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Variable threshold concept lattice (VTCL) was proposed by Ma et al.(2006), which
provide a new parameterized way to obtain formal concepts from data with fuzzy at-
tributes. Axiomatic Fuzzy Set (AFS) algebras were proposed by Liu (1998), which
are new semantic methodology relating to the fuzzy theory. In this paper, in order to
explore the relationship between the AFS algebras and VTCL, three algebra homo-
morphism maps are established, by which one can find that AFS algebras have similar
properties to VTCL.
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1 Introduction

Formal concept analysis (FCA) originally proposed by Wille [6], which is an im-
portant theory for data analysis and knowledge discovery. In the past decades, FCA has
great development in theory, and has become a powerful tool to deal with data. In artificial
intelligence, FCA is used as a knowledge representation mechanism and as a conceptual
clustering method [5, 7, 16]. In database theory, FCA has extensively been used for design
and management of class hierarchies [4, 8, 18, 21, 22]. Concept lattice, or Galois lattice,
is the core of the mathematical theory of FCA. Concept lattice is a form of a hierarchy in
which each node (formal concept) represents a subset of objects (extent) with their com-
mon attributes (intent). The characteristic of concept lattice theory lies in reasoning on the
possible attributes of data sets [25]. The classical concept lattices only reflect the accurate
relationships between objects and attributes, while the fuzzy concept lattices [1,2,15] show
the uncertain relationships between objects and attributes. Since there exists a great of un-
certain in real world, it is important and interesting to study the fuzzy concept lattice. While
the huge number of fuzzy formal concepts is a drawback, in order to track this problem,
Ma and Zhang proposed fuzzy concept lattices with a variable threshold [15]. Compared to
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the classical concept lattice and the fuzzy concept lattice, the fuzzy formal context with a
variable threshold will be simpler in terms of the number of formal concepts. The process
of generating the variable threshold concept lattice can be viewed as a process of choosing
representative concepts from generation of a concept lattice.

AFS algebras were proposed by Liu [10,11], which are new approach relating to the se-
mantic interpretations of fuzzy attribute. An AFS algebra is a family of completely distribu-
tive lattice [19]. Recently, AFS algebras have been further developed and applied to fuzzy
clustering analysis [14], fuzzy decision trees [12] and concept representations [9, 20, 23],
etc. About the detail properties of AFS algebras, please see [9–11, 13].

The main purpose of this paper is to explore the homomorphism relationship between
VTCL and AFS algebras. The remain of paper is organized as follows: In Section 2, some
basic notions pertinent to this paper are introduced. In Section 3, three algebra homomor-
phism maps between AFS algebras and VTCL are established to show that AFS algebras
have similar properties VTCL. Finally, conclusions are drawn in Section 4.

2 Preliminaries of the AFS algebras and VTCL

In this section, we recall some definitions and present several pertinent results of VTCL
and AFS algebras, i.e., EI , EII , E#I algebra. There exist few different definitions about
VTCL [3, 15, 24], we adopt the definition introduced by [15].

2.1 Variable threshold concept lattice (VTCL)

Definition 2.1. ( [15]) (Fuzzy Formal Context). A fuzzy formal context is a triple K =
(X,M, I = ϕ(X,M)), where X is a set of objects, M is a set of attributes, and I is a
fuzzy set on domain X ×M . Each relation (x,m) ∈ I has a membership value µ(x,m)
in [0,1].

Definition 2.2. ( [15]) Let (X,M, I) be a fuzzy formal context and δ ∈ (0, 1]. A pair
(A,B) is referred to as a variable threshold formal concept, for short, a variable threshold
concept, of (X,M, I), if and only if A ⊆ X , B ⊆ M , A

′δ = B and A = B
′δ . A is

referred to as the extent and B the intent of (A,B). We denote by Bδ(X,M, I) the set of
all variable threshold concepts of a fuzzy formal context (X,M, I), where
A

′δ = {b ∈ B|(a, b) ∈ Iδ, for all a ∈ A},
B

′δ = {a ∈ A|(a, b) ∈ Iδ, for all b ∈ B},
(a, b) ∈ Iδ denotes the degree that the object a has the attribute b, or the degree that b is
possessed by a no less than δ. i.e. µ(a, b) ≥ δ.

Lemma 2.1. ( [15]) For a fuzzy formal context (X,M, I), the following properties hold:
for all A1, A2, A ⊆ X , B1, B2, B ⊆M and δ ∈ (0, 1],

1. A1 ⊆ A2 ⇒ A
′δ
2 ⊆ A

′δ
1 , B1 ⊆ B2 ⇒ B

′δ
2 ⊆ B

′δ
1 .

2. A ⊆ A
′δ ′δ, B ⊆ B

′δ ′δ.
3. A = A

′δ ′δ ′δ, B = B
′δ ′δ ′δ.

4. A ⊆ B
′δ , B ⊆ A

′δ .
5. (A1

∪
A2)

′δ = A
′δ
1

∩
A

′δ
2 , (B1

∪
B2)

′δ = B
′δ
1

∩
B

′δ
2 .

6.(A1

∩
A2)

′δ ⊇ A
′δ
1

∪
A

′δ
2 , (B1

∩
B2)

′δ ⊇ B
′δ
1

∪
B

′δ
2 .

7. (A
′δ ′δ, A

′δ) and (B
′δ, B

′δ ′δ) are variable threshold concepts.
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Table 2.1: Descriptions of features [17]

outlook temperature humidity windy?
xi rain sunny overcast temp (◦F ) humid (%) yes no
x1 1 0 0 71 96 1 0
x2 0 0 1 72 90 1 0
x3 0 0 1 83 78 0 1
x4 1 0 0 75 80 0 1
x5 0 1 0 75 70 1 0
x6 0 1 0 85 85 0 1

Lemma 2.2. ( [15]) Let (X,M, I) be a fuzzy formal context, δ1, δ2 ∈ (0, 1] and δ1 < δ2,
Then for all A ⊆ X , B ⊆M , the following properties hold:
1. A

′δ1
′δ2 ⊆ A

′δ1
′δ1 ⊆ A

′δ2
′δ1 , B

′δ1
′δ2 ⊆ B

′δ1
′δ1 ⊆ B

′δ2
′δ1 .

2. A
′δ1

′δ2 ⊆ A
′δ2

′δ2 ⊆ A
′δ2

′δ1 , B
′δ1

′δ2 ⊆ B
′δ2

′δ2 ⊆ B
′δ2

′δ1 .

Lemma 2.3. ( [15]) Let (X,M, I) be a fuzzy formal context, δ ∈ (0, 1], (A1, B1),
(A2, B2) ∈ Bδ(X,M, I) are ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2(⇔ B2 ⊆
B1), Then (Bδ(X,M, I),≤) is a complete distribute lattice, and conjunction and disjunc-
tion given by:
1. (A1, B1) ∧ (A2, B2) = (A1 ∩A2, (B1 ∪B2)

′δ ′δ),
2. (A1, B1) ∨ (A2, B2) = ((A1 ∪A2)

′δ ′δ, B1 ∩B2).

2.2 A review of the AFS algebras

In this section, we recall some notations and present several pertinent results of AFS
algebras. The following example, which employs the features table from [17], serves as an
introductory illustration of the AFS algebras.

Example 2.1. Let X = {x1, x2, ..., x6} be a set of 6 cases and their features which are
described by real numbers (temperature, humidity), Boolean values (outlook, windy). Let
M = {m1,m2, ..., m10} be the set of fuzzy or crisp attributes on X and each m ∈ M
associates to a single feature. Where m1 : “rain”, m2 : “sunny”, m3 : “overcast”, m4 :
“hot”, m5 : “cool”, m6 :“about 80◦F”, m7 : “humid”, m8 : “dry”, m9 : “windy”, m10 :
“no windy”. The elements of M are viewed as “elementary” attributes.

Many new attributes can be generated by Boolean conjunction and disjunction of the
attributes in M . For instance, A = {m1,m6} ⊆ M , it implies a new fuzzy attribute
(“complex attribute”) “the rain day which temperature is about 80◦F ”, which associates
to the features sunny and temperature.

∑
i∈I Ai, which is a formal sum of the attributes

Ai ⊆ M, i ∈ I . For example, we may have γ = m1m6 +m1m9 which translates as “the
rain day which temperature is about 80◦F ” or “windy rain day” (the “+” denotes here a
disjunction of attributes). For Ai ⊆ M, i ∈ I ,

∑
i∈I Ai has a well-defined meaning such

as the one we have discussed above. By a straightforward comparison of

γ1 = m1m6 +m1m9 and γ2 = m1m6 +m1m9 +m1m5m9, (2.1)

we conclude that the expressions of γ1 and γ2 are equivalent in semantics. Considering the
terms of γ2, for any x, if x satisfies the condition m1m5m9, then it must satisfies m1m9.
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Therefore, the term m1m5m9 is redundant in semantics when forming the fuzzy attribute
γ2.

2.2.1 EI algebra

Let M be non-empty set. The set EM∗ is defined by

EM∗ = {
∑

i∈I Ai|Ai ∈ 2M , i ∈ I, I is any non-empty indexing set}.

Definition 2.3. ( [10]) Let M be a non-empty set A binary relation RI on EM∗ defined as
follows: for

∑
i∈I Ai,

∑
j∈J Bj ∈ EM∗, (

∑
i∈I Ai)R

I(
∑

j∈J Bj) ⇐⇒ (i) ∀Ai (i ∈ I),
∃Bh (h ∈ J) such that Ai ⊇ Bh; (ii) ∀Bj (j ∈ J), ∃ Ak (k ∈ I), such that Bj ⊇ Ak.

It’s obvious that RI is an equivalence relation. The quotient set EM∗/RI is denoted by
EM . Indeed, any element of EM is an equivalence class. Let [

∑
i∈I Ai]RI ∈ EM be the

set of all elements which are equivalent to
∑

i∈I Ai ∈ EM∗. For the sake of convenience,
in the following, [

∑
i∈I Ai]RI is denoted as

∑
i∈I Ai, if

∑
i∈I Ai ∈ EM∗ is not specified.

That is to say, when
∑

i∈I Ai ∈ EM∗ is specified,
∑

i∈I Ai only denote an element
of the EM∗, otherwise

∑
i∈I Ai always means the equivalence class [

∑
i∈I Ai]RI . For∑

i∈I Ai,
∑

j∈J Bj ∈ EM∗,
∑

i∈I Ai and
∑

j∈J Bj are equivalent under the equivalence
relation RI means [

∑
i∈I Ai]RI = [

∑
j∈J bj ]RI .

Definition 2.4. ( [19]) A complete lattice L is called completely distributive lattices, if one
of the following conditions hold∧

i∈I

(
∨
j∈Ji

aij) =
∨

f∈
∏

i∈I Ji

(
∧
i∈I

aif(i)),
∨
i∈I

(
∧
j∈Ji

aij) =
∧

f∈
∏

i∈I Ji

(
∨
i∈I

aif(i))

where ∀i ∈ I , ∀j ∈ Ji, aij ∈ L, and f ∈
∏

i∈I Ji means f is a mapping f : I →
∪

i∈I Ji
such that f(i) ∈ Ji.

Theorem 2.1. ( [10]) For any
∑

i∈I Ai,
∑

j∈J Bj ∈ EM, then (EM,∨,∧) forms a com-
pletely distributive lattice under the binary compositions ∨ and ∧ defined as follows,∑

i∈I

Ai ∨
∑
j∈J

Bj =
∑

k∈I⊔J

Ck,
∑
i∈I

Ai ∧
∑
j∈J

Bj =
∑

i∈I,j∈J

(Ai ∪Bj), (2.2)

where for any k ∈ I ⊔ J (the disjoint union of I and J), Ck = Ak if k ∈ I , and Ck = Bk if
k ∈ J.

(EM,∨,∧) is called the EI algebra over M . For α =
∑

i∈I Ai, β =
∑

j∈J Bj

∈ EM , α ≤ β ⇐⇒ α ∨ β = β ⇔ ∀Ai (i ∈ I), ∃Bh (h ∈ J) such that Ai ⊇ Bh. M , ∅
are the minimum and maximum element in EM , respectively.

In Example 2.1, let ψ1 = m1m5 +m2m4m9, ψ2 = m4m9 +m4m8 ∈ EM . By (2.2),
the algebra operations of them are shown as follows:

ψ2 ∨ ψ2 = m1m5 +m4m9 +m4m8,

ψ1 ∧ ψ2 = m1m4m5m9 +m1m4m5m8 +m2m4m9.

As long as we can determine the algebra operations ∨,∧ of the few attributes in M, the
logical operations ∨ (“or”) and ∧ (“and”) of all complex attributes in EM can also be
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determined. A collection of a few attributes in M plays a similar role to the one of a
“basis” used in linear vector spaces.

In the sequel, we denote the subsets of X with the lower case letters and the subsets of
M with the capital letters, in order to distinguish the subsets of X from the subsets of M .

2.2.2 EII algebra

Definition 2.5. ( [10]) Let X,M be non-empty sets. A binary relation RII on the set
EXM∗ = {

∑
i∈I uiAi|Ai ∈ 2M , ui ∈ 2X , i ∈ I, I is any non-empty indexing set} is

defined as follows: for any
∑

i∈I uiAi,
∑

j∈J vjBj ∈ EXM∗,

(
∑

i∈I uiAi)R
II(
∑

j∈J vjBj) ⇐⇒ (i) ∀uiAi (i ∈ I), ∃vhBh (h ∈ J) such thatAi ⊇ Bh,
ui ⊆ vh ; (ii) ∀vjBj (j ∈ J), ∃ ukAk (k ∈ I), such that Bj ⊇ Ak, vj ⊆ uk.

Obviously, RII is an equivalence relation. The quotient set EXM∗/RII is de-
noted by EXM . Similar to EI algebra, the equivalent class [

∑
i∈I aiAi]RII is de-

noted as
∑

i∈I aiAi in the sequel, if
∑

i∈I aiAi ∈ EXM∗ is not specified. For∑
i∈I aiAi,

∑
j∈J bjBj ∈ EX∗,

∑
i∈I aiAi and

∑
j∈J bjBj are equivalent under the

equivalence relation RII means [
∑

i∈I aiAi]RII = [
∑

j∈J bjBj ]RII .

Theorem 2.2. For any
∑

i∈I uiAi,
∑

j∈J vjBj ∈ EXM, then (EXM,∨,∧) forms a
completely distributive lattice under the binary compositions ∨ and ∧ defined as follows,∑

i∈I

uiAi ∨
∑
j∈J

vjBj =
∑

k∈I⊔J

wkCk, (2.3)

∑
i∈I

uiAi ∧
∑
j∈J

vjBj =
∑

i∈I,j∈J

[(ui ∩ vj)(Ai ∪Bj)] . (2.4)

(EXM,∨,∧) is called the EII algebra over X and M . For α =
∑

i∈I uiAi, β =∑
j∈J vjBj ∈ EXM , α ≤ β ⇐⇒ α ∨ β = β ⇔ ∀uiAi (i ∈ I), ∃vhBh (h ∈ J) such

that Ai ⊇ Bh, ui ⊆ vh. ∅M , X∅ are the minimum and maximum element in EXM ,
respectively.

2.2.3 E#I algebra

In order to better solve the real world problems, authors proposed an other AFS algebra,
denoted as E#I algebra [9].

Let X be non-empty set. The set EX∗ is defined by

EX∗ = {
∑

i∈I ai|ai ∈ 2X , I is any non-empty indexing set}

Definition 2.6. ( [9]) Let X be a non-empty set. A binary relation R# on EX∗ is defined
as follows: for

∑
i∈I ai,

∑
j∈J bj ∈ EX∗, (

∑
i∈I ai)R

#(
∑

j∈J bj) ⇔ ∀ai (i ∈ I), ∃bh
(h ∈ J) such that ai ⊆ bh and ∀bj (j ∈ J), ∃ak (k ∈ I) such that bj ⊆ ak.

It is obvious that R# is an equivalence relation on EX∗. The quotient set EX∗/R# is de-
noted byE#X . Similar toEI algebra, equivalent class [

∑
i∈I ai]R# is denoted as

∑
i∈I ai

in the sequel, if
∑

i∈I ai ∈ EX∗ is not specified. For
∑

i∈I ai,
∑

j∈J bj ∈ EX∗,
∑

i∈I ai
and

∑
j∈J bj are equivalent under the equivalence relation R# means [

∑
i∈I ai]R# =

[
∑

j∈J bj ]R# .
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Theorem 2.3. For any
∑

i∈I ai,
∑

j∈J bj ∈ E#X, then (E#X, ∨, ∧) forms a completely
distributive lattice under the binary compositions ∨, ∧ defined as follows,∑

i∈I

ai ∨
∑
j∈J

bj =
∑

k∈I⊔J

ck,
∑
i∈I

ai ∧
∑
j∈J

bj =
∑

i∈I,j∈J

(ai ∩ bj). (2.5)

(E#X, ∨, ∧) is called an E#I algebra over X . For α =
∑

i∈I ui, β =
∑

j∈J vj
∈ EXM , α ≤ β ⇐⇒ α ∨ β = β ⇔ ∀ui (i ∈ I), ∃vh (h ∈ J) such that ui ⊆ vh. ∅, X
are the minimum and maximum element in E#X respectively.

In Example 2.1, let µ1 = {x1, x2, x5}+ {x2, x3}, µ2 = {x4}+ {x1, x2} ∈ E#X . By
(2.5), the algebra operations of them are shown as follows:

µ1 ∨ µ2 = {x1, x2, x5}+ {x2, x3}+ {x4}, µ1 ∧ µ2 = {x1, x2}.

In [9,10], authors have been established the homomorphisms relationships betweenEI ,
EII and E#I (i.e., the arrows 1, 2 and 3 in Figure 2.1). In next section, we will explore
that there exist some homomorphism maps (i.e., the arrows 4, 5 and 6 in Figure 2.1) to
reflect the relationship between VTCL and EI , EII and E#I , respectively.

E
I
I
 E
#
I


E
I


V
T
C
L


5
 6


4


1


2


3


Figure 2.1: The Relationship between AFS Algebra and VTCL

3 The relationship between AFS algebras and VTCL

For given two sets X , M , we can establish the EII algebra (EXM,∨,∧), which is
a completely distributive lattice. First, we will discuss the relationship between the lattice
(Bδ(X,M, I),≤) and (EXM,∨,∧). To conveniently, we first define a subsets of EXM
as following:

I(EXM) = {γ ∈ EXM |γ =
∑
i∈I

biBi, i ∈ I, bi ∈ X,Bi ∈M, bi = B
′δ
i } (3.1)

where operation ′δ defined by Definition 2.2.
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Theorem 3.1. Let (X,M, I) be a fuzzy context. Then I(EXM) is a sub EII algebra of

EXM , i.e., ζk ∈ I(EXM), k ∈ K, ∨k∈Kζk ∈ I(EXM) and ∧k∈Kζk ∈ I(EXM),

and I(EXM,∨,∧) is a completely distribute lattice.

Proof: It is easy to show that ∨k∈Kζk ∈ I(EXM). Since EXM is a completely
distributive lattice, so that

∧k∈Kζk =
∑

f∈
∏

k∈K Ik

(
∩k∈Kbkf(k),∪k∈KBkf(k)

)
.

where f ∈
∏

k∈K Ik means that f is a map f : K → ∪k∈KIk such that f(k) = Ik for
∀k ∈ K. By Lemma 2.1 and the definition of I(EXM), we can get that for ∀k ∈ K,
j ∈ Ik (

∪k∈KBkf(k)

)′δ
= ∩k∈K(Bkf(k))

′δ = ∩k∈Kbkf(k).

Therefore, ∧k∈Kζk ∈ I(EXM). Moreover, I(EXM,∨,∧) is a completely distributive
lattice because (EXM,∨,∧) is a completely distributive lattice.

Theorem 3.2. Let (X,M, I) be a fuzzy context, then pI1 is a homomorphism map from the

lattice (EM,∨,∧) to the lattice (Bδ(X,M, I),≤), provided that for any
∑

i∈I Bi ∈ EM ,

pI1 is defined by

pI1

(∑
i∈I

Bi

)
= ∨i∈I(B

′δ
i , B

′δ ′δ
i ) =

((
∪i∈IB

′δ
i

)′δ ′δ

,∩i∈IB
′δ ′δ
i

)
. (3.2)

where operation ′δ defined by Definition 2.2.

Proof: By Lemma 2.1, one can see that for any
∑

i∈I Bi ∈ EM , and for ∀i ∈ I ,
(B

′δ
i , B

′δ ′δ
i ) ∈ Bδ(X,M, I). Since (Bδ(X,M, I),≤) be a complete lattice, so for any∑

i∈I Bi ∈ EM ,

pI1

(∑
i∈I

Bi

)
=

((
∪i∈IB

′δ
i

)′δ ′δ

,∩i∈IB
′δ ′δ
i

)
= ∨i∈I(B

′δ
i , B

′δ ′δ
i ) ∈ Bδ(X,M, I).

Now, we will show that pI1 is a map from EM to Bδ(X,M, I). Suppose that
∑

i∈I1
Bi =∑

k∈I2
Bk ∈ EM , by definition of EI algebra and Lemma 2.1, which means that ∀i ∈

I1,∃k ∈ I2 such that Bi ⊇ Bk, B
′δ
i ⊆ B

′δ
k , and ∀k ∈ I2,∃i ∈ I1 such that Bk ⊇ Bi,

B
′δ
k ⊆ B

′δ
i . Therefore, ∪i∈I1B

′δ
i = ∪k∈I2B

′δ
k and (∪i∈I1B

′δ
i )

′δ ′δ = (∪k∈I2B
′δ
k )

′δ ′δ

hold.
Notice that both ((∪k∈I2B

′δ
k )

′δ ′δ,∩k∈I2B
′δ ′δ
k ) and ((∪i∈I1B

′δ
i )

′δ ′δ,∩i∈I1B
′δ ′δ
i ) are

variable threshold concepts in Bδ(X,M, I), hence(
(∪i∈I1B

′δ
i )

′δ ′δ,∩i∈I1B
′δ ′δ
i

)
=
(
(∪k∈I2B

′δ
k )

′δ ′δ,∩k∈I2B
′δ ′δ
k

)
,

which implies that pI1 (
∑

i∈I1
Bi) = pI1 (

∑
k∈I2

Bk) hold.
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Moreover, for any ζ =
∑

i∈I Ai, η =
∑

j∈J Bi ∈ EM , by Lemma 2.1 and 2.3, we
have

pI1 (ζ ∨ η)

=

([(
∪i∈IA

′δ
i

)
∪
(
∪j∈JB

′δ
j

)]′δ ′δ

,
[(

∩i∈IA
′δ ′δ
i

)
∩
(
∩j∈JB

′δ ′δ
j

)])
.

pI1 (ζ) ∨ pI1 (η)

=

((
∪i∈IA

′δ
i

)′δ ′δ

,∩i∈IA
′δ ′δ
i

)
∨
((

∪j∈JB
′δ
j

)′δ ′δ

,∩j∈JB
′δ ′δ
j

)
=

([(
∪i∈IA

′δ
i

)′δ ′δ

∪
(
∪j∈JB

′δ
j

)′δ ′δ
]′δ ′δ

,
[(

∩i∈IA
′δ ′δ
i

)
∩
(
∩j∈JB

′δ ′δ
j

)])
.

Notice that both pI1 (ζ ∨ η) and pI1 ∨ pI1 (η) are variable threshold concepts in Bδ(X,M, I),
hence pI1 (ζ ∨ η) = pI1 ∨ pI1 (η). From (3.2) and definition of EI algebra, we have

pI1 (ζ ∧ η) = pI1

 ∑
i∈I,j∈J

Ai ∪Bi

 = ∨i∈I,∈J((Ai ∪Bj)
′δ, (Ai ∪Bj)

′δ ′δ). (3.3)

In addition, for any i ∈ I, j ∈ J , it follows by Lemma 2.3 that

(A
′δ
i , A

′δ ′δ
i ) ∧ (B

′δ
j , B

′δ ′δ
j ) =

(
(A

′δ
i ∩B

′δ
j ), (A

′δ ′δ
i ∪B

′δ ′δ
j )

′δ ′δ
)
.

By Lemma 2.1, we have

(A
′δ ′δ
i ∪B

′δ ′δ
j )

′δ ′δ =
(
(A

′δ ′δ
i ∪B

′δ ′δ
j )

′δ
)′δ

= (A
′δ
i ∩B

′δ
j )

′δ

= (Ai ∪Bj)
′δ ′δ.

Therefore, for any i ∈ I, j ∈ J ,

((Ai ∪Bj)
′δ, (Ai ∪Bj)

′δ ′δ) = (A
′δ
i , A

′δ ′δ
i ) ∧ (B

′δ
j , B

′δ ′δ
j ),

and

pI1 (ζ ∧ η) = ∨i∈I,j∈J [(A
′δ
i , A

′δ ′δ
i ) ∧ (B

′δ
j , B

′δ ′δ
j )]

= [∨i∈I(A
′δ
i , A

′δ ′δ
i )] ∧ [∨j∈J(B

′δ
j , B

′δ ′δ
j )]

= pI1 (ζ) ∧ pI1 (η).

Thus, pI1 is a homomorphism map from (EM,∨,∧) to (Bδ(X,M, I),≤).

Theorem 3.3. Let (X,M, I) be a fuzzy context, then pI2 is a homomorphism map

from the lattice (I(EXM),∨,∧) to the lattice (Bδ(X,M, I),≤), provided that for any
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i∈I biBi ∈ EM , pI2 is defined by

pI2

(∑
i∈I

biBi

)
= ∨i∈I(bi, b

′δ
i ) =

(
(∪i∈Ibi)

′δ ′δ
, ∩i∈I b

′δ
i

)
(3.4)

where operation ′δ defined by Definition 2.2.

Proof: By Lemma 2.1, for any
∑

i∈I biBi ∈ I(EXM), one can derive that ∀i ∈ I ,
(bi, b

′δ
i ) = (B

′δ
i , B

′δ ′δ
i ) ∈ Bδ(X,M, I), this implies that(
(∪i∈Ibi)

′δ ′δ
,∩i∈Ib

′δ
i

)
= ∨i∈I(bi, b

′δ
i ) ∈ Bδ(X,M, I).

First, we need to prove that pI is a map from I(EXM) to Bδ(X,M, I). Suppose that∑
i∈I1

biBi =
∑

k∈I2
bkBk ∈ I(EXM), i.e., ∀i ∈ I1, ∃k ∈ I2 such that Bi ⊇ Bk,

bk ⊇ bi and ∀k ∈ I2, ∃i ∈ I1 such that Bk ⊇ Bi, bi ⊇ bk, these imply that b
′δ
k ⊆ b

′δ
i and

b
′δ
k ⊇ b

′δ
i , so ∪i∈I1bi = ∪k∈I2bk, ∩i∈I1 b

′δ
i = ∩k∈I2b

′δ
k . Therefore, pI2 (

∑
i∈I1

biBi) =

pI2 (
∑

k∈I2
bkBk), i.e., pI2 is a map from I(EXM) to Bδ(X,M, I). Then for any ζ =∑

i∈I aiAi, η =
∑

j∈J bjBj ∈ I(EXM), by (3.4) and Lemma 2.3, we have

pI2 (ζ ∨ η)

=
(
[(∪i∈Iai) ∪ (∪j∈Jbj)]

′δ ′δ
,
[
(∩i∈Ia

′δ
i ) ∩ (∩j∈Jb

′δ
j )
])
,

pI2 (ζ) ∨ pI2 (η)

=
(
(∪i∈Iai)

′δ ′δ
, ∩i∈I a

′δ
i

)
∨
(
(∪i∈Ibi)

′δ ′δ
, ∩i∈I b

′δ
i

)
=

([
(∪i∈Iai)

′δ ′δ ∪ (∪j∈Jbj)
′δ ′δ
]′δ ′δ

,
[
(∩i∈Ia

′δ
i ) ∩ (∩j∈Jb

′δ
j )
])

.

Recall that both pI2 (ζ ∨ η) and pI2 (ζ) ∨ pI2 (η) are variable threshold concepts in
Bδ(X,M, I), hence pI2 (ζ ∧ η) = pI2 (ζ) ∨ pI2 (η). By definition of EI algebra, Lemma
2.3 and (3.4), we have

pI(ζ ∧ η) = pI

 ∑
i∈I,j∈J

ai ∩ biAi ∪Bi

 = ∨i∈I,∈J(ai ∩ bj , (ai ∩ bj)
′δ). (3.5)

Notice that for any i ∈ I , j ∈ J ,

(ai, a
′δ
i ) ∧ (bj , b

′δ
j ) = (ai ∩ bj , (a

′δ
i ∪ b

′δ
j )

′δ ′δ).

By Lemma 2.1, for any i ∈ I , j ∈ J , we have

(a
′δ
i ∪ b

′δ
j )

′δ ′δ = ((a
′δ
i ∪ b

′δ
j )

′δ)
′δ = (a

′δ ′δ
i ∩ b

′δ ′δ
j )

′δ = a
′δ
i ∪ b

′δ
j = (ai ∩ bj)

′δ.

So, (ai, a
′δ
i ) ∧ (bj , b

′δ
j ) = (ai ∩ bj , (ai ∩ bj)

′δ), and pI2 (ζ ∨ η) = ∨i∈I,j∈J(ai ∩ bj , (ai ∩
bj)

′δ) = ∨i∈I,j∈J [(ai, a
′δ
i ) ∧ (bj , b

′δ
j )] = pI2 (ζ) ∧ pI2 (η).

Thus, pI2 is a homomorphism map from (EXM,∨,∧) to (Bδ(X,M, I),≤).
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Theorem 3.4. Let (X,M, I) be a fuzzy context, then pI3 is a homomorphism map from the

lattice (E#X,∨,∧) to the lattice (Bδ(X,M, I),≤), provided that for any
∑

i∈I bi ∈ EM ,

pI3 is defined by

pI3

(∑
i∈I

bi

)
= ∨i∈I(bi, b

′δ
i ) =

(
(∪i∈Ibi)

′δ ′δ
, ∩i∈I b

′δ
i

)
. (3.6)

where operation ′δ defined by Definition 2.2.

Proof: The proof is similar to Theorem 3.3.
By Theorems 3.2, 3.3 and 3.4, one can see that (Bδ(X,M, I),≤) has algebraic proper-

ties similar to the EI algebra E#I algebra and I(EGM), the sub EII algebra of EGM .

Theorem 3.5. Let (X,M, I) be a context. If e : Bδ(X,M, I) → EXM is defined as

following: for any (b,B) ∈ Bδ(X,M, I), e(b,B) = bB ∈ EXM . Then the following

conclusions hold:

T5-1. If (a,A), (b,B) ∈ Bδ(X,M, I), (a,A) ≤ (b, B), then e(a,A) ≤ e(b,B);

T5-2. For any (a,A), (b,B) ∈ Bδ(X,M, I), e((a,A) ∨ (b,B)) ≥ e(a,A) ∨ e(b,B),

e((a,A) ∧ (b,B)) ≤ e(a,A) ∧ e(b,B).

Proof: T5-1 (a,A) ≤ (b, B) ⇒ a ⊆ b, A ⊇ B. From definition of EII algebra, one
has

e(a,A) ∨ e(b,B) = aA+ bB = bB = e(b,B).

This implies that e(a,A) ≤ e(b,B) in lattice EXM .
T5-2 e((a,A) ∨ (b,B)) = e((a ∪ b)′δ ′δ, A ∩ B) = (a ∪ b)′δ ′δA ∩ B, moreover, by

Lemma 2.1,
(a ∪ b)

′δ ′δ ⊇ a ∪ b, (A ∪B)
′δ ′δ ⊇ A ∪B.

Therefore, by definition of EII algebra, we have

e((a,A) ∨ (b,B)) = (a ∪ b)
′δ ′δA ∩B ≥ aA+ bB = e(a,A) ∨ e(b, B),

e((a,A) ∧ (b,B)) = (a ∩ b)(A ∪B)
′δ ′δ ≤ aA ∧ bB = e(a,A) ∧ e(b, B).

The proof is complete.

Theorem 3.6. Let (X,M, I) be a context. If f : Bδ(X,M, I) → EXM is defined as

following: for any (b,B) ∈ Bδ(X,M, I), f(b,B) = b ∈ E#X . Then the following

conclusions hold:

T6-1. If (a,A), (b,B) ∈ Bδ(X,M, I), (a,A) ≤ (b, B), then f(a,A) ≤ f(b,B);

T6-2. For (a,A), (b, B) ∈ Bδ(X,M, I), f((a,A) ∨ (b,B)) ≥ f(a,A) ∨ f(b,B),

f((a,A) ∧ (b,B)) = f(a,A) ∧ f(b, B).
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Proof: T6-1 (a,A) ≤ (b,B) ⇒ a ⊆ b, A ⊇ B. From definition of E#I algebra, one
has

f(a,A) ∨ f(b,B) = a+ b = b = f(b,B).

This implies that f(a,A) ≤ f(b,B) in lattice EXM .
T6-2 f((a,A) ∨ (b, B)) = f((a ∪ b)′δ ′δ, A ∩B) = (a ∪ b)′δ ′δ , and by Lemma 2.1,

(a ∪ b)
′δ ′δ ⊇ a ∪ b.

So, (a ∪ b)′δ ′δ ⊇ a, (a ∪ b)′δ ′δ ⊇ b. Therefore, from the definition of E#I algebra, we
have

f((a,A) ∨ (b,B)) = (a ∪ b)
′δ ′δ ≥ a+ b = f(a,A) ∨ f(b,B)

f((a,A) ∧ (b,B)) = a ∩ b = a ∧ b = f(a,A) ∧ f(b,B).

The proof is complete.

Theorem 3.7. Let (X,M, I) be a context. If g : Bδ(X,M, I) → EM is defined as

following: for any (b,B) ∈ Bδ(X,M, I), g(b,B) = B ∈ EM . Then the following

conclusions hold:

T7− 1. If (a,A), (b,B) ∈ Bδ(X,M, I), (a,A) ≤ (b,B), then g(a,A) ≤ g(b,B);

T7− 2. For(a,A), (b,B) ∈ Bδ(X,M, I),

g((a,A) ∨ (b, B)) ≥ g(a,A) ∨ g(b, B),

g((a,A) ∧ (b, B)) ≤ g(a,A) ∧ g(b, B),

Proof: T7-1 (a,A) ≤ (b,B) ⇒ a ⊆ b, A ⊇ B. From definition of EI algebra, one
has

g(a,A) ∨ g(b,B) = A+B = B = g(b,B).

This implies that g(a,A) ≤ g(b,B) in EM .
T7-2 g((a,A) ∨ (b, B)) = g((a ∪ b)′δ ′δ, A ∩B) = A ∩B, we have

g((a,A) ∨ (b,B)) = A ∩B ≥ A+B = g(a,A) ∨ g(b,B),

by Lemma 2.1, (A ∪B)
′δ ′δ ⊇ (A ∪B), so (a ∩ b)(A ∪B)

′δ ′δ ≤ (a ∩ b)(A ∪B),

g((a,A) ∧ (b,B)) = (a ∩ b)(A ∪B)
′δ ′δ ≤ aA ∧ bB = e(a,A) ∧ (b,B).

The proof is complete.
Theorems 3.5, 3.6, 3.7 imply that some properties of the (Bδ(X,M, I),≤) can be stud-

ied in the framework of the AFS algebras. Moreover, the AFS algebras are more general
algebra structures and can be applied to study fuzzy attributes, such as fuzzy clustering
analysis, fuzzy decision trees, etc. About the detail application of AFS algebras, please
see [11–14, 20].
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4 Conclusion

In this paper, we discuss the homomorphism relationship between VTCL and AFS

algebras. Three algebra homomorphism maps (i.e., Theorems 3.2, 3.3, 3.4) between AFS

algebras and variable threshold concept lattice are established, by which one can see that

the threshold concept lattice (Bδ(X,M, I),≤) has algebraic properties similar to the AFS

algebras. Some properties of the complete lattice (Bδ(X,M, I),≤) can be studied in the

framework of the AFS algebras.
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