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Abstract: In this paper, we present a new framework for combining complete andincomplete methods in order to deal with the Max
Sat problem. The objective is to find the best assignment for a set of Boolean variables, which gives the maximum of verified clauses in
a Boolean formula. Unfortunately, this problem has been shown to be NP-hard (non-deterministic polynomial-time hard) if the number
of variables per clause is greater than 3. The proposed approach is based on quantum inspired genetic principles and the well known
exact algorithm DPLL. The underlying idea is to harness the optimization capabilities of quantum genetic algorithm to achieve good
quality solutions for Max SAT problem. A new local search based on DPLLalgorithm has been embodied in the quantum genetic
algorithm leading to an efficient hybrid framework which achieves better balance between diversification and intensification search.
The obtained results are very encouraging and show the feasibility and effectiveness of the proposed hybrid approach.
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1 Introduction

There are several combinatorial optimization problems
that are difficult to solve. Among these problems, there is
the problem of propositional satisfiability (SAT). It is the
task of determining the satisfiability of a given Boolean
formula by looking for the variable assignment that
makes this formula evaluating to true. In 1971, Stephen
Cook had demonstrated that the Max-SAT problem is
NP-complete [1]. This complex problem has several
applications in different areas such as model checking [2],
graph colouring [3] to cite just few. The Maximum
Satisfiability (Max-SAT) problem is a variant of SAT
problem that aims to find the variable assignment
maximizing the number of satisfied clauses Max 3-SAT is
special case of Max SAT problems where the Boolean
expressions are written in CNF (Conjunctive normal
form) with 3 variables per clause. The following Boolean
formula is in 3-CNF expression form:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x5) ∧ ... ∧ (x1 ∨ x4 ∨ x3).
There are other variants of the Max-SAT problem such as
Weighted Max-SAT [4] and Partial Max-SAT [5]. To
solve this problem, many algorithms were proposed. In
fact, there are two classes of algorithms for solving
instances of SAT in practice: Complete and Incomplete

methods. The complete algorithms are able to verify the
satisfiability or the unsatisfiablilty of the SAT problem,
although they have an exponential complexity They
usually have an exponential complexity [6]. The most
popular algorithms of this class are based on the
Davis-Putnam-Loveland algorithm (DPLL) [7]. The
DPLL procedure is based on a systematic search process
used for finding a satisfying assignment for a given
Boolean formula or verifying that it is unsatisfiable. On
the other hand, incomplete methods are principally based
on local search and evolutionary algorithms. Incomplete
methods find good quality solutions in reasonable time.
Therefore, they do not guarantee optimality. This class of
methods encompasses Evolutionary Algorithms
(EA) [8, 9], Stochastic Local Search (SLS)
methods [10, 11] and hybrid methods [12, 13] One of the
iterative methods that have been used recently to solve
this type of problem is Genetic Algorithms (GA) [14,15].
It is a stochastic iterative algorithm that operates on a
population of individuals. GA adapts nature optimizing
principles like mechanics of natural selection and natural
genetics. Each individual represents a potential solution
in the search space of the problem. Basically, a genetic
algorithm consists of three essential operations: selection,
crossover, and mutation. The selection operator consists
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in selecting an intermediate population from the current
one in order create the future population by using
crossover and mutation operators. The crossover operator
merges two individuals to provide new ones. The
mutation operator allows moving each solution to one of
its neighbours in order to maintain a good diversity
during the optimization process. Although GAs have been
used to solve many difficult engineering problems, they
have been shown to be inappropriate for solving SAT
problems [16]. To overcome this drawback and in order to
get better performance and quality convergence, their
hybridization with local search method is exploited. Far
from SAT problem, Quantum computing is a new
research field that covers investigations on quantum
mechanical computers and quantum algorithms [17, 18].
QC relies on the principles of quantum mechanics like
qubit representation and superposition of states. QC is
capable of processing huge numbers of quantum states
simultaneously in parallel. QC brings new philosophy to
optimization due to its underlying concepts. Recently, a
growing theoretical and practical interest is devoted to
researches on merging evolutionary computation and
quantum computing [19–22]. The aim is to get benefit
from quantum computing capabilities to enhance both
efficiency and speed of classical evolutionary algorithms.
This has led to the design of Quantum inspired Genetic
Algorithms QGA that have been proven to be better than
conventional GAs. Unlike pure quantum computing,
QGA does not require the presence of a quantum machine
to work. With this background, we propose a new hybrid
approach which we call QGADPLL. It is based on a
hybrid algorithm of Quantum Inspired Genetic and local
search. For that, a problem formulation in terms of
quantum representation and evolutionary dynamic
borrowing quantum operators were defined. The quantum
representation of the solutions allows the coding of all the
potential solutions of MAX SAT with a certain
probability. The optimization process consists in the
application of a quantum dynamic constituted of a set of
quantum operations such as interference, quantum
mutation and measure improved by the use of local search
method in order to well explore the search space. The
local search is based on the exact algorithm DPLL. The
idea consists in applying of DPLL algorithm on small set
of clauses selected randomly from the MAX SAT
problem formula. In order to increase the performance of
the local search, the subset of clauses must contain at
least one false clause. The experiences carried out on
QGADPLL showed the feasibility and the effectiveness
of our approach. Consequently, the remainder of the
paper is organized as follows: Section 2 presents the
problem formulation. Section 3 presents a state of art on
the Max sat solvers. A brief introduction to quantum
computing is presented in Section 4. The proposed
approach is described in Section 5. Section 6 illustrates
some experimental results. Then, we terminate by giving
conclusion and some perspectives.

2 Problem formulation

Throughout this paper,n will represent the number of
Boolean variables andm will denote the number of
clauses in formula F. Given a Boolean formula F
expressed in CNF (Conjunctive Normal Form), let have n
Boolean variablesx1,x2, ...,xn, and m clauses C1,C1,...,
Cm. The problem of MAX SAT can be formulated as
follow:

–An assignment to those variables is a vector: v = (v1,
v2,...,vn)∈ {0,1}n

–A clause Ci of length k is a disjunction of k literals,
Ci = (x1∨ x2∨ ...∨ xk)

–Each literal is a variable or a negation of a variable
–Each variable can appear multiple times in the
expression.

For some constant k, the k-SAT problem requests if
there is a satisfying assignment that makes a CNF
formula F = C1∧C2∧ ... ∧Cm true. The problem of
MAX k-SAT can be defined by specifying implicitly a
pair (O,SC)where O is the set of all potentials solution
({0,1}n) and SC is a mappingO → N called score of the
assignment that is the number of true clauses. Each
solution is viewed as binary vector. Consequently, the
problem consists to define the best binary vector that
maximizes the number of true clauses in the Boolean
formula.

Clearly, there are 2n potential satisfying assignments
for this problem. It has been proven that the MAX k-SAT
problem is NP-complete for anyk <= 3. In this paper we
deal with the Max 3-SAT problem. It is obviously that
this problem is a combinatorial optimization problem. It
appears to be impossible to obtain exact solutions in
polynomial time. The main reason is that the required
computation grows exponentially with the size of the
problem. Therefore, it is often desirable to find near
optimal solutions to these problems. Efficient heuristic
algorithms offer a good alternative to accomplish this
goal.

3 State-of-the-art SAT solving algorithms

Modern Max-SAT solvers have deeply improved the
techniques and algorithms to find optimal solutions. In
practice there are two broad classes of algorithms for
solving instances of Max-SAT: Complete and Incomplete
methods. The complete methods examine the entire
search space, they fully answer for the problem of
satisfiability of an instance [4, 23]. In the worst case, the
computation time required for the execution of such
methods increases exponentially with the size of the
instance to solve. The Davis and Putnam method
(DP) [24] is one of the first methods dedicated for solving
the SAT problem. The DP method is based on the
application of the resolution rule in order to eliminate
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variables. Unfortunately, this mechanism may generate an
exponential number of resolved clauses. The Davis,
Putnam, Logemann and Loveland procedure (commonly
known DPLL) is an enhancement of the algorithm DP [7].
The DPLL is a highly efficient and still forms the basis of
the most effective SAT solvers. DPLL escapes the
exponential clause generation and the high memory usage
of DP. The DPLL takes advantage of two techniques that
improve the selection of assignments to variables. One of
these is Pure Literal Elimination [25]. A pure literal is a
literal that occurs only in positive form or only in negative
form in the CNF formula. The DPLL procedure assigns a
value to the pure variable in a way to make all clauses
containing them true which permits the algorithm to
eliminate these clauses from the formula. The second
technique used by the DPLL algorithm is Unit
Propagation [26]. A clause is said to be a unit clause if
contains only a single unassigned literal. The unit
propagation algorithm consists in in assigning the value to
single unassigned literals contained in all the unit clauses
that makes the clauses true. The unit propagation
algorithm helps to accelerate the DPLL algorithm by
recognizing assignments that must be made and therefore
excluding certain parts of the search tree. Currently, the
most of exact methods are based mainly on the DPLL
procedure. The main difference between them is the
branching heuristics used to explore the search
tree [23, 27]. The fact that complete algorithms require
huge amount of computing time, even for relatively small
problem instances, incomplete methods have been
developed to resolve SAT or MAX-SAT problems of large
size in reasonable time. Although, incomplete methods do
not guarantee finding the best solutions, because they do
not explore the entire space of possible solutions, they are
able to find quickly a good solution towards the cost and
constraints of the problem. The incomplete methods are
principally based on metaheuristics such as: local search
methods, evolutionary algorithms or hybrid methods. The
local search methods are widely used to solve Max 3-Sat
problems [11]. Among the popular methods of this class,
we can cite the popular method GSAT [28] and its
improved variant Walksat [29]. GSAT starts with a
random assignment and iteratively apply a set of flips by
using a specific heuristics in order to enhance the number
of satisfied clauses. Walksat is an evolution of GSAT in
which the heuristics used to select the variable to flip is
improved. The main difference lies in the estimated
neighborhood size: Walksat reduces greatly the number of
neighbors as it selects a false clause, and only one
variable of this clause may be flipped. One biggest
improvement to GSAT method is adopting the strategy of
”random walk” [30] while solving the problem. This
strategy allows us to accelerate the convergence and allow
avoiding some local minima. The idea of this strategy is
to choose a variable to flip among the variables involved
in randomly selected false clause. Unfortunately, Walksat
suffers from the local minima problem. To overcome this
problem, Walksat insert some randomness in the search

process. New heuristics were integrated in Walksat to
choose a variable of the clause to flip such as Random,
Best Novelty, Rnovelty and Tabu [30]. Evolutionary
algorithms have been applied to SAT problems. However,
the use of a pure evolutionary algorithm has been
unsuccessful in Max Sat problems. In fact, Rana and
Whitley showed that a classical genetic algorithm is
unsuitable for Max 3-Sat problem [16], because this
problem requires more intensification search than
diversification search. Therefore, hybridization between
evolutionary algorithms and local search methods are
needed to find success. This kind of hybridization is
called memetic algorithms [31]. Recently, several
memetic algorithms were proposed to deal with the Max
Sat problems for example: FlipGA [9] based on hybrid
genetic algorithm and a special flip heuristics; GASAT [8]
based on hybrid genetic algorithm and tabu search and
QGASAT [32] based on quantum evolutionary algorithm
and an adapted quantum local search procedure. Finally, a
new kind of hybridization based on incomplete and
complete algorithms has emerged. Although the exact
methods are able to provide an optimal solution for
instances of small size, incomplete methods are usually
able to find solutions close to optimum for instances of
large sizes. It is therefore natural that, starting from this
observation, many hybrid methods of these two resolution
paradigms were considered. Hybridization consists to use
heuristics inspired DPLL for local search heuristics, and
reciprocally the local search methods for DPLL
algorithm. In such combinations, the incomplete methods
are used to quickly identify promising areas of search
space in which the exact methods practiced an exhaustive
exploration. There are several methods in the literature
based on this kind of hybridization [33]

4 An Overview of Quantum Computing

Quantum Computing (QC) is an emergent field calling
upon several specialties: physics, engineering, chemistry,
computer science and mathematics [17]. QC uses the
specificities of quantum mechanics for the processing and
the transformation of information. The aim of this
integration of knowledge is the realization of a quantum
computer in order to carry out certain calculations much
more quickly than with a traditional computer. This
acceleration is made possible while benefiting from the
quantum phenomena such as the superposition of states,
the entanglement and the interference. A particle
according to principles of quantum mechanics can be in a
superposition of states. By taking account of this idea,
one can define a quantum bit or the qubit which can take
value 0, 1 or a superposition of the two at the same time.
Its state can be given by:

Φ = a|0>+b|1> (1)
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Where|0> and|1> represent the classical bit values
0 and 1 respectively; a and b are complex numbers such
that:

|a|2+ |b|2 = 1 (2)

The probability that the qubit collapses towards 1 (0)
is |a|2 (|b|2).This idea of superposition makes it possible
to represent an exponential set of states with a small
number of qubits. According to the quantum laws like
interference, the linearity of quantum operations and
entanglement make the quantum computing more
powerful than the classical machines. Each quantum
operation will deal with all the states present within the
superposition in parallel. For in-depth theoretical insights
on quantum information theory, one can refer to [17,18].
A quantum algorithm consists in applying of a succession
of quantum operations on quantum systems. Quantum
operations are performed using quantum gates and
quantum circuits. Yet, a powerful quantum machine is
still under construction. By the time when a powerful
quantum machine would be constructed, researches are
conducted to get benefit from the quantum computing
field. Since the late 1990s, merging quantum computation
and evolutionary computation has been proven to be a
productive issue when probing complex problems. The
purpose of this combination is to increase the profit of
each one of these two areas by reciprocally inspiring each
from the other. Like any other evolutionary algorithm, a
Quantum Genetic Algorithm QGA relies on the
representation of the individual, the evaluation function
and the population dynamics [19]. The particularity of
QGA stems from the quantum representation they adopt
which allows representing the superposition of all
potential solutions for a given problem. It also stems from
the quantum operators it uses to evolve the entire
population through generations. Quantum genetic
algorithms were proposed to solve many difficult
combinatorial optimization problems, and the
experimental results demonstrated that these algorithms
were far more superior to conventional GAs [19–22]

5 The Proposed Approach

Exploitation of the optimization properties of quantum
computing is an attractive way to probe complex
problems like the MAX 3-SAT problem. Within this
perspective, we are interested in applying quantum
computing principles improved by new stochastic local
search method to solve this problem. The first quantum
inspired genetic algorithm for Max 3-SAT was proposed
in [32]. The authors have integrated an adapted flip
procedure in the core of the quantum genetic algorithm.
However, the behavior study of this hybrid algorithm
showed that the convergence speed is slows and the
performance results are not competitive compared to
other recent techniques. For this purpose, we propose in

this paper a new local search operator. This latter is an
adapted divided and conquer algorithm based on DPLL
procedure. The development of the suggested approach
called QGADPLL is based mainly on a quantum
representation of the search space associated with the
problem and a quantum dynamic used to explore this
space by operating on the quantum representation by
using quantum operations. The quantum dynamic is
enhanced by a local search procedure based on DPLL
algorithm. In order to show how quantum computing
concepts have been tailored to the problem at hand, we
need first to derive a representation scheme which
includes the definition of an appropriate quantum
representation of potential Boolean assignments and the
definition of quantum evolutionary operators. Then, we
describe how these defined concepts have been combined
with local search algorithm to deal with the Max 3-Sat
problem.

5.1 Quantum representation of MAX 3-SAT
solution

To successfully apply quantum computing principles on
Max 3-Sat problem, we have needed to map potential
solutions into a quantum representation that could be
easily manipulated by quantum inspired evolutionary
operators. The Boolean assignment is represented as
binary vector of sizen. In terms of quantum computing,
each solution is represented as a quantum register of size
n where each bit is associated with one variable as shown
in figure 1. The register contains superposition of all

possible solutions. Each column

(

ai
bi

)

represents a single

qubit and corresponds to the binary digit 1 or 0. The
probability amplitudesai andbi are real values satisfying
Equation (1). For each qubit, a binary value is computed
according to its probabilities|a|2 and |b|2. |a|2 and |b|2

are interpreted as the probabilities to have respectively 0
or 1. Consequently, all feasible solution can be
represented by a Quantum Vector QV that contains the
superposition of all possible solutions. This quantum
vector can be viewed as a probabilistic representation of
all the MAX 3-SAT solutions. The figure 2 shows an
example of equi-probable quantum chromosome (we have
the same probability to get 0 or 1 by the measurement).
When embedded within an evolutionary framework, it
plays the role of the chromosome. Only one chromosome
is needed to represent the entire population.

5.2 Quantum operators

The quantum operations which are the basis of the
quantum genetic dynamics are as follows:

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 77-87 (2014) /www.naturalspublishing.com/Journals.asp 81

Fig. 1: Quantum representation of the SAT solution

Fig. 2: Example of Equiprobable quantum solution of Max
3−Sat problem

Fig. 3: Measure operation

5.2.1 Measurement

This operation transforms by projection the quantum
matrix into a binary matrix as shown in Figure 3.
Therefore, there will be a solution among all the solutions
present in the superposition. But contrary to the pure
quantum theory, this measurement does not destroy the
superposition. That has the advantage of preserving the
superposition for the following iterations knowing that we
operate on traditional machines. The binary values for a
qubit are computed according to its probabilities and .
This operation is accomplished as follows: for each qubit,
we generate a random number Pr between 0 and 1, the
value of the corresponding bit is 1 if the probability is
greater than Pr, else the bit value is 0. Moreover, the
measurement operation can be seen also as a
diversification operator. Indeed, two successive
measurements do not give necessarily the same solution
which increases the diversification capacities of our
approach.

5.2.2 Quantum interference

The operation of interference is useful to intensify search
around the best solution. This operation amplifies the
amplitude of the best solution and decreases the
amplitudes of the bad ones. It primarily consists in
moving the state of each qubit in the direction of the
corresponding bit value in the best solution in progress.
This operation can be accomplished by using a unit
transformation which achieves a rotation whose angle is a

Fig. 4: Quantum interference

function of the amplitudes ai, bi and of the value of the
corresponding bit in the solution reference. The Figure 4
illustrates a quantum interference operation. The values
of the rotation angleθ is chosen so that to avoid
premature convergence. A big value of the rotation angle
can lead to premature convergence or divergence;
however a small value to this parameter can increase the
convergence time. Consequently, the angle is set
experimentally and its direction is determined as a
function of the values of ai, bi and the corresponding
elements value in the binary vector (table1).

Table 1. Lookup table of the rotation angle
a b Reference

bit value
Angle

> 0 > 0 1 +δθ
> 0 > 0 0 -δθ
> 0 < 0 1 -δθ
> 0 < 0 0 +δθ
< 0 > 0 1 -δθ
< 0 > 0 0 +δθ
< 0 < 0 1 +δθ
< 0 < 0 0 -δθ

5.2.3 Mutation operator

This operator allows exploring new solutions and thus
enhances the diversification capabilities of the search
process. It allows moving from the current solution to one
of its neighbors. It consists of choosing a random qubit
with a defined probability Pm, and then there is a
permutation between its componentsai and bi as shown
on the figure 5, that will inverse the probabilities of
having the values 0 and 1 when applying a measurement.

5.2.4 Crossover operators

Crossovers are important for promoting the exchange of
high quality blocks within the population. The quantum
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Fig. 5: Quantum Mutation

Fig. 6: Quantum crossover

crossovers have the same principle as the crossovers in
conventional genetic algorithms. However, it operates on
quantum chromosomes. The chromosomes are chosen
randomly. Then, the two selected chromosomes exchange
some selected quantum qubits between them. The
advantage of quantum crossover is the exploration of new
solutions. The crossover is very important in order to
avoid to be trapped in local optima, because all quantum
chromosomes evolve to the same direction. For example
the figure 6 shows an example of quantum crossover. It
should be noted that is better to use specific crossover
operations more adapted for the max sat problems like
those used in GASAT [8]. View that the quantum
representation offers a great diversity; it is preferably to
use small values for the probabilities of mutation and
crossover in order to keep good performance of GQA.

5.3 The Local Search-based DPLL

The study of the performance of the method QGASAT
based on a quantum genetic algorithm with a simple local

search technique [32] showed that the performance to find
the exact solutions for satisfiable instances is low and the
convergence speed is slowed down. In this section, we
show how a quantum genetic algorithm can be greatly
improved by hybridizing with a new local search based on
a complete method. The complete methods give optimal
solutions because it performs an exhaustive search and
thus fully exploits the search space. Unfortunately, they
suffer from the explosion combinatorial problem. On
other hand, incomplete methods are characterized by
great simplicity and speed as they explore certain areas of
search space. They however, give less optimal solutions.
It is interesting to merge complete and incomplete
methods in order to take advantage of the best features of
both approaches. Our idea is to integrate the
intensification abilities of the exact method DPLL in the
quantum genetic algorithm that has the diversification
faculties. The goal of this hybridization is to obtain a
good compromise between these two basic strategies of
search and without increasing the computing time. That is
while, the exact algorithm DPLL is incorporated into the
algorithm QGADPLL as a local search method (Figure
7). The idea is based on a well-known concept in
computer science: ”divide and conquer” which consists to
divide arbitrarily the problem into several sub-problems
easily resolvable. The partial solutions found are inserted
in the solution of the original problem. Consequently, to
use the efficiency of exact algorithm without increasing
the execution time, the new local search method applies
iteratively the DPLL algorithm on small parts of the
Boolean formula. The principle is to first select a
continuous subset of clauses in the Boolean formula
(Figure 8). Therefore, this chosen subset of clauses
constitutes a Boolean formula with few variables and few
clauses, which makes the application of the exact
algorithm easy. In our method, the size of window
selection is dynamic in order to maintain greater
efficiency. Our local search method is generic which can
be integrated easily in different metaheuristics. The
general scheme of this procedure is given by the bellow
algorithm (Figure 9). The Figure 8 gives an example of
how apply our local search based DPLL. For example, we
have a CNF formula of 9 clauses and 13 Boolean
variables. The first step consists in selecting a set of
random clauses (IC). Consequently, the obtained formula
F’ contains a few clauses (5 clauses) and a few variables
(for example 6 variables). After the application of the
DPLL algorithm on the formula F’ we get a partial exact
assignment for the 6 variables of the formula F’. Finally,
the variables values involved in the chosen clauses are
replaced by the new ones found by the DPLL procedure.

5.4 Outline of the proposed framework

Now, we describe how the quantum representation, the
quantum operators and the local search based DPLL have
been embedded within an evolutionary algorithm and
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Fig. 7: General Scheme of a hybrid QGA with an exact
method

Fig. 8: An Example of partial application of the local
search based DPLL

Fig. 9: The local search based DPLL

resulted in a hybrid stochastic algorithm performing
variable truth assignment search. In more details, the
proposed QGADPLL can be described as in the algorithm
2. Given a Boolean formula in CNF, first, a population of
quantum chromosomes is randomly generated to
represent all possible variable assignments. Each quantum
chromosome contains random numbers between the
numbers -1 and 1. Secondly, the initial population is
evaluated using the fitness function. The evaluation of
each solution is preceded by the measure operation in
order to get a binary solution. The objective function to be
maximized in the Max 3-Sat problem is the number of
satisfied clauses in the Boolean formula. However, its
preferable to use an adaptive fitness function which help
to center on difficult clauses and to escape from local
optima. During the whole process we keep in memory the
global best solution. The algorithm progresses through a
number of generations according to a quantum based
dynamics. At each iteration, the following main tasks are
performed: the application of the crossover and mutation
operations, the application of the local search method
based DPLL, and the application of the interference
operation. Finally, we apply the selection and replacement
operators to generate the next population. The selection
operation selects p quantum chromosomes among the
quantum chromosomes representing the current
population. It takes place in two steps: first a
measurement operation is performed to extract the binary
chromosomes representing the potential solutions.
Afterwards, we select the p chromosomes from which
derive the p best results and we generate also randomly
new quantum chromosomes in order to keep a good
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Fig. 10: QGADPLL scheme

diversity. The whole process is repeated until reaching a
stopping criterion (Figure 10).

6 Implementation and Evaluation

QGADPLL is implemented in Java and tested on a
micro-computer 3 GHz and 1 GB of memory. We have
used the package SAT4J [34] which contains a java
implementation of an exact method based DPLL. In order
to assess the efficiency and accuracy of our approach, we
have performed several tests taken from the AIM
benchmark instances [35]. The AIM instances are all
generated with a particular Random-3-SAT instance
generator. The used AIM instances include yes-instances
with low and high clause/variable ratios that have
exactly one solution. In our experiment, we have used
only the satisfiable benchmarks because we want to
evaluate the performances of our approach to find the
exact solutions for yes-instances. We have compared our
algorithm against three popular stochastic local search
methods: Walksat, Novelty [36] and an Iterated Robust
Tabu Search IROTS [37]; and two memetic algorithms:
Clonsat [38] which is based on Clonal selection algorithm
and walksat and QGASAT [32]. The purpose of the last
comparison is to show the impact of local search on
quantum genetic optimization in order to solve the MAX
3-SAT problem. In all experiments, the size of population
is 4 and the selection size is p=3. The permutation
probability is a tunable parameter which was set to 0.15,
the crossover probability is 0.6, the interference angle is
p/20, and the iteration number is 100 iterations for
quantum genetic algorithm and 30 iterations for the local
search procedure. The size of the window selection in the
local search based DPLL is chosen between 15 and 25
clauses for small instances and between 20 and 80 clauses
for large instances. Finally, statistical tests of Freidman

were carried out to test the significance of the difference
in the accuracy of each method in this experiment. The
table two summarizes the obtained results. For each
program, we have taken the best of three consecutive
runs. The results found seem to be very promising and
demonstrate the feasibility and efficiency of our approach.
Indeed, QGADPLL is able to find the exact solutions for
all the instances. According to the Friedman test, our
method is better than QGASAT which confirms that the
local search method used in QGASAT is not good to deal
with yes-instances (Figure 11). The results show that the
integration of the new local search based exact procedure
in the quantum genetic algorithm provides a significant
improvement in the performance and efficiency of our
approach compared to the method QGASAT. Moreover,
our approach needs less iteration to find good solutions.
The results of the programs IROTS and Clonsat are very
close to the exact solutions. However the two local search
methods Walksat and Novelty are not good in this
experiment. The study of the optimization behavior of our
approach reveals that finding the optimal solution is not
conducted in a random manner. The best solution is
gradually improved until the terminal conditions are
reached. Figure 12 shows an example of the variation of
the best QGADPLL solution found during the
optimization process of three consecutive executions. The
effectiveness of our approach is explained by the good
combination between diversification and intensification
which leads the algorithm to effectively explore the
search space and locate a good solution. In addition, our
idea is a very promising approach to solve satisfiable
instances of large size. Finally, the performance of QGA
without the local search algorithm is rather poor.

Table 2.Results
Test #var #cls Novelty Wsat QGASAT QGADPDLL IROTS Clonsat
aim-50-16-yes1 50 80 79 79 79 80 79 79
aim-50-16-yes2 50 80 79 79 79 80 79 80
aim-50-16-yes3 50 80 79 79 79 80 80 80
aim-50-16-yes4 50 80 79 79 79 80 80 80
aim-50-20-yes1 50 100 99 99 99 100 100 100
aim-50-20-yes2 50 100 99 100 100 100 100 100
aim-50-20-yes3 50 100 99 99 99 100 100 100
aim-50-20-yes4 50 100 99 100 100 100 100 100
aim-50-34-yes1 50 170 170 170 170 170 170 170
aim-50-34-yes2 50 170 170 170 170 170 170 170
aim-50-34-yes3 50 170 170 170 170 170 170 170
aim-50-34-yes4 50 170 170 170 170 170 170 170
aim-50-60-yes1 50 300 300 300 300 300 300 300
aim-50-60-yes2 50 300 300 300 300 300 300 300
aim-50-60-yes3 50 300 300 300 300 300 300 300
aim-50-60-yes4 50 300 300 300 300 300 300 300
aim-100-16-yes1 100 160 159 159 159 160 159 159
aim-100-16-yes2 100 160 159 159 159 160 159 159
aim-100-16-yes3 100 160 159 159 159 160 159 159
aim-100-16-yes4 100 160 159 159 159 160 159 159
aim-100-20-yes1 100 200 199 199 199 200 199 199
aim-100-20-yes2 100 200 199 199 199 200 199 199
aim-100-20-yes3 100 200 199 199 199 200 199 199
aim-100-20-yes4 100 200 199 199 199 200 199 199
aim-100-34-yes1 100 340 340 340 339 340 340 340
aim-100-34-yes2 100 340 340 340 337 340 340 340
aim-100-34-yes3 100 340 340 340 340 340 340 340
aim-100-34-yes4 100 340 340 340 340 340 340 340
aim-100-60-yes1 100 600 600 600 600 600 600 600
aim-100-60-yes2 100 600 600 600 600 600 600 600
aim-100-60-yes3 100 600 600 600 600 600 600 600
aim-100-60-yes4 100 600 600 600 600 600 600 600
aim-200-20-yes1 200 400 399 399 399 400 399 399
aim-200-20-yes2 200 400 399 399 398 400 399 399
aim-200-20-yes3 200 400 399 399 399 400 399 399
aim-200-20-yes4 200 400 399 399 399 399 399 399
aim-200-60-yes1 200 1200 1200 1200 1200 1200 1200 1200
aim-200-60-yes2 200 1200 1200 1200 1200 1200 1200 1200
aim-200-60-yes3 200 1200 1200 1200 1200 1200 1200 1200
aim-200-60-yes4 200 1200 1200 1200 1200 1200 1200 1200
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Fig. 11: Freidman test compares the methods
QGADPLL,Walksat , Novelty, IROTS, QGSAT and
Clonsat against exact method. Dash lines: not successful
programs. Solid line: successful program

Fig. 12: The behavior of the best solution for the test :
aim−200−2 0− yes1−1

7 conclusion

In this paper, we have proposed a new approach called
QGADPLL to solve the problem MAX 3-SAT.
QGADPLL combines strengths of both DPLL and
Quantum Genetic Algorithms. The quantum
representation of the solutions allows the coding of all the
potential solution with a certain probability. The
optimization process consists of the application of a
quantum dynamics constituted of quantum operations
such as the interference, the quantum mutation and
measurement, enhanced by local search procedure. The
choice of the local search procedure is crucial for the
effectiveness of the resulting algorithm. There is a clear
potential of using the DPLL search as local search
procedure. Moreover, our approach is flexible, so we can
use other stochastic local search algorithms. The size of
the population is considerably reduced thanks to the
superposition principle. The experimental study proves
the feasibility and the effectiveness of our approach. As
ongoing work we study the effect of the parallelization on
the performance of our approach. There are several issues
to improve our approach. For example, we can divide a
large instance into several sub-problems, and then run in
parallel the DPLL procedure on all these sub-problems.
Another improvement is to identify and exploit the hidden
structure in a SAT problem, which helps to counteract the
combinatorial explosion of resolution.
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