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Abstract: A new life time distribution is proposed by the use of Sinediion in terms of some life time distribution as baseline
distribution. It is derived for the baseline distributiomexponential distribution and some statistical propgioifethe new distribution,
thus obtained have been studied. The new distribution haga Bhown better fit to the bladder cancer patients data agazetto
some well known distributions available in the statistilitgrature through Akaike information criteria (AIC), Basian information
criteria (BIC), - log-likelihood and the associated Kolnaogv-Smirnov (KS) test values.
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1 Introduction

In statistical literature, several methods are availabjeropose new life time distribution by the use of some exgslife
time distribution as baseline distribution. For examplap@ et al. §i] proposed the cumulative distribution function (cdf)
G1(x) of new distribution corresponding to the d&lf(x) of baseline distribution as,

Ga1(x) = (F1(x),

where,a > 0 is the shape parameter of the proposed oneaferl, the new distribution and the baseline distribution
are the same.

Several researchers generalise some useful distribuiiotige idea of Gupta et al4]. For example, Nadarajah and Kotz
[6] introduced four exponentiated type distributions thag¢ #ne generalizations of the standard gamma, standard
Weibull, standard Gumbel and the standard Frechet disiisl and studied some mathematical properties for each
distribution. Nadarajah7] derived exponentiated standard Gumbel distribution &ithope that it would attract wider
applicability in climate modeling as the standard Gumbsiriiution do. Many other genralizations can be found in the
statistical literatures.

Another idea of generalizing a baseline distribution isremgémute it by using the quadratic rank transmutation map
(QRTM) (see, Shaw and Buckleg]). If G,(x) be the cdf of transmuted distribution corresponding to theeline
distribution having cdf,(x), then

Ga(x) = (1+A)F(x) — A{Fa(x)}?,
where|A| < 1. ForA = 0, the new distribution is same as the baseline distribution
Recently, various generalizations has been introduceeédban QRTM. For example, transmuted extreme value

distribution (see, Aryal and Tsoko9]), transmuted log-logistic distribution (see, Arydd), transmuted modified
Weibull distribution (see, Khan and Kind §]), transmuted inverse Weibull distribution (see, Khanndgkiand Hudson
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[19]) and many more.

In the present study, we propose a method to get new lifeildlision by the use of any baseline life distribution fifx)
andF (x) be the pdf and cdf of some baseline life distribution, thenatifG(x) of new life distrbution is proposed by,

I
G(x) = sin (EF(X)) )
Further, ifg(x) be the pdf andh(x) be the hazard rate function corresponding to theGid, then,
s T
90) = 5 f(x) cos(5F(x) @)
and - S
h(x) = 2 f(x) tan(Z + F(x)) 3)
respectively.

We will call the transformation1) and @) as SS transformation for frequently used purpose in theemtearticle or
elsewhere.

The rest of the paper is organized as follows: In secBome propose a new distribtion, as obtain by SS transformatio
(2) by considering Ex)-distribution as the baseline distribution and studieshs®f its statistical characteristics; like
moment generating function (MGF), moments, median and medigher, in sectior3, we have shown the applicability

of the new distribution obtained in the sectignto the bladder cancer patients data in terms of assesirfidtiitg in
comparison to some available distributions. In sectipwe have derived MLE and Bayes estimators of the parameter

6 of the distribution, thus obtained under GELF and SELF. lfinaomparison and conclusion has been shown in the
sectionsb and6 respectively .

2 SStransformation of Exp(6)-distribution
Let the baseline distribution is Ex@)-distribution with pdf,
fx)=0e% ; x>0 (4)

and the corresponding cdf is given by,
Fx)=1—e % (5)

Here,0 > 0 is the rate parameter or inverse scale parameter oftggitribution.

Letg(x) be the pdf of the new distribution; obtained by SS transfdiong2), corresponding to the baseline pdj,(then

_7_T —O0X i 7_T —Ox .
g(x)_zee sm(2e ) ;o x>0 (6)

For simplicity in terms of use, we name/call the distribatitaving pdf 6) as SS transformation of Ex@)-distribution
and we will write it as S§(0)-distribution.

The cdf and hazard rate function of §8)-distribution are given by,
_ 7_T —Ox
G(x) = cos( 5 © ) 7)

and - -
_ = —0x It —6x
h(x) = 6 e cot(4 e ) 8)

respectively.

The plots of pdf and hazard rate function, for different eslwfO are shown in Figure$ and2 respectively.
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2.1 Moment Generating Function of §8)-distribution

The moment generating function of §®)-distribution having pdf§) is obtained as follows,

B © (_1)k (E)2k+2 1
Mx(t) =6 kZO (2k+21)! { (2k+2)6 _t} X

providedt < 26.

2.2 Raw Moments of $&)-distribution

Ther™™ moment about origin (i.e. raw moment) of §8)-distribution is obtained as follows,

- {d’Mx(t)}
t=0

r ot’

[ (_1)k (7_-[)2k+2

_ 2
CE k;) (2k+1)! (2k+2)r+1 (10)
2.3 Median of S 0)-distribution
The median of S 08)-distribution is the solution of the following equationrfisl,
1
G(M) >
and the same is obtained as follows,
1 2
M__E In (5) (11)
2.4 Mode of S§ 0)-distribution
Differentiating ) partially w. r. tox on both sides, we get
/ _ Tt 2 ex (T o T __ox T __ox
g(x)= 26e {sm(ze )+2e cos(ze )} (12)

Clearly
g'(x)<0 vV x, 6

and this shows tha(x) is a decreasing function af> 0 (v 8) and hence its mode is= 0.

3 Estimation of the parameter 6 of SSg(60)-distribution

3.1 Maximum Likelihood Estimator

Let nidentical items are put on a life testing experiment and sgpl = (X1, X, ..., Xn) be their independent lives such
that eachX; (Vi = 1[1]n) follow SSg(0)-distribution having pdf§). Then the likelihood function foX is given by,

n

L(X|8) = [ 9(x) (13)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

420 NS 2 D. Kumar et al.: A New Distribution Using Sine Function...

Putting the value ofj atx; from (6) in (13), we get

L(X[6) = {7—2-[ 6 e % sin(g e*QXi)}

_7_-[nn_9i:gxi L Tt —ox
_(2) 6"e = iE!sm(ze ) (14)
The log- likelihood function foX is obtained as,
I =InL(X]|6)

—K+4nino— eiixi +iiln {sin(g e*QXi)} (15)
whereK =n In (Z) is a constant.

Hence, the log- likelihood equation for estimatiéds given by,

A _y
n 2 ma . T .09
3533 e e} o =

Above equation is not solvable analytically #&r We propose Newton- Raphson method for its numerical smiuti

3.2 Bayes Estimators

An important element in Bayesian estimation problem is fhecHication of the loss function. The choice is basically
depends on the problem in hand. For more discussion on theecbba suitable loss function, readers may refer to
Singh et al. 11]. Another, important element is the choice of the apprdprior distribution that covers all the prior
knowledge regarding the parameter of interest. For ther@ibf choosing an approprriate prior distribution, seggBiet

al. [12].

With the above philosophical point of view, we are motivatetake the prior foi asG(a, 3)-distribution with the pdf

B

a

m(e) = ———e 99P-1 .
0= F @)

wherea > 0 andf3 > 0 are the hyper- parameters. These can be obtained, if anndependent informations dhare

available, say prior mean and prior variance are known (Segh et al. 12]). The mean and variance of the prior

distribution (L7) are and B respectively. Thus, we may také = B andV = Bz, giving o = M2 V- andg = % For any
finite value ofM andV to be suff|C|entIy large,1(7) behaves as like as non-informative prlor.

6>0 (17)

The posterior pdf 0B givenX corresponding to the considered prior ptB) of 6 is given by,

WOX) = L(X|6) r(6)
JL(X|6) m(8)06
0

e <a+|21Xi> eﬁJFn*l Iﬂl Sin(7_27 e*gxi)
= =1 (18)

j?e_(a+lzl)('> gh+n-1 F]sin(%T e 9)06
0 i=1

Now, to have an idea about the shapes of the prior and comdsppposterior pdfs for different confidence levels in the
guessed value d as its true value, we randomly generate a sample frop(Sistribution for fixed values = 15,
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6=2,M =2,V =0.1 (showing a higher confidence in the guessed value)Vaath00 (showing a weak confidence in
the guessed value). The sample thus generated is,

X =(0.0093341630.0356610120.0417063820.0542528380.0587067490.0857401120.0945812340.119499688
0.1448285710.1454724860.1482186810.2810910010.4119330610.4496137980.933292489

The graphs are shown in Figur@and4 respectively.

The loss functions we considered here are general entrgpyflmction (GELF) and squared error loss function (SELF),

which are defined by,
A\ O ~
Le (8, 8) = (g) —51n (g) ~1 (19)

Ls (B, 8) = (6—6)? (20)

and

respectively.

The Bayes estimators éfunder GELF 19) and SELF 20) are given by

il

b= [E{07°1x}] (21)

and
bs=E[6/X] (22)

respectively. It is easy to see that whé&n- —1, the Bayes estimatoR{) under GELF reduces to the Bayes estimator
(22) under SELF.

It is name-worthy to note here that GELE9j was proposed by Calabria and Pulci8j §nd SELF 20) was proposed at
first by Legendre ] and Gaussd] when he was developing the least square theory. For morécappns related to
GELF, readers may refer to Singh et d6[17,18].

Now, the Bayes estimator of the parameesf SS(6)-distribution having pdf§) under GELF is obtained as follows,

o= [efo )]

_ . 1
) 7<a+_z xi)e B—din-1 n o . °
e\ =/ @ _Dlsm(§ e %)g0

_ |0 i= (23)

n

fe_(aJrizl)q)g gh+n-1 |E| sin(Z e )06
) i=1

Further, ifés denotes the Bayes estimatortbifinder SELF, then it can be obtained by puttthg —1 in (23) and therefore
the same is given by,

0 _ &y 0
Je <a+izl)q) G IEI sin(3 e %) 06
é _ 0 i=1 (24)
s © 7(a+§xi>9 n o
fe \ =/ @Bl sin(F e ) a6
0 i=1

The integral involved in Bayes estimators do not solvedditally, therefore we propose Gauss - Lagurre’s quadeatur
method for their numerical evaluation.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

422 NS 2 D. Kumar et al.: A New Distribution Using Sine Function...

4 Bladder Cancer Patients Data

In this section, we analyze a real data set to illustrate $#&a{6)-distribution can be a good lifetime model, comparing
with many known distributions available in statisticakliature. For the purpose, we have considered a real date of th
remission times (in months) of a random sample of 128 bladdacer patients. The data is extracted from Lee and
Wang p] and is as shown below:

X = (0.08,2.09,3.48,4.87,6.94,8.66,13.11, 23.63,0.20,2.23, 3.52,4.98,6.97,9.02, 13.29, 0.40, 2.26, 3.57,5.06,
7.09,9.22,13.80,25.74,0.50,2.46, 3.64,5.09, 7.26,9.47,14.24, 25.82,0.51,2.54,3.70,5.17,7.28,9.74, 14.76,
26.31,0.81,2.62,3.82,5.32,7.32,10.06,14.77,32.15,2.64, 3.88,5.32, 7.39, 10.34, 14.83,34.26,0.90, 2.69, 4.18,
5.34,7.59,10.66,15.96, 36.66, 1.05,2.69, 4.23 5.41, 7.62,10.75,16.62,43.01,1.19,2.75,4.26,5.41,7.63,17.12,
46.12,1.26,2.83,4.33,5.49,7.66,11.25 17.14,79.05,1.35,2.87,5.62,7.87,11.64, 17.36,1.40,3.02,4.34,5.71,
7.93,1.46,18.10,11.79,4.40,5.85 8.26,11.98,19.13, 1.76,3.25,4.50,6.25,8.37,12.02,2.02,13.31,4.51,6.54,8.53,
12.03,20.28,2.02,3.36,12.07,6.76,21.73,2.07, 3.36,6.93,8.65,12.63, 22.69)

Khan et al. 19 showed the applicability of transmuted inverse Weibugitdbution (TIWD) on this data by the fitting
criteria in terms of Akaike information criteria (AIC), Bagian information criteria (BIC), mean square error (MSit) a
the associated Kolmogorov-Smirnov (KS) test values. Ttmymared some life time distributions namely transmuted
inverse Rayleigh distribution (TIRD), transmuted invertexponential distribution (TIED) and inverse Weibull
distribution (IWD) in terms of their AIC, BIC, MSE and KS tegalues and found that the TIWD has the lowest AIC,
BIC, MSE and KS test value, indicating that TIWD provides &dxefit than the other three lifetime distributions to the
bladder cancer patients data.

We have computed MLE of the parameéeof SS:=(0)-distribution having pdf) for the above data set and found it as
0.05925657. The AIC, BIC and KS test value forgg8)-distribution are calculated and we get their values asaiold

1. We have extracted the values of AIC, BIC, -log—likelihoeld() and KS test values for TIWD, TIED, IWD and TIRD
for the above considered data from Khan et &9 fand present their values in the following comparative &dbl

Table 1: AIC, BIC, -LL and KS test values for $§0)-distribution, TIWD, TIED, IWD and TIRD

Distributions AIC BIC -LL KS test value
SS(0)-distribution | 832.6 | 835.5 | 415.3 0.067
TIWD 879.4 | 879.7 | 438.5 0.119
TIED 889.6 | 889.8 | 442.8 0.155
IWD 892.0 | 892.2 | 444.0 0.131
TIRD 1424.4| 1424.6| 710.2 0.676

The plots of empirical cdf, and fitted cdfG(x) of SS=(8)-distribution having pdf) for above data of the remission
times of a random sample of 128 bladder cancer patients avensin Figureb.

From Tablel, it is observed that S§6)-distribution having pdf§) has the lowest AIC, BIC, -LL and KS test value in
comparision to those of TIWD, TIED, IWD and TIRD; indicatitigat S& (6)-distribution provides a better fit than the
other four lifetime distributions namely TIWD, TIED, IWD drTIRD.

5 Comparison of the estimators

In this section, we compared the considered estimatoréyi.eds, 6 of the parametef of pdf (6) in terms of simulated
risks (average loss over sample space) under GELF. It isttlabthe expressions for the risks cannot be obtained & nic
closed form. So, the risks of the estimators are estimateti@basis of Monte Carlo simulation study of 5000 samples
from pdf (6). It may be noted that the risks of the estimators will be acfiom of number of items put on test
parameteB of the model, the hyper parametersand of the prior distribution and the GELF parameéerin order to
consider the variation of these values, we obtained the lateul risks forn = 15, 6 = 2, M = 1,2,3,

V =0.1,05,1,2,5,10,100,500 andd = +3.
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Table2 shows the risks of the estimators@®fvhen guessed value 6f(M = 1) is less than its true valué & 2) and we
observed that when over estimation is more serious thanr@sdienation, the estimatdi; performs better (in the sense
of having smallest risk) in comparison fig and 8y for lower confidence in the guessed value and for high condielém
guessed valueis performs better thafg and 6y. But in the reverse situation, the only change is noted tahigh
confidence in the guessed val@g, performs better thalg and 6s.

Further, Table8 shows the risks of the estimators@fvhen guessed value 6f(M = 2) is same as its true valué & 2)
and it is observed that the estimat®y performs better than the other estimators for moderate @merlconfidence in

the guessed value, while for higher confidence in the gueﬂed,és performs better for whatever may be the situation
is serious.

Finally, Table4 shows the risks of the estimators &fwhen guessed value & (M = 3) is greater than its true value
(6 = 2) and it is observed that when over estimation is more sefilban under estimation, the estimaéy performs
better in comparison t6s and By for lower confidence in the guessed value and for high confieé@nguessed valuég
performs better. But in the reverse situation, the estmmqaerforms well for higher confidencé ; performs batter for
moderate confidence and for lower confidence, the estinSatperforms better.

Table 2; Risks of the estimators @& under GELF for fixech= 15,0 =2,M = 1 andd = +3

5=-3 o0=+3

Re(6w)

Rg(6s)

Rg(6c)

Rs(6m)

Rg(6s)

Rs(6c)

0.1
0.5

10
100
500

0.2738009
0.2743367
0.2718506
0.2718565
0.2696276
0.2738389
0.2805843

0.8279515
0.2698518
0.2561712
0.267155
0.2665932
0.2751602
0.2833976

0.5602645
0.1989104
0.2097545
0.2412518
0.246442
0.2541608
0.2628969

0.378193
0.3770018
0.3928168
0.3756553
0.3686863
0.3761437
0.3793893

0.3246863
0.1684724
0.2311955
0.3288731
0.3419576
0.3673616
0.373038

0.5540848
0.2507738
0.2512197
0.278374
0.278791
0.2906435
0.2910866

Table 3: Risks of the estimators & under GELF for fixech= 15,0 =2,M =2 andd = £3

v o0=-3 0=+3
Ra(Bv) | Ro(6s) Ro(6c) | Ro(Bw) | Ro(by Rs(6c)

0.1 | 0.2779026| 0.04231212| 0.04093879| 0.3857821| 0.03682427| 0.03842067

0.5 | 0.2724498| 0.1058654 | 0.1103778 | 0.3884136| 0.1308066 | 0.1080364

1 0.273504 | 0.1628869 | 0.1618809 | 0.3793466| 0.1975366 | 0.1708151

5 | 0.2735559| 0.2464482 | 0.231951 | 0.3710224| 0.3160623 | 0.2569307

10 | 0.2779773| 0.2647012 | 0.2482753 | 0.3689269| 0.3368521 | 0.2714024
100 | 0.2711806| 0.2700362 | 0.2521126 | 0.3748748| 0.3653429 | 0.2896318
500 | 0.2764858| 0.2788361 | 0.2566196 | 0.3686769| 0.3618619 | 0.2879823
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Table 4: Risks of the estimators @& under GELF for fixech= 15,0 =2, M = 3 andd = 43

v o=-3 o=+3
Ro(Bw) | Ro(Bs) | RolBo) | Ro(Bw) | Re(6s) | Rol(fo)

0.1 | 0.2715807| 0.4357377| 0.4365846| 0.3884268| 0.9126745| 0.9036269
0.5 | 0.266041 | 0.2199453| 0.2558782| 0.3975871| 0.43974 | 0.2773379

1 0.2777014| 0.1767826| 0.2118104| 0.3691888| 0.337568 | 0.1935476

5 0.2757049| 0.2222811| 0.22444 | 0.3687834| 0.3365857| 0.2431336
10 0.27652 | 0.2474642| 0.2411496| 0.3751386| 0.353347 | 0.2676574
100 | 0.2737185| 0.2712784| 0.2533212| 0.3783093| 0.370335 | 0.2929393
500 | 0.276816 | 0.2764202| 0.2568241| 0.3842771| 0.3776275| 0.2966648

g(x)

Fig. 1. Plots of probability density function of $$9)-distribution for different values of
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Fig. 2: Plots of hazard rate function of §&)-distribution for different values of
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Fig. 3: Prior and Posterior pdfs @ for a randomly generated samplefrom SS(0)-distribution for fixedn= 15,0 =2,M =2 and
V=0.1
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Fig. 4: Prior and Posterior pdfs @ for a randomly generated samplefrom SS(60)-distribution for fixedn= 15,0 =2,M =2 and
V=500
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Fig. 5: Plots of empirical cdf, and fitted cdfG(x) of SS(6)-distribution for remission times of 128 bladder canceigras data

6 Conclusion

From the above simulation study, it is clear that the Bay#ismasors of the parametér of SS(6)-distribution having
pdf (6) may be recommended for their use as per confidence leve¢igubssed value @éf as discussed in the previous
section. Further from real data analysis, it is clear thatr@8sformation 1) is full proof and by its use, the distribution,
thus found may be appropriate for real life applications.
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