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Abstract: As the combination of parameter learning and structure learning, learningBayesian networks can also be examined,
Parameter learning is estimation of the dependencies in the network. Structural learning is the estimation of the links of the network.
In terms of whether the structure of the network is known and whether the variables are all observable, there are four types of learning
Bayesian networks cases. In this paper, first introduce two cases of learning Bayesian networks from complete data: known structure
and unobservable variables and unknown structure and unobservable variables. Next, we study two cases of learning Bayesian networks
from incomplete data: known network structure and unobservable variables, unknown network structure and unobservable variables.

Keywords: Bayesian networks, Network Structure, Observable Variables

1 Introduction

The main driving force to choose Bayesian networks is
that Bayesian networks have a bidirectional message
passing architecture. Learning from the evidence can be
interpreted as unsupervised learning. Similarly,
expectation of an action can be interpreted as supervised
learning. Since Bayesian networks pass evidence (data)
between nodes and use the expectations from the world
model, they can be considered as bi-directional learning
systems. In addition to bi-directional message passing,
Bayesian networks have several important features such
as allowing subjective a priori judgements, direct
representation of causal dependence, nonmonotonic
reasoning, distillation of sensory experience and the
ability to imitate human thinking process.

A Bayesian network is a graphical model that finds
probabilistic relationships among variables of the system.
There are a number of models available for data analysis,
including rule bases, decision trees and artificial neural
networks. There are also several techniques for data
analysis such as classification, density estimation,
regression and clustering. One may wonder what
Bayesian networks and Bayesian methods have to offer to
solve such problems.

This paper is devoted to answering the question: how
can Bayesian networks be learned from data? The process
of learning Bayesian networks takes different forms in
terms of whether the structure of the network is known
and whether the variables are all observable. The structure
of the network can be known or unknown, and the
variables can be observable or hidden in all or some of the
data points. The latter distinction can also be expressed as
complete and incomplete data. Consequently, there are
four cases of learning Bayesian networks from data;
known structure and observable variables, unknown
structure and observable variables, known structure and
unobservable variables, and unknown structure and
unobservable variables. Learning Bayesian networks can
also be examined as the combination of parameter
learning and structure learning. Parameter learning is
estimation of the conditional probabilities (dependencies)
in the network. Structural learning is the estimation of the
links of the network. The four types of learning Bayesian
networks cases are discussed in the following paragraphs.
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2 Four Types of Learning Bayesian Networks

2.1 Known Network Structure and Observable
Variables

This is the easiest and the most studied case of learning
Bayesian networks in the literature [1, 2]. The network
structure is specified, and the inducer only needs to
estimate the parameters. The problem is well understood
and the algorithms are computationally efficient. Despite
its simplicity, this problem is still extremely useful,
because numbers are very hard to elicit from people.
Additionally, it forms the basis for everything else in
Bayesian learning.

Because every variable is observable, each data case
can be pigeonholed into the CPT entries corresponding to
the values of the parent variables at each node. The
pigeonhole principle essentially states that if a set
consisting of more thank · n objects is partitioned inton
classes, then some classes receive more thank objects [3].
Therefore, estimations will be highly accurate since every
variable is observable.

Learning is achieved simply by calculating
conditional probability table (CPT) entries using
estimation techniques such as Maximum Likelihood
Estimation (MLE) and Bayesian Estimation. For
simplicity, MLE and Bayesian estimators will be
explained by employing parameter learning for a single
parameter.

Assume that an experiment was conducted by flipping
a thumbtack in the air. The thumbtack comes to land as
either heads or tails. As usual, the different tosses are
assumed to be independent, and the probability of the
thumbtack landing heads is some real number .Therefore,
the goal is to estimate . Assume that we have a set of
instances d[1], · · · ,d[M] such that each instance is
sampled from the same distribution and independently
from the rest. The goal is to find a good value for the
parameterθ . A parameter is good if it predicts the data
well. In other words, if data are very likely given the
parameter, the parameter is a good predictor. The
likelihood function is defined as

L(D|θ) = P(D|θ) =
M

∏
m=1

P(d[m]θ) (1)

Thus, the likelihood for a sequenceH,T,T,H,H is

L(D|θ) = θ(1−θ)(1−θ)θθ (2)

To calculate the likelihood we need to know number
of headsNh and the number of tailsNt .These are the
sufficient statistics for this learning problem. A sufficient
statistic is a function of the data that summarize the
relevant information for computing the likelihood.

The Maximum Likelihood Estimation (MLE) principle
tells us to chooseθ that maximizes the likelihood function.
The MLE is one of the most commonly used estimators

in statistics. For the above problem, the estimation of the
parameter is as expected.

θ̂ =
Nh

Nh +Nt
(3)

The MLE estimate seems plausible, but is overly
simplistic in many cases. Assume that the experiment
with the thumbtack is done and 3 heads out of 10 are
recorded. It may be quite reasonable to conclude that the
parameterθ is 0.3. On the other hand, what if the same
experiment is done with a dime and also 3 heads are
recorded. We would be much less likely to jump the
conclusion that the parameter of the dime is 0.3 because
we have a lot more experience with tossing dimes. Thus,
we have a lot more prior knowledge about their behavior.

Using MLE, we cannot make the following
distinctions: between a thumbtack and a dime, and
between 10 tosses and 1,000,000 tosses of a dime. On the
other hand, there is another method recommended by
Bayesian statistics. The MLE is a frequentist approach
since it relies on the frequency in the data. Another
approach is the Bayesian approach that assumes that there
is unknown but fixed parameterθ .It estimates the
parameter with some confidence, i.e., it calculates a range
such that, if the parameter is out of this range, the
probability of the data is very low.

The Bayesian approach deals with uncertainty over
anything that is unknown by putting a distribution over it.
In other words, the parameterθ is treated as a random
variable and a distributionP(θ) is defined over it.
Therefore, we can tell how likely the parameter is to take
on one value versus another. In other words, we now have
a joint probability space that contains both the tosses and
the parameter. This joint probability is easy to find given
our prior distribution overθ . Let X [1], · · · ,X [M] be our
coin tosses. The conditional probabilitiesP(X [M]θ)are
according toθ , i.e.,P(X [M] = H|θ) = θ . Now, the value
of the next tossX [M+1]can be predicted by

P(X [M+1]|X [1], · · · ,X [M]) =
∫

P(X [M+1]|θ)P(θ |D)dθ
(4)

where

P(θ |D) =
P(D|θ)P(θ)

P(D)
(5)

The first term in the numerator is the likelihood, the
second is the prior over parameters, and the third is a
normalizing factor, which is the marginal probability of
the data. If we reconsider the thumbtack problem again
with a uniform prior overθ in the interval [0,1]then
P(D|θ) = θ Nk(1−θ)Nt is proportional to the likelihood .
After plugging this into the integral and doing all the
math and normalizing, it can be shown that the following
equation holds.

P(X [M+1]|D) =
Nk +1

Nk +Nt +2
(6)
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Clearly, as the number of samples grows, the
Bayesian estimator and the MLE estimator converge to
each other. This result depends on the use of uniform
prior. In the Bayesian networks literature, the most
commonly used class of priors are the Dirichlet priors
because it turns out that most of the interesting
calculations can be done in closed form. The conjugacy of
the Dirichlet priors allows us to have the posterior
probabilities in the same form as prior probabilities.
Therefore, we can do sequential updating within the same
representations and the closed form solution can found
both for the update and the prediction problem in many
cases.

Recall that a multinomial is parameterized via a set of
parametersθ1 · · · ,θk such that∑i θi = 1; θi corresponds
to the probability ofith outcome. A Dirichlet distribution
over this set of parametersα1, · · · ,αk is defined via a set of
hyper parameters .Then, the generalization can be written
as

Dir(θ |α1, · · · ,αk) =
Γ (α)

∏i Γ (αi)
∏

i
θ αi−1

i (7)

All of the results regarding prediction and computing
the posterior extend in the obvious way. That is, ifθ is
distributed as in (7), then

P(xi) =
αi

∑ j α j
(8)

and if there is a data setD whose sufficient statistics
areN1, · · · ,Nk, then

P(θ |D) = Dir(θ |α1+N1, · · · ,αk +Nk) (9)

To generalize these results for a Bayesian network, we
need to define the sufficient statistic asN(x,u) for the
eventX = x and the parentsU = u. In the MLE case, the
estimation of the parameters can be calculated as

θ̂x|u =
N(x,u)
N(u)

(10)

Similarly, in the Bayesian case, the parameter
estimation is calculated as

θ̂x|u = Dir(α1+N(x1,u), · · · ,αk +N(xk,u)) (11)

If the data were actually generated from the given
network structure, then both methods converge
asymptotically to the correct parameter setting. If not,
then they converge to the distribution with the given
structure that is closest to the distribution from which the
data were generated. Both estimations can be
implemented online by accumulating sufficient statistics.

The process above is the method by which Bayesian
network parameters are learned when the network
topology is known and all variables are fully observable.
The next section provides an overview of some proposed
methods in the literature if the structure of the network is
not known in advance.

2.2 Unknown Network Structure and
Observable Variables

In this case, the inducer is given the set of variables in the
model, and needs to select the arcs between them and
estimate the parameters. This problem is very useful for a
variety of applications; in general, when we are given a
new domain with no available domain expert, and want to
get all of the benefits of a BN model. It is also useful for
data-mining style applications, where there are masses of
data available and we would like to interpret them. In
addition to providing a model that will allow us to predict
behavior of cases that we have not seen, the structure also
gives the expert some indication of what attributes are
correlated. The algorithms for this problem are
combinatorially expensive. They basically reduce to a
heuristic search over the space of BN structures.

There has been some attention given to the problem of
unknown network structure in the literature. The key
aspect of the problem is to reconstruct the topology of the
network from fully observable variables. In the literature,
this is considered as a discrete optimization problem
solved by a greedy search algorithm in the space of
structures. Some examples of the greedy search algorithm
can be found in [5,6].

A MAP (Maximum a Posterior) analysis of the most
likely network structure has been studied in [5] and [6]
when the data are fully observable. The resulting
algorithms are capable of recovering fairly large networks
from large data sets with a high degree of accuracy [7].
On the other hand, they usually adopt a greedy approach
to choosing the set of parents for a given node because the
problem of finding the best topology is intractable.

There are two main approaches to structure learning in
BNs:

Constraint based: Perform tests of conditional
independence on the data, and search for a network that is
consistent with the observed dependencies and
independencies.

Score based: Define a score that evaluates how well the
(in) dependencies in a structure match the data, and search
for a structure that maximizes the score.

Constraint-based methods are more intuitive. They
follow the definition of a BN more closely. They also
separate the notion of the independence from the structure
construction. The advantage of score-based methods is
that they less sensitive to errors in individual tests.
Compromises can be made between the extent to which
variables are dependent in the data and the cost of adding
the edge.

The score-based methods operate on the same
principle: a scoring function is defined for each network
structure, representing how well it fits the data. The goal
is to find the highest-scoring network structure. The space
of Bayesian networks is a combinatorial space, consisting
of a super exponential number of structures. Thus, it is not
clear how one can find the highest-scoring network even
with a scoring function. In general, the problem of finding
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the highest-scoring network structure is NP-hard. On the
other hand, the problem of searching a combinatorial
space with the goal of optimizing a function is very well
studied in AI literature. Consequently, the answer is to
define a search space, and then do heuristic search.

In light of the above statements, a BN structure
learning algorithm requires the following components be
determined:

i) Scoring function for different candidate network
structures.

ii) The definition of the search space: operators that
take one structure and modify it to produce another.

iii) A search algorithm that does the optimization
search.

Each component will be discussed separately. The
three main scoring functions commonly used to learn
Bayesian networks are the log-likelihood , the one based
on the principle of minimal description length (MDL) [8]
which is equivalent to Schwarz’ Bayesian information
criterion (BIC), and Bayesian score.

The log-likelihood function is simply the log of the
likelihood function. That is,

l(D|B,θB) = logL(D|B,θB) (12)

The log-likelihood is easier to analyze than the
likelihood, because the logarithm turns all the products
into sums. Therefore,

L(D|B,θB) = ∏
m

P(d[m]|B,θB) (13)

and, the following equation can be written:

L(D|B,θB) = ∑
m

logP(d[m]|B,θB) (14)

There are a couple of important things to note about
the log-likelihood. The log-likelihood increases linearly
with the length of data,M. The higher scoring networks
are those where the node and the parents are highly
correlated. Adding a node to the networks always
increases the log-likelihood. As a result, the network
structure that maximizes the likelihood is often the fully
connected network. This is the deficiency of the
log-likelihood score and is not desired. Thus, a score that
makes it harder to add edges is necessary. In other words,
we would like to penalize structures with too many edges.

One possible formulation of this idea is called the
MDL score. It is defined as:

ScoreMDL(B : D) = l(D|B, θ̂B)−
logM

2
Dim(B)−DL(B)

(15)
Where Dim(B) is the number of independent

parameters inB and DL(B) is the number of bits (the
description length) required to represent the structure of
.The abbreviation MDL stands for minimum description
length. The MDL score is a compromise between fit to
data and model complexity. Adding a variable as a parent

causes the log-likelihood term to increase, but so does the
penalty term. [6] There will be an edge addition if its
increase to the likelihood is worth it.

Another commonly used score is called Bayesian
score. In this case, the network score is evaluated as the
probability of the structure given the data. The Bayesian
score has the following form:

ScoreBDE(B : D) = P(B|D) =
P(D|B)P(B)

P(D)
(16)

As usualP(D) is constant, so it can be ignored when
different structures are compared. Therefore, the model
maximizesP(D|S)P(S), where S represents a structure.
The ability to ascribe a prior over structures gives us a
way of preferring some structures to others. Here, the
probabilityP(D|B) can be calculated as

P(B|D) =
∫

P(D|θB,B)P(θB|B)dθB (17)

From Equation (17), one can see that the more
parameters we have the more variables we are integrating
over. As a result, each dimension causes the value of the
integral go down because the ”hill” of the likelihood
function is a smaller fraction of the space. Therefore, this
idea gives preference to networks with fewer parameters.
It can be shown that the Bayesian score is a general form
of MDL score. The MDL score can be viewed as an
approximation of the Bayesian score. Therefore, the
Bayesian score is also a compromise between the model
complexity and fit to the data.

Several ways of scoring different Bayesian network
structures have been explained. Different scores have
been explored in terms of the network complexity and
how the network fits to the correlation in the data. Now,
the goal is to find the network that has the highest score.
In other words, training dataD, the scoring function, and
a set of possible structures are the inputs of the search
algorithm while the desired output is a network that
maximizes the score. It can be shown that finding
maximal scoring network structures where nodes are
restricted to having at mostk parents is NP-hard for any
k > 1. Therefore, a heuristic search is resorted to for this
optimization problem. A search space is defined, where
the states in the space are possible structures and the
operators denote the adjacency of structures. This space is
traversed looking for high-scoring functions to complete
the optimization. The obvious operators in the search
spaces are add an edge, delete an edge, and reverse an
edge. The search starts with some candidate network,
which may be the empty one, or one that some expert has
provided as a starting point. [7, 8]Then, applying the
operators, the high-scoring network is searched in the
space. The parameters of the network are calculated by
using training dataD.

The most commonly used algorithm for optimization
search is simple greedy hill climbing. Even though the
hill-climbing method is commonly used, it has several
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key problems such as local maxima where all one-edge
changes reduce the score and plateaus where a large set of
neighboring networks that have the same score. There are
some clever tricks that avoid some of these problems such
as TABU-search, random restart, and simulated
annealing. In general, greedy hill climbing with random
start works quite well in practice. In a world, we
examined methods for learning a Bayesian network from
fully observable data.

2.3 Known Network Structure and
Unobservable Variables

The learning of Bayesian networks with known structure
and unobservable variables has been studied by
Lauritzen [9,10], Olesen et al. [11], and Spiegelhalter and
Cowel [12]. The algorithm that these papers describe is
the expectation maximization (EM) algorithm [13] The
EM algorithm is an iterative method to calculate
maximum likelihood estimates (MLEs) and MAP
estimates of the network parameters. The EM algorithm
alternates an expectation step a maximization step. In the
expectation step, unknown quantities depending on
missing entries are replaced by their expectations in the
likelihood. In the maximization step, the likelihood
completed in the expectation step is maximized with
respect to the unknown parameters, and the resulting
estimates are employed to replace unknown quantities in
the next expectation step. The algorithm continues until
the difference between successive estimates is smaller
than a fixed threshold. Lauritzen states some difficulties
with the use of EM algorithm such as slow convergence
rate and local maxima. He then suggests that the gradient
descent algorithm can be used as a possible alternative.

The third possible approach, introduced by
Heckerman [14], is to use Gibbs sampling (GS). Gibbs
Sampling is one of the most popular Markov Chain
Monte Carlo methods for Bayesian inference. The GS
algorithm generates a value for the missing data from
some conditional distributions and provides stochastic
estimations of the posterior probabilities [15]. To
illustrate Gibbs sampling, let us approximate the
probability densityp(θs|D,sh) for the configuration of
parameters of a particular networkSh given an incomplete
data setD = {Y1, · · · ,YN} and a Bayesian network for
discrete variables with independent Dirichlet priors. To
approximatep(θs|D,Sh), we first initialize the states of
the unobserved variables in each case somehow (e.g., at
random). Therefore, we have a complete random sample
D.Then, we choose some variableXil (variableXi in case
l) that is not observed in the original random sampleD,
and reassign its states according to the probability
distribution

p(x′il |Dc\xil ,S
h) =

p(x′il ,Dc\xil |Sh)

∑x′′il
p(x′′il ,Dc\xil |Sh)

(18)

WhereDc\xil denotes the data setD with observations
xil removed, and the sum in the denominator runs over all
states of variablexil .Then, this reassignment for all
unobservable variables inD is repeated producing a new
complete random sampleDc. Using this data set, the
posterior densityp(θs|Dc,Sh)is computed. Finally, the
three steps are iterated and the average ofp(θs|Dc,Sh) is
used as our approximation.

Both the GS and EM algorithms use a basic strategy
called the missing information principle: fill in the
missing observations on the basis of the available
information. Unfortunately, these approximate methods
are prone to errors when little and/or biased information
is available about the pattern of the missing data [16].

In recent years, an exciting solution to this problem
was proposed by Sabestiani and Ramoni [17]. The
algorithm is called Bound and Collapse (BC), which is a
deterministic method to estimate conditional probabilities
from incomplete data. The method bounds the set of
possible estimates consistent with the available
information by computing the minimum and the
maximum estimates that would be gathered from all
possible completions of the database. These bounds then
collapse into a unique value via a convex combination of
the extreme points with weights depending on the
assumed pattern of missing data [18].

The basic intuition behind BC is that an incomplete
database is still able to constrain the possible estimates
within a set and that, when exogenous information is
available on the pattern of missing data, this can be used
to select a point estimate within the set of possible ones.
Let X be a variable in the setX = {X1, · · · ,Xn} with
parent variableπi. Sebastiani and Ramoni show that the
maximum Bayesian estimate ofp(xik|πi j)is

p·(xik|πi j,D) =
αi jk +n(xik|πi j)+n·(xik|πi j)

αi j +n(πi j)+n·(xik|πi j)
(19)

and the minimum Bayesian estimate is

p·(xik|πi j,D) =
αi jk +n(xik|πi j)

αi j +n(πi j)+n·(xik|πi j)
(20)

Where αi jk are the Dirichlet hyperparameters,
n·(xik|πi j) and n·(xik|πi j) are maximum and minimum
achievable virtual frequencies of(xik|πi j) in the
incomplete data, respectively. The frequencyn(xik|πi j) is
the number of occurrences of(xik|πi j) in the data. The
maximum and minimum values of the virtual frequency
are calculated filling the missing entries in order to have
maximum and minimum number of occurrences of and
counting the number of occurrences of the entry(xik|πi j),
respectively. The probability interval defined by
[p·(xik|πi j,D), p·(xik|πi j,D)] contains all possible
estimates consistent withD, therefore it is sound and it is
the tightest estimable interval.
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The main feature of the BC method is its
independence of the distribution of missing data because
it does not attempt to infer them: with no information on
the missing data mechanism, an incomplete database can
only provide bounds on the possible estimates that could
be learned [19]. A complete database is just a special
case; within available data are enough to constrain the set
of possible estimates to a single point. Another advantage
of this method is that the width of each interval accounts
for the amount of information available inD about the
parameter to be estimated. Each interval represents a
measure of quality of probabilistic information conveyed
by the database about a parameter: the wider the interval,
the greater the uncertainty due to the incompleteness of
the database. In this way, intervals provide an explicit
representation of the reliability of the estimates, which
can be taken into account when the extracted BN is
employed to perform a particular task.

The second step of the BC method collapses the
intervals estimated in the bound step into point estimates
employing a convex combination of the extreme
estimates. This convex combination can be determined
either by using external information about the pattern of
missing data or by a dynamic estimation of this pattern
from the available data.

Assume that some external information is available on
the pattern of missing data. One can encode this
information as a probability distribution defining, for each
datum in the database, the probability of the datum being
missing as

p(xik|πi j,Xi =?) = φi jk

Where k = 1, · · · ,ci, the number of state inXi is
denoted byci and∑k φi jk = 1.The notationXi =? denotes
that the state ofXi is missing. The probabilitiesφi jk can
be employed to determine accurate estimates ofθi jk,
which is the probability ofXi being in thekth state given
the parent statesπi j. A single probability for each state of
the variableXi given the parent statesπi j as

pk·(xil |πi j,D) =
αil +n(xil |πi j)

αi j +n(πi j)+n·(xik|πi j)
(21)

for l 6= k. Therefore, the local minimum ofE(θi jk|D)
can be calculated as

pl
·(xik|πi j,D) =

αi jk +n(xik|πi j)

αi j +n(πi j)+maxh 6=kn·(xik|πi j)
(22)

Which shows that the difference between
pk·(xil |πi j,D) andpl

·(xik|πi j,D) depends only on the cases
in which the state of the child variable is known and the
parent configuration is not.

The distribution of missing entries in terms ofφi jk can
be employed to identify a point estimate within the

interval [pl
·(xik|πi j,D), p·(xik|πi j,D)]via convex

combination of extreme probabilities:

p̂(xik|πi j,D,φi jk)= ∑
l 6=k

φi jk pl
·(xik|πi j,D)+φi jk p·(xik|πi j,D)

(23)
Finally, if data are missing only on the child variable

(n·(xik|πi j) = n·i j ), then we yet

p̂(xik|πi j,D,φi jk) =
αi jk +n(xik|πi j)+n·i jφi jk

αi j +n(πi j)+n·i j
(24)

so that the incomplete cases are distributed across the
states ofX according to the prior knowledge on the pattern
of missing data. Note that Equation (24) is the expected
Bayesian estimate given the assumed pattern of missing
data.

If there is no external information about the pattern of
missing data, the BC method works similar to EM and GS
methods due to the use of the pattern of the available data.
In this case,φi jk = p(xik|πi j) and it can be estimated from
the available data as

φ̂i jk =
αi jk +n(xik|πi j)

αi j +n(πi j)
(25)

This estimate can then be employed to compute the
convex combination of the extreme probabilities. The
estimate ofp(xik|πi j,D) can be computed as

p̂(xik|πi j,D) =
αi jk+n(xik|πi j)+n·i jφi jk

αi j+n(πi j)+n·i j
=

αi jk+n(xik|πi j)

αi j+n(πi j)

(26)
which is a consistent estimate ofθi jk since

p̂(xik|πi j,D) is a generalized version of the Maximum
Likelihood Estimate ofθi jk. If αi jk = 0, then the BC
estimate becomes the classical MLE ofθi jk. Clearly, the
estimates of the conditional probabilities computed by
Equation (26) are the expected estimates and, as the
database increases, they will be the same estimates
computed by GS.

Sebastiani and Romani compared the accuracy and
the efficiency of EM, GS, and methods. They found that
both EM and GS provide reliable estimates of the
parameters and they are currently regarded as the most
viable solutions to the missing data. On the other hand,
both these iterative methods can be trapped into local
minima and the convergence detection can be difficult.
Furthermore, they assume that the missing data
mechanism is ignorable; i.e., within each observed parent
configuration, the available data is a representative
sample of the complete database and the distribution of
missing data can therefore be inferred from the available
entries [20].When this assumption fails, and the missing
data mechanism is hot ignorable (NI), the accuracy of
these methods can drastically decrease. Additionally,
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Sabestiani and Romani state that the computational cost
of these methods depends mainly on the absolute number
of missing data, and this dependency can prevent their
scalability to large databases.

The most important characteristic of BC is its ability
to represent the pattern of available data and the assumed
pattern of missing data explicitly and separately. The BC
algorithm provides probability intervals that can make the
analyst aware of the range of possible estimates, and
hence of the quality of information on which inference is
based. The probability intervals used by BC provide a
specific measure of the quality of information conveyed
by the database and explicit representation of the impact
of the assumption made on the pattern of missing data.
Therefore, BC does not depend on the ignorability
assumption. Furthermore, BC reduces the cost of
estimating each conditional distribution of each variable
Xi to the cost of one exact Bayesian updating and one
convex combination for each state ofXi in each parent
configuration. This deterministic process does not
decrease the convergence rate and the convergence
detection relative to stochastic processes. Additionally,
BC the method’s computational complexity is
independent of the number of missing data.

Consequently, the BC algorithm gives almost the same
results as EM and GS when the missing data is ignorable
but it gives better results when the missing data mechanism
is not ignorable. The convergence rate of BC is also better
than EM and GS. Thus, BC learns the network faster than
EM and GS methods. The experimental comparison with
EM and GS proves that a substantial equivalence of the
estimates provided by these three methods and a dramatic
gain in efficiency using BC.

Ramoni and Sebastiani claimed the estimates
provided by BC are more robust to departure of the data
from the true pattern of missing data. The computational
cost of BC is equal to the cost of two exact Bayesian
updates-one for each extreme distribution-plus the cost of
a convex combination for each parameter in the BN [21].

One may ask what happens if the network structure
is unknown in addition to partially observable data. There
is no easy answer to this question given in the literature.
Some possibilities are explored in the next section.

2.4 Unknown Network Structure and
Unobservable Variables

This is the most difficult case to resolve because the
structure of the networks is unknown and the variables are
not fully observable. There is no significant amount of
research for this case. There are two recently developed
methods that recover the Bayesian network structure with
unobserved variables.

The first algorithm was proposed by Russell [22] and
is called structural EM (SEM) algorithm. The algorithm
combines the standard EM algorithm, which optimizes

the network parameters, with structure search for model
selection. The main idea of this method is that it attempts
to maximize the expected score of models instead of their
actual scores at iteration. Russell proves a theorem that
the SEM algorithm makes progress in iteration on finding
the better scoring network. Then, he states that if one
chooses a model that maximizes the expected score at
iteration, then a better choice is provably made in terms of
the marginal score of the network. The SEM algorithm is
exciting since it attempts to directly optimize the true
Bayesian score within EM iteration rather than an
asymptotic approximation.

The most problematic aspect of SEM is that it might
converge to a sub-optimal model. This could happen if the
model generates a distribution that causes other models to
appear worse when the expected score is examined. This
difficulty becomes more obvious when the ratio of
missing information is higher. Russell suggests that, in
practice, the algorithm needs to be run from several
starting points to get a better estimate of the MAP model.
Another restriction of the SEM is that it focuses on
learning a single model. In practice, several high scoring
models is necessary for better prediction. Additional to
this deficiency, the algorithm requires large number of
computations during learning. This is the main problem
in applying this technique to large-scale domains. The
following paragraphs provide a computationally cheaper
method.

The second algorithm was proposed by Sebastiani and
Marino. They were able to show that BC algorithm could
also learn the structure of the network with small changes
in the algorithm. This method is very similar to the search
method which we had fully observed data. The only
difference is that, in this case, we have partially observed
data or incomplete data. Therefore, the estimation of the
parameters of the network is also necessary. The BC
method is employed to estimate the parameters of the
network. The estimation process is performed in each
step, i.e., after adding each edge to the network.
Consequently, the method involves both parameter
learning and structure learning. However, the main
attention was given to the parameter estimation part since
it is newly discovered method. The structure learning part
can be modified as a greedy search algorithm. In that
case, ”delete an edge” operator and ”reverse an edge”
operator have to be incorporated to the algorithm.

There is a slight difference between SEM and BC
methods and the problem of self- organizing agents in
terms of required data structure. The SEM and BC
algorithms require a certain minimum length database.
Unfortunately, there will not be a prior database to work
with at the beginning of the agents’ exploration of the
environment. Thus our learning method has to be online:
estimation of the network structure and parameters will
be performed simultaneously with the gathering of new
entries in the database. So, our method has to learn the
network while the agents are exploring environment and
organizing themselves to manage a common task.
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3 Conclusions

The process of learning Bayesian networks takes different
forms in terms of whether the structure of the network is
known and whether the variables are all observable. The
structure of the network can be known or unknown, and
the variables can be expressed as complete and
incomplete data. In this paper, we introduce two cases of
learning Bayesian networks from complete data: known
structure and observable variables, unknown structure and
observable variables. Next, we study two cases of
learning Bayesian networks from incomplete data: known
network structure and unobservable variables, unknown
network structure and unobservable variables.
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