthogonal, this PO\i$/

not in general a projective measurement. In this type of
POVM, since the set of states does not necessarily form a

basis of the Hilbert space, the completeness property has () (b)
in general to be guaranteed with suitable normalization
coefficients. Figure 6: Two orthogonal references in the plane,

to represent two different projective measurements: the
) computational basi$|0),|1)}, and the basig|+),|—)}
2.2.3 Quantum complementarity defined in 80). (a) A generic vector, with its components

on the two references. (b) A special case of an eigenvector

If we consider the Hilbert space representing the states 0 e first reference which has equal components on the
the quantum system, each basis can be seen as a differefff -y reference.

POVM. In particular, an orthogonal basis will correspond

to a projective measurement. The preparation and

measurement of the quantum state of a physical system

can be described in the language of QIT in terms of the2.3 von Neumann entropy

encoding and decoding of information by two parties,

traditionally called Alice and Bob. The quantum In analogy to the definition ofnformation contenbf a
complementarity is then related to the choice of the basislassical random variable (Shannon entropy) defined in
in which each party operates. If we consider the examplg3), it is possible to define the von Newmann entropy, in
of a qubit, in figure6 two different orthogonal bases are the case of a quantum random variable, in the following
shown, thecomputational basig|0),|1)}, and the basis way:

{[+).[-)}, where RN S S
) Sp) = R Tr| plog 5) (31)
+) = V2 (100 +11) (30a) HereTr(-) represents the trace of the density matrices, and
1 p is the density operator representing the random variabile
|—) = ﬁ(|0> —11)). (30b)  of whichSrepresents the (quantum) information content.

Alice may choose to encode some information in the )
qubit, using the computational basf$0),|1)}, i.e. she  2-3.1 Quantum evolution
prepares the system in one of the two states of this basi
(see figure® and6). The qubit will be then transmitted to
Bob, who will perform a measurement to decode the
information. If he chooses the diagonal ba§is),|—)},
he will be in the situation where both outcomes of the
measurement have 0.5 probability (see figéit®. To
describe this situation in terms of information we can use -
the concept of mutual information expressed ), @nd () =U]w(0)). (32)
say that the mutual information between the (classical)Here we will not give the details about the actual unitary
random variable representing Bob’s measuremenbperator, described by Shrédinger equation.
outcome and the (classical) random variable representing
the information encoded by Alce, is zero. This means in
other terms that the Bob can not access the information oP.4 Holevo theorem (Holevo bound)

Alice. This situation expresses the concept of quantum

complementarity, and based on this concept Charle©ne of the most important results of QIT is the following
Bennett and Gilles Brassard in 1984 devised the idea otheorem, called after Alexander Holev@y. As for the
guantum cryptography19], which over the years has description of quantum complementarity, this result is
become one of the most developed applications ofbest described in terms of the interaction between the two
QIT [20-22,24]. parties Alice and Bob.

SI‘o complete the axiomatic framework of quantum

mechanics we need one last postulate, about the evolution
of a quantum system. It states that the evolution in time of
a quantum system is described by an unitary

transformation over the Hilbert space describing the
states:

(@© 2015 NSP
Natural Sciences Publishing Cor.



Quant. Phys. Let#4, No. 2, 17-30 (2015) www.naturalspublishing.com/Journals.asp NS = 25

Theorem 2(Holevo bound). Let's suppose that Alice The crucial part is the fact that the theorem applies to
prepares the quantum system in a mixed state described situation where the state is unknown.
by the density operatopx, where X= {|x1),...,|X:)} The theorem can be expressed also in the following

are the possible pure states, adgi,...,pn} are the  alternative statement:
corresponding probabilities. Then, Bob performs ar
measurement, described by a POVM built (as describe%
in section 2.2.2 on the set of pure states
Y ={lys),-...|ym}, and we denote y the outcome of this ¢ mation defined on two states
measurement. It is possible to prove that for any such~ “H @A — A% such that

measurements Bob may do there is an upper bound for -

the mutual information 9) between the two random 0(|¢i>|o>):|wi>|¢i> (35)
variables X and Y. In particular:

(X:Y) < S(B)— ¥ mS(B) (33)

heorem 5(No-cloning). Given two states
|n),|yp)}t € 2, which are non-orthogonal, i.e.
0 < |{ynlyr)| < 1, it doesn't exist an unitary

when i is not known, i.e. whefy € {(1, ¥} is unknown.

wherep = ¥, pxpx is the density operator describing the 3 The Black Hole Information Paradox

global mixed state prepared by Alice. 3.1 Black holes

It is worth to stress that from the point of view of . .
Alice (the sender), the information she encodes in thelor the purpose of this review, black holes (BHs) can be
system is a classical information. We can represent it aQri€fly described as objects so dense, and with a
the integer index labelling the states in the set of quantun@ravitational field so strong, that on a surface external to
statesX = {|X1),...,|¥,)} chosen for the encoding. On them, and callecevents horizonthe escape velocity is

the other hand, from the point of view of Bob(the Nigher than the speed of light. This implies that no
receiver), the system is in a quantum mixed state. The®hysical object, not even light itself, can ever leave a BH
following theorem expresses the relationship between th@NCe itis inside its event horizon.

information contained in those two random variables.

Theorem 3Given a classical random variable, encoded 3.2 Hawking radiation and black hole
in a quantum system using the set of pure Statesevaporation
X ={[x1),...,|Xn)}, the relation between the information

contained in this classical random variable, and the The work of Stephen Hawking in 19724 introduced
quantum information contained a mixed quantum statethe notion of the Hawking radiation (HR). This

px built with those pure states is: phenomenon is in turn due to the phenomenon of
. . guantum vacuum fluctuationshat was discussed and
S(0) = > PS(Px) <H(X) (34)  theorized at the beginning of the 20th century by the
X

scientists that contributed to develop quantum theory (see
e.g. R9 30). Quantum vacuum fluctuations are in turn
linked to what has been subsequently formalized as the
Heisenberg uncertainty principl¢l?7, 31], and can be
Because of this second result, we can express the Holeveummarized as the continuous and very rapid creation and
theorem 83) saying that in a quantum encoding-decoding annihilation of particle-antiparticle couples (see figdye
process the amount of information that Bob can access islawking theorized that there is a non-zero probability
in general less than the (classical) information initially that a particle-antiparticle couple is generated close
encoded by Alice, and that this information can be fully enough to the BH’s event horizon, so that one of the two
accessed only in the special case where the set gparticles manages to escape before they re-annihilate
quantum states used for the encoding is orthogonal. while the other is trapped inside the horizon. The net
effect is a radiation emitted from the BH while taking
some energy from it, and because of the mass-energy
2.5 No-cloning theorem equivalence, the phenomenon can be described as the
evaporation of the BH. The Hawking radiation has an

Another important result of QIT is the no-cloning theorem, €xtremely low intensity, but if the BH is small enough, it
introduced by and Wootters, Zurek and Dieks in 1982 [ ¢@n lead to the complete evaporation of the BH in a

27]. Itis a no-go theorem that can be stated very briefly agPhysically meaningful time, compared to the age of the
follows: universe. In its subsequent detailed quanto-mechanic

calculations B2, 33, Hawking showed also that the
Theorem 4(No-cloning). It is impossible to create an quantum state in which the HR is emitted isnaximally
identical copy of an arbitraryunknownguantum state. mixed statésee sectioR.1.2).

the equality being reached in the caSeq),...,|X.)} are
all orthogonal vectors.
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Event Let's consider a physical system, containing a certain
/Horizon\ amount ofinformation dropped into the BH at an early
¢ time, and let’s ask the question whether this information
R antiparticle can in principle be retrieved at a later time or not (see
figure8).

N

creation of

particle-

g antiparticle

= pair
esca 'GIOf annihilation of
particle particle-anti-

particle pair

w horizon
W L

eyet

=~

Space

v

Figure 7: Schematics of the mechanism of quantum Figure 8: Information falling into the event horizon: can

vacuum fluctuation and generation of Hawking radiation. it: €ven in principle, be retrieved? From the point of view
of an in-falling observer, crossing the event horizon has no

physical effect, and this suggests that also the informatio
is not destroyed when it falls inside the horizon.

3.3 Black hole paradox

Since it.is always possible to prepare the B.H,_as soon as it In a deterministic system, following the dynamic
fohrms, In a pufr?_lst?tea atnd thent |e§V(§ I ||S%Iatec?zf theequations that describe its evolution, it is in principle
phenomenon o eads 10 a contradiction. INEed It We, o oqinje 1o reconstruct an earlier state once we fully know
consider an isolated BH as an isolated quantum systen, " «~io ot a later time (with emphasis on th
?CCOfd'“g to the postulates of QM seen in secﬁo%u.]z knowledge of any degree of freedom and their
its evolution should be described by an unitary

. . : correlations). So, if a BH is well described by quantum
transformation. But if we consider the process of . -nics” the answer to the question about the
complete evaporation of the BH, and take into accountycnmation retrieval should be affirmative, and the

that th'e HR is e'm|tted in a mixed state, we would have theHawking radiation is a good candidate to explain how the
evolution of an isolated quantum system from a pure state

¢ ed state. i radicti h that tlate. F nformation can escape. This in turn would question
0 a mixed state, in contradiction wi at postuiate. orgeneral relativity, from which the very definition of event
what follows it is worth to remember that a maximally

mixed state is such that each state of the mixture ishorlzon descends3f, 39, because by definition nothing
robable. So if q ive the final state of th can escape the event horizon.
equiprobablé. >0 It we describe e final state ol € 5, the other hand the answer to the question about the

Hawktmg radgmon afftetr)ltheiht_:or_nplete evapora}'luon as dainformation retrieval is negative, then it means that the
qtu"’tm umdriﬂ or? var_|tah e, this |st|nle} |;naX|mt§1 y !;rr]]lxe guantum-mechanical description of the BH and its
state, and therefore it hasro mutual informatiorwi evolution has to be revised.

the quantum random variable describing the initial state. . :
Moreover, we can show how, if we accept the notion

that somehow the information initially dropped inside the
3.3.1 BH paradox in terms of QIT event horizon, eventually escapes via the Hawking

radiation, we incur in another problem. Indeed, from the
It is possible to rephrase this contradiction using thepoint of view of an in-falling observer, crossing the event
concepts of quantum information theory, so to show thathorizon has no physical effect. So we can safely assume
contradicting the postulate of unitary evolution of an that the information dropped in the BH still exists intact,
isolated quantum system is equivalent to contradict thanside the event orizon (at least until it reaches the
no-cloning theorem introduced in secti@rb. internal singularity of the BH).
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Therefore, if the information also escapes, it meansnotice the crossing, and will continue to observe the
that at least a finite time, two copies of the sameinformation that is falling with him. But he will not be
information exist, inside and outside the event horizon. Scable to access the information reflected outside with the
this would contradict the no-cloning theorem of section Hawking radiation, because that will be encoded in a
2.5 different basis, such that the mutual information is zero.

Another important result worth to mention is the
holographic principle a general result which can be
3.3.2 Contributions to the solution from QIT stated as follows!Physical processes in a system of
dimensions are reflected in processes taking place on the
Although the BH information paradox is still an open Z — 1 dimensional boundary of that system. There is an
problem, QIT has contributed to its comprehension withequivalence between theories of different sorts written in
some important results and insights. space-times of different dimensior{S®, 44].

Jacob Bekenstein is one of the leading authors of such ~ The fields of QIT, Astrophysics and general relativity
line of research 36]. In 1972 he has introduced a have all gained from this interdisciplinary approach; as an
generalized second ladescribing the thermodynamics of example the concept of Generalized Second Law, and the
BHs [37], and in the 1973 he has introduced a definition Holographic Principle have also lead to results in QIT. In
of BH’s entropy as being proportional to its areg and  particular, upper bounds have been proven for the entropy
inversely proportional to the square of Plank’s len¢gh outflow g_ts' which is a proxy for the communication rate,

or information channel capacit3§.
Sy O % (36)
P 4 The renormalization group information

Then, at first Bekensteir8g], and then Boussa3f] have  flow
found upper bounds for the BH’s entropy. Since the
double meaning of the entropy as both a thermodynamie}.1 Description of the RG
parameter and a measure of the information content of a o o )
system (see sectioh.l) these results have suggested a The main idea of the renormalization group (RG) is that
information theoretical approach to solve the paradox.  ©f @ tool to extract the macroscopic description of a

Hayden and Preskyll4f] have used results from phy3|cal system (e.qg. a.fleld) from its microscopic model.
guantum error correction, to extend a result already found™irst of all, the change in the descriptions going from the
by Page §]. When the BH is in an advanced stage of its Microscopic to.the macroscopic model is captured_by the
evaporation, more precisely when its entropy is less tharfhange of the interaction constayif:) in the interaction
half the initial amount, they prove that the information term of the hamiltonian. _ ,
retention time, i.e. the time needed for the information ~ This change can be described as the action of an
dropped in the event horizon to re-emerge in the HawkingPPeratoiG applied to the interaction constant:

radiation, is relatively short, and in particular: o) = G g(pa)] (38)
tinfo = O(rslogrs) (37)  Where i is a parameter that represents the different
scales. Although this transformation is called
wherersis the Schwarzschild radius. “renormalization group”, it is not formally a group. It is

just a "flow of transformations” in the space of all the

Another contribution to the solution of the BH possible hamiltonians. The main reason why the RG is
information paradox, also used by Hayden and Preskyllnot a group, is that given a transformation from a small
is the concept of BH complementarityd, 43]. This scale description to a large scale description, the inverse
approach considers two possibilities: the informationtransformation is not necessarily defined.
traveling toward the BH from outside, when reaches the In 1954 Murray Gell-Mann and Francis Low
event horizon is either transmitted inside or reflectedpublished a work on quantum electrodynamics
outside. Then, the suggestion is that instead of choosingQED) [45], in which they studied the photon propagator
between those two possibilities, we can accept them bothat high energies. They introduced the concept of scaling
To solve the conflict with the no-cloning theorem, we transformation with a group-like formalism, where the
assume that, because of tgeantum complementarity group operatoG transforms the electromagnetic coupling
discussed in sectio®.2.3it is impossible for any observer parameteq:

to observe both descriptions, or access both copies of the d

information. An external observer will see the incoming Glg(uz)] = <&) Glg(uy)] (39a)
information being absorbed by the event horizon, and H1

then re-transmitted outside by means of the Hawking . L d

radiation, all this process being unitary. The observer o) =G* (-) Glg(m)]] - (39b)
falling inside the event horizon from outside will not H
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Equation 89) expresses the requirement that before anda certain scale (graining); the physics of that model is
after the scaling, the physical laws don’t change. So thedescribed by the hamiltonian of the system, and in
equation requires that the coupling parameter before angarticular by its interaction term, i.e. by the interaction
after the scaling changes taking into account the scalingonstantg(us). At an bigger scale (coarse grainingy,
factor (&)d Going from this discrete scaling, — (i the components of the lower scale can be “clustered” into
p) i a single element of the coarse graining (see se@gn
to a continuous scaling transformation, it is possible tognd the interaction constant is in principle changed. The
define a function3(g) that expresses the corresponding equations expressing the constrain that: “the physics at
continuous transformation of the coupling parameter different scales has to be the same” a88)(and 39),
ag(u) which express the constrains for the interaction constant
Blo(w)] = ()’ (40)  g(u), and another equation that express the constrain

] between the correlation at different scales, which is the
Between 1974 and 1975 Kenneth Wilson and John Koguthe Callan-Symanzik equation$-51:

introduced a more general description of this

idea M648. In this description, the large scale 7} 7} )

(macroscopic) behaviour will be linked to the low energy ma—m+B(g)a—g +ny|CMV(x,... ximg) =0 (41)
regime of the model, because at long distance only long

wavelengths are relevant, while for the microscopicwhere:mis the massC is the correlation function between
behaviour higher energies will be relevant. With referencethe (xy,...,X,) elements of the systenf, andy are two
to this, in the language of the RG the microscopic, highfunctions that “compensate” the effect of the scale change,
energy model will be called thatraviolet limit, while the  in order for the description (i.e. the correlation funclian
macroscopic, low energy one will be called timérared  the different scales to be consistent. In particf@awhich
limit. Another language to express the description atwe have already seen id@), captures the change of the
different scales is in terms dine grainingand coarse  coupling constant, whilg captures the change of the field
graining. itself.

To give an example of the low energy approximation, In applying the group transformations, we go from
we can imagine a sinusoidal potential for the microscopicone point of the space (manifold) of all the possible
model, and its approximation with a parabolic potential hamiltonians (i.e. in the manifold of thBs andys) to
for the macroscopic description. This will be a good another. However, there are some points, catldgtical
description at low energies, i.e. at the bottom of thepoints or conformal pointswhere the functiom(u) has
microscopic potential. However, at high energies thisits minimum. From another point of view we can think at
approximation may introduce some divergencies,the manifold of the hamiltonians (each describing a
involving as an example the integration over bigger different model for the system, at different scales, with
ranges of energies. Since those divergencies are only dudifferent values of the coupling constant), and then think
to the approximated description of the potential, this canthat the RG transformations describes a flow from one
be corrected introducing a cut-off for the high range of model to the other. The flow always ends at the points that
energies. The dynamics of a composite system can bare invariant for this transformation, so those points have

to be self-similar. Each of the critical points are
characterized by the (minimal) value that the function
assumes there, and this value is called the "central

L2 g y charge" of the system.

2
! .galaxies
The c-theorem of Alexander Zamolodchikov 52|

(b) individuates, in the case of a two-dimensional
renormalizable field, a function which is monotonic along
Figure 9: abstract description of the renormalization he RG transformations. _ _ _
group. (a) Two different scales of modelling, with two This monotonicity suggests an information theoretical
different interacting constants. (b) An example of suchmeaning for this function, analogue to the information
different scales can be found in astrophysics, where th&ontent. p3-55. ,
description at the scale of stars (lower image) has an _Since the seminal result by Zamolodchikov, several
interaction constant different from the description at the@uthors have worked on c-theorems at dimensions higher
scale of galaxies (upper image). than 2 56-60. _ , ,
Another approach to the RG is the density matrix
renormalization group (DMRG)€[L, 62]. Osborne and
described by the interactions between its components. ANielsen B3] make more explicit the link between DMRG

4.2 The c-function and the link to QIT
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and QIT. A characteristic feature of critical phenomena is[14] F. Grazioso, B. R. Patton, P. Delaney, M. L. Markham,
the emergence of collective behaviour, and it is D. J. Twitchen, and J. M. Smith. Measurement of the full
conjectured that quantum entanglement is the origin of  stress tensor in a crystal using photoluminescence from

this cooperative behaviour. DMRG and its explicit point defects: The example of nitrogen vacancy centers in

quanto-mechanical approach seems the ideal formalism diamond. Applied Physics Letters)3 101905 (2013).

with which to substantiate this conjectuG[65]. [15] J. E. Mooij, T. P. Orlando, L. Levitoy, L. Tian, C. H. van
Finally, a different interdisciplinary approach, not der Waal, and S. Lloyd. Josephson persistent-current.qubit

necessarily linked to information theory, is the parallel _ Science285 1036-1039 (1999).

between the renormalization used in quantum field theory16] T- Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and

and the renormalization used in thermodynamics and J-S- Tsai. Demonstration of conditional gate operationgusi

statistical mechanics to  describe critical ?;ggg):onductmg charge qubits. Natud2s 941-944, 10

phenomena46, 66]. [17] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum
Mechanics (vol.1),. WILEY-VCH, wiley-vch edition,
(2005).

[18] M. A. Nielsen and Isaac L. Chuang. Quantum information
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on information theory, the latter in particular for having [19] C. H. Bennett _and_ G. Brass_ard. Quantum Cryptography.
introduced him to the black hole information paradox Public key distribution and coin tossing. Proceedings ef th
and Spvros Sotiriadis for the discussions on thé IEEE International Conference on Computers, Systems, and
renormgI};zation rou Signal Processing, 175, Bangalore, (1984).
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