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Abstract: As the combination of parameter learning and structure learning, leaBagygsian networks can also be examined,
Parameter learning is estimation of the dependencies in the network. &idetuning is the estimation of the links of the network.
In terms of whether the structure of the network is known and whetheratigbles are all observable, there are four types of learning
Bayesian networks cases. In this paper, first introduce two casearoirlg Bayesian networks from complete data: known structure
and unobservable variables and unknown structure and unobkeveaiables. Next, we study two cases of learning Bayesian networks
from incomplete data: known network structure and unobservableblesiaunknown network structure and unobservable variables.

Keywords: Bayesian networks, Network Structure, Observable Variables

1 Introduction

The main driving force to choose Bayesian networks is
that Bayesian networks have a bidirectional message This paper is devoted to answering the question: how
passing architecture. Learning from the evidence can be&an Bayesian networks be learned from data? The process
interpreted as unsupervised learning. Similarly, of learning Bayesian networks takes different forms in
expectation of an action can be interpreted as supervisetérms of whether the structure of the network is known
learning. Since Bayesian networks pass evidence (dategnd whether the variables are all observable. The structure
between nodes and use the expectations from the worldf the network can be known or unknown, and the
model, they can be considered as bi-directional learningsariables can be observable or hidden in all or some of the
systems. In addition to bi-directional message passinggdata points. The latter distinction can also be expressed as
Bayesian networks have several important features suchomplete and incomplete data. Consequently, there are
as allowing subjective a priori judgements, direct four cases of learning Bayesian networks from data;
representation of causal dependence, nonmonotoniknown structure and observable variables, unknown
reasoning, distillation of sensory experience and thestructure and observable variables, known structure and
ability to imitate human thinking process. unobservable variables, and unknown structure and
unobservable variables. Learning Bayesian networks can
A Bayesian network is a graphical model that finds also be examined as the combination of parameter
probabilistic relationships among variables of the systemlearning and structure learning. Parameter learning is
There are a number of models available for data analysisgstimation of the conditional probabilities (dependesicie
including rule bases, decision trees and artificial neuralin the network. Structural learning is the estimation of the
networks. There are also several techniques for datdinks of the network. The four types of learning Bayesian
analysis such as classification, density estimationnetworks cases are discussed in the following paragraphs.
regression and clustering. One may wonder what
Bayesian networks and Bayesian methods have to offer to
solve such problems.
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2 Four Typesof Learning Bayesian Networks in statistics. For the above problem, the estimation of the
parameter is as expected.

2.1 Known Network Sructure and Observable

Variables g Mh

Np + N ®)

This is the easiest and the most studied case of learning The MLE estimate seems plausible, but is overly
Bayesian networks in the literaturd, 2]. The network  simplistic in many cases. Assume that the experiment
structure is specified, and the inducer only needs towith the thumbtack is done and 3 heads out of 10 are
estimate the parameters. The problem is well understoodecorded. It may be quite reasonable to conclude that the
and the algorithms are computationally efficient. Despiteparameterd is 0.3. On the other hand, what if the same
its simplicity, this problem is still extremely useful, experiment is done with a dime and also 3 heads are
because numbers are very hard to elicit from peoplerecorded. We would be much less likely to jump the
Additionally, it forms the basis for everything else in conclusion that the parameter of the dime is 0.3 because
Bayesian learning. we have a lot more experience with tossing dimes. Thus,
Because every variable is observable, each data casge have a lot more prior knowledge about their behavior.
can be pigeonholed into the CPT entries correspondingto  Using MLE, we cannot make the following
the values of the parent variables at each node. Thelistinctions: between a thumbtack and a dime, and
pigeonhole principle essentially states that if a setbetween 10 tosses and 1,000,000 tosses of a dime. On the
consisting of more thak - n objects is partitioned inta  other hand, there is another method recommended by

classes, then some classes receive morekiotjects B].  Bayesian statistics. The MLE is a frequentist approach
Therefore, estimations will be highly accurate since everysince it relies on the frequency in the data. Another
variable is observable. approach is the Bayesian approach that assumes that there

Learning is achieved simply by calculating is unknown but fixed parametef.It estimates the
conditional probability table (CPT) entries using parameter with some confidence, i.e., it calculates a range
estimation techniques such as Maximum Likelihood such that, if the parameter is out of this range, the
Estimation (MLE) and Bayesian Estimation. For probability of the data is very low.
simplicity, MLE and Bayesian estimators will be  The Bayesian approach deals with uncertainty over
explained by employing parameter learning for a singleanything that is unknown by putting a distribution over it.
parameter. In other words, the parametér is treated as a random

Assume that an experiment was conducted by flippingvariable and a distributiorP(6) is defined over it.

a thumbtack in the air. The thumbtack comes to land asTherefore, we can tell how likely the parameter is to take
either heads or tails. As usual, the different tosses ar@n one value versus another. In other words, we now have
assumed to be independent, and the probability of they joint probability space that contains both the tosses and
thumbtack landing heads is some real number .Thereforehe parameter. This joint probability is easy to find given
the goal is to estimate . Assume that we have a set obur prior distribution overd. Let X[1],---,X[M] be our
instances d[1],---,d[M] such that each instance is coin tosses. The conditional probabiliti&X[M]6)are
sampled from the same distribution and independentlyaccording to8, i.e.,P(X[M] = H|8) = 8. Now, the value
from the rest. The goal is to find a good value for the of the next tosX[M + 1]can be predicted by

parameterf. A parameter is good if it predicts the data

well. In other words, if data are very likely given the

parameter, the parameter is a good predictor. TheP(X[M +1]|X[1],---,X[M]) = [P(X[M +1]|6)P(8|D)d6

likelihood function is defined as 4)
M where
L(D|6) = P(D|6) = [ P(d[m}6) L p(o|D) = PPIO)P(6) 5)
m=1 P(D)
Thus, the likelihood for a sequente T, T,H,H is The first term in the numerator is the likelihood, the
second is the prior over parameters, and the third is a
L(D|6) = 6(1—6)(1—6)66 2) normalizing factor, which is the marginal probability of

o the data. If we reconsider the thumbtack problem again

of headsN, and the number of tailt\. These are the p(p|g) = g™(1— 6)M is proportional to the likelihood .
sufficient statistics for this learning problem. A suffidien after plugging this into the integral and doing all the

relevant information for computing the likelihood. equation holds.
The Maximum Likelihood Estimation (MLE) principle
tells us to choosé that maximizes the likelihood function. N+ 1
The MLE is one of the most commonly used estimators P(X[M+1]|D) = N+ N + 2 ©)
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Clearly, as the number of samples grows, the2.2 Unknown Network Structure and
Bayesian estimator and the MLE estimator converge toQphservable Variables
each other. This result depends on the use of uniform
prior. In the Bayesian networks literature, the mostIn this case, the inducer is given the set of variables in the
commonly used class of priors are the Dirichlet priors model, and needs to select the arcs between them and
because it turns out that most of the interestingestimate the parameters. This problem is very useful for a
calculations can be done in closed form. The conjugacy ofvariety of applications; in general, when we are given a
the Dirichlet priors allows us to have the posterior new domain with no available domain expert, and want to
probabilities in the same form as prior probabilities. get all of the benefits of a BN model. It is also useful for
Therefore, we can do sequential updating within the samelata-mining style applications, where there are masses of
representations and the closed form solution can foundiata available and we would like to interpret them. In
both for the update and the prediction problem in manyaddition to providing a model that will allow us to predict
cases. behavior of cases that we have not seen, the structure also
Recall that a multinomial is parameterized via a set ofgives the expert some indication of what attributes are
parametersd; - - -, 6 such thaty; 6 = 1; 6 corresponds correlated. The algorithms for this problem are
to the probability ofith outcome. A Dirichlet distribution  combinatorially expensive. They basically reduce to a
over this set of parameters, - - - , ax is defined via a set of heuristic search over the space of BN structures.
hyper parameters .Then, the generalization can be written There has been some attention given to the problem of

as unknown network structure in the literature. The key
aspect of the problem is to reconstruct the topology of the
; _ I(a) ai—1 network from fully observable variables. In the literature
Dir(6]a1, ,ak)_iﬂei @) S . . AT
Ml (ai) b this is considered as a discrete optimization problem

solved by a greedy search algorithm in the space of
structures. Some examples of the greedy search algorithm
can be found in%, 6].

A MAP (Maximum a Posterior) analysis of the most
_ G ®) likely network structure has been studied B fnd [6]

Y] when the data are fully observable. The resulting

. ] o o algorithms are capable of recovering fairly large networks

and if there is a data s& whose sufficient statistics from large data sets with a high degree of accura@y [

All of the results regarding prediction and computing
the posterior extend in the obvious way. That is@iis
distributed as in (7), then

P(x)

areNy,---, N, then On the other hand, they usually adopt a greedy approach
) to choosing the set of parents for a given node because the
P(6|D) = Dir(8]a1+Nu, -+, ak+N) (9)  problem of finding the best topology is intractable.

To generalize these results for a Bayesian network, we ~ There are two main approaches to structure learning in
need to define the sufficient statistic bgx,u) for the ~ BNSs:

eventX = x and the parents = u. In the MLE case, the Constraint based: Perform tests of conditional
estimation of the parameters can be calculated as independence on the data, and search for a network that is
consistent with the observed dependencies and
5 N(xu) (10) independencies.
XU N (u) Score based: Define a score that evaluates how well the

(in) dependencies in a structure match the data, and search
the parameters, o structure that maximizes the score.
Constraint-based methods are more intuitive. They
A, —Di follow the definition of a BN more closely. They also
B = Dir(oa+NOa,u),--- dct Niew) - (1) separate the notion of the independence frg/m the)gtructure
If the data were actually generated from the givenconstruction. The advantage of score-based methods is
network structure, then both methods convergethat they less sensitive to errors in individual tests.
asymptotically to the correct parameter setting. If not, Compromises can be made between the extent to which
then they converge to the distribution with the given variables are dependent in the data and the cost of adding
structure that is closest to the distribution from which the the edge.
data were generated. Both estimations can be The score-based methods operate on the same
implemented online by accumulating sufficient statistics. principle: a scoring function is defined for each network
The process above is the method by which Bayesiarstructure, representing how well it fits the data. The goal
network parameters are learned when the networks to find the highest-scoring network structure. The space
topology is known and all variables are fully observable. of Bayesian networks is a combinatorial space, consisting
The next section provides an overview of some proposedf a super exponential number of structures. Thus, it is not
methods in the literature if the structure of the network is clear how one can find the highest-scoring network even
not known in advance. with a scoring function. In general, the problem of finding

Similarly, in the Bayesian case,
estimation is calculated as
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the highest-scoring network structure is NP-hard. On thecauses the log-likelihood term to increase, but so does the

other hand, the problem of searching a combinatorialpenalty term. §] There will be an edge addition if its

space with the goal of optimizing a function is very well increase to the likelihood is worth it.

studied in Al literature. Consequently, the answer is to ~ Another commonly used score is called Bayesian

define a search space, and then do heuristic search. score. In this case, the network score is evaluated as the
In light of the above statements, a BN structure probability of the structure given the data. The Bayesian

learning algorithm requires the following components bescore has the following form:

determined:
i) Scoring function for different candidate network Scorespe (B D) = P(B|D) = P(DIB)P(B) (16)
structures. P(D)
i) The definition of the search space: operators that . . .
take one structure and modify it to produce another. _ As usualP(D) is constant, so it can be ignored when
ii) A search algorithm that does the optimization different structures are compared. Therefore, the model
search. maximizesP(D|S)P(S), where S represents a structure.

Each component will be discussed separately. Thel he ability to gscribe a prior over structures gives us a
three main scoring functions commonly used to learn'W&y of' _preferrmg some structures to others. Here, the
Bayesian networks are the log-likelihood , the one basedrobabilityP(D[B) can be calculated as
on the principle of minimal description length (MDL8][
which is equivalent to Schwarz' Bayesian information P(BID) :/P(D|GB»B)P(GB‘B)deB (17)
criterion (BIC), and Bayesian score.

The log-likelihood function is simply the log of the From Equation (17), one can see that the more
likelihood function. That is, parameters we have the more variables we are integrating

over. As a result, each dimension causes the value of the
I(D|B, 8g) =logL(D|B, 6g) (12)  integral go down because the "hill” of the likelihood

function is a smaller fraction of the space. Therefore, this
idea gives preference to networks with fewer parameters.
It can be shown that the Bayesian score is a general form

of MDL score. The MDL score can be viewed as an
o approximation of the Bayesian score. Therefore, the
L(D[B,6k) = I;l P(d[m]|B, 6s) (13) Bayesian score is also a compromise between the model

complexity and fit to the data.

The log-likelihood is easier to analyze than the
likelihood, because the logarithm turns all the products
into sums. Therefore,

and, the following equation can be written: Several ways of scoring different Bayesian network
structures have been explained. Different scores have

L(D|B,8s) = ZIogP(d[mHB, 6s) (14)  been explored in terms of the network complexity and

m how the network fits to the correlation in the data. Now,

. : the goal is to find the network that has the highest score.
There are a couple of important things to note aboutln other words, training datB, the scoring function, and

the log-likelihood. The log-likelihood increases linaarl ; :

with the length of dataM. The higher scoring networks 2 SEt Of possible structures are the inputs of the search

are those where the node and the parents are highl Igorithm while the desired output is a network that
aximizes the score. It can be shown that finding

correlated. Adding a node to the networks always maximal scoring network structures where nodes are

increases the log-likelihood. As a result, the networkrestricted o hav?n at mokt parents is NP-hard for an

structure that maximizes the likelihood is often the fully 9 10%p . .
k > 1. Therefore, a heuristic search is resorted to for this

connected network. This is the deficiency of the timization problem. A search space is defined, where
log-likelihood score and is not desired. Thus, a score tha P 'p ) P '
he states in the space are possible structures and the

makes it harder to add edges is necessary. In other word operators denote the adjacency of structures. This space is
we would like to penalize structures with too many edges.tp d looking f h'Jh- y functi t pl :
One possible formulation of this idea is called the Laversg looking for nigh-scoring functions to compiete
MDL score. It is defined as: the optimization. The obvious operators in the search
spaces are add an edge, delete an edge, and reverse an
<~ logM _. edge. The search starts with some candidate network,
Scorempi (B: D) = 1(D|B, 6g) — TD'm(B) —DL(B) which may be the empty one, or one that some expert has
(15) provided as a starting point.7,[8]Then, applying the
Where Dim(B) is the number of independent operators, the high-scoring network is searched in the
parameters irB and DL(B) is the number of bits (the space. The parameters of the network are calculated by
description length) required to represent the structure ofising training dat®.
.The abbreviation MDL stands for minimum description The most commonly used algorithm for optimization
length. The MDL score is a compromise between fit to search is simple greedy hill climbing. Even though the
data and model complexity. Adding a variable as a parentill-climbing method is commonly used, it has several
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key problems such as local maxima where all one-edge WhereD¢\x; denotes the data sBtwith observations
changes reduce the score and plateaus where a large set@fremoved, and the sum in the denominator runs over all
neighboring networks that have the same score. There argtates of variablex,.Then, this reassignment for all
some clever tricks that avoid some of these problems suchinobservable variables D is repeated producing a new
as TABU-search, random restart, and simulatedcomplete random samplB.. Using this data set, the
annealing. In general, greedy hill climbing with random posterior densityp(6s|D¢,S")is computed. Finally, the
start works quite well in practice. In a world, we three steps are iterated and the averagp(6§|Dc,S") is
examined methods for learning a Bayesian network fromused as our approximation.
fully observable data. Both the GS and EM algorithms use a basic strategy
called the missing information principle: fill in the
missing observations on the basis of the available
2.3 Known Network Siruicture and 216 prone 1o errors when e andior biased nformaton
Unobservable Variables is available about the pattern of the missing da@}.[
) , , In recent years, an exciting solution to this problem
The learning of Bayesmry networks with known structure 55 proposed by Sabestiani and Ramot¥][ The
and unobservable variables has been studied bygorithm is called Bound and Collapse (BC), which is a
Lauritzen P, 10], Olesen et al. 11], and Spiegelhalter and  geterministic method to estimate conditional probaliti
Cowel [12]. The algorithm that these papers describe is¢qm incomplete data. The method bounds the set of
the expectation maximization (EM) algorithmd The  oqgible  estimates consistent with the available
EM .algorith.m .is an iterative method to calculate jnformation by computing the minimum and the
maximum likelihood ~estimates (MLEs) and MAP auimum estimates that would be gathered from all
estimates of the network parameters. The EM algorithmysqible completions of the database. These bounds then
alternates an expectation step a maximization step. In th ollapse into a unique value via a convex combination of
expectation step, unknown quantities depending ONnnhe extreme points with weights depending on the
missing entries are replaced by their expectations in the,sqmed pattern of missing dat]
likelihood. In- the maximization step, the likelihood The basic intuition behind BC is that an incomplete
completed in the expectation step is maximized W'Fh database is still able to constrain the possible estimates
respect to the unknown parameters, and the resultingyiiin 4 set and that, when exogenous information is
estimates are employed to replace unknown quantities inqijaple on the patter,n of missing data, this can be used
the next expectation step. The algorithm continues untikg gejact o point estimate within the set of possible ones.
the difference between successive estimates is smallq_ret X be a variable in the seX = {X,---,X,} with
than a fixed threshold. Lauritzen states some difficultiesparent variablers. Sebastiani and Ramdni s7how that the
with the use of EM algorithm such as slow convergence 5 imum Bayesian estimate pfxi| 75, )is
rate and local maxima. He then suggests that the gradient !
descent algorithm can be used as a possible alternative.
The third possible approach, introduced by Qijk + N(Xik|75}) + 0 (Xik | T8)

Heckerman 14, is to use Gibbs sampling (GS). Gibbs P (Xik| 7%}, D) = a7 0T + 17 O 78 (19)
Sampling is one of the most popular Markov Chain " ! kI

Monte Carlo methods for Bayesian inference. The GS  4nq the minimum Bayesian estimate is

algorithm generates a value for the missing data from

some conditional distributions and provides stochastic

estimations of the posterior probabilitiesly. To Qijk + N(Xik| 75 )

illustrate Gibbs sampling, let us approximate the p-(%ik|78j,D) = aij +n(7%;) -+ n. (X 75 (20)
probability densityp(6s|D,s") for the configuration of . ) ' )
parameters of a particular netwd®k given an incomplete Where ajjx are the Dirichlet hyperparameters,

data setD = {Y1,---,Yy} and a Bayesian network for N (xik|75j) and n.(x|7%;) are maximum and minimum
discrete variables with independent Dirichlet priors. To achievable virtual frequencies of x| 7%j) in the
approximatep(6s|D,S"), we first initialize the states of incomplete data, respectively. The frequemty|7s;) is

the unobserved variables in each case somehow (e.9., #e number of occurrences ki|75;) in the data. The
random). Therefore, we have a complete random samplghaximum and minimum values of the virtual frequency
D.Then, we choose some variatig (variableX; in case  are calculated filling the missing entries in order to have
) that is not observed in the original random sample  maximum and minimum number of occurrences of and
and reassign its states according to the probabilitycounting the number of occurrences of the erfty| 7% ),

distribution respectively. The probability interval defined by
. g [p.(%k|T5j,D), p(xk|7%j,D)] contains all possible
p(X; [De\xir, S = P0G, De\Xi [S?) (18) estimates consistent wild, therefore it is sound and it is
H=eAh 3 POG De\xi [S7) the tightest estimable interval.
© 2014 NSP
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The main feature of the BC method is its interval [p! (x| 75}, D), P (k| 75, D)]via convex
independence of the distribution of missing data becauseombination of extreme probabilities:
it does not attempt to infer them: with no information on
the missing data mechanism, an incomplete database can
only provide bounds on the possible estimates that could(Xik| 7%, D, @jk) = ;(ﬂjkp! (Xik| 7%}, D) + @jkp (Xik| 7%}, D)
be learned 19]. A complete database is just a special l
case; within available data are enough to constrain the set ) o ] (23)
of possible estimates to a single point. Another advantage Finally, if data are missing only on the child variable
of this method is that the width of each interval accounts( (Xik|7§j) = nj; ), then we yet
for the amount of information available iD about the
parameter to be estimated. Each interval represents a . N .
measure of quality of probabilistic information conveyed P(%ik| 75}, D, @jk) = a|,k+n(x.k|rqj)+n.”(n]k
by the database about a parameter: the wider the interval, atij + N(78j) + N

the greater the uncertainty due to the incompleteness of ) o
the database. In this way, intervals provide an explicit ~ SO that the incomplete cases are distributed across the

representation of the reliability of the estimates, which States o according to the prior knowledge on the pattern

can be taken into account when the extracted BN isOf missing data. Note that Equation (24) is the expected

employed to perform a particular task. Bayesian estimate given the assumed pattern of missing
The second step of the BC method collapses thedata. _ _ _

intervals estimated in the bound step into point estimates _ If there is no external information about the pattern of

employing a convex combination of the extreme MiSSINg data, the BC method works similar to EM and GS

estimates. This convex combination can be determinedn€thods due to the use of the pattern of the available data.

either by using external information about the pattern of N this caseqjk = p(xi|7%;) and it can be estimated from

missing data or by a dynamic estimation of this patternth® available data as

from the available data.

(24)

Assume that some external information is available on Ak = Gt N0k 75)) (25)
the pattern of missing data. One can encode this aij +n(7%)
information as a probablllty distribution defining, for éac This estimate can then be emp|oyed to Compute the
datum in the database, the probability of the datum being:onvex combination of the extreme probabilities. The
missing as estimate ofp(xk| 7%, D) can be computed as

: X —\ — )
p(X|k|7TJaX| ) @ik Ao D) - aijk+n(xik\n;j)+ni'j(njk (i 7E)

Where k = 1,---,¢, the number of state irX; is p(x,k\n,fj, >— aij+n(75))+n;; ~ ajj+n(m;)
denoted byc; andy @jx = 1.The notatiorX; =? denotes (26)
that the state oK is missing. The probabilitieg . can which is a consistent estimate ofjc since

be employed to determine accurate estimatesgigf, P(xik|TEj,D) is a generalized version of the Maximum
which is the probability of; being in thekth state given  Likelihood Estimate of6jx. If ajjx = 0, then the BC
the parent states;. A single probability for each state of estimate becomes the classical MLE&f. Clearly, the
the variableX; given the parent states; as estimates of the conditional probabilities computed by
Equation (26) are the expected estimates and, as the
database increases, they will be the same estimates
_ ait +n(Xi | 75;) (21)  computed by GS.
aij + Nn(75;) + N (Xik|7%) Sebastiani and Romani compared the accuracy and
the efficiency of EM, GS, and methods. They found that
for | # k. Therefore, the local minimum & (6;jk|D) both EM and GS provide reliable estimates of the
can be calculated as parameters and they are currently regarded as the most
viable solutions to the missing data. On the other hand,
both these iterative methods can be trapped into local
_ Qijk + N(k| %) (22) Minima and the convergence detection can be difficult.
Qij 4+ N(7%;}) + MaXnd (Xik| 75 ) Furthermore, they assume that the missing data
mechanism is ignorable; i.e., within each observed parent
Which shows that the difference between configuration, the available data is a representative
Pw. (%1755, D) and p! (xik|75j,D) depends only on the cases sample of the complete database and the distribution of
in which the state of the child variable is known and the missing data can therefore be inferred from the available
parent configuration is not. entries PO].When this assumption fails, and the missing
The distribution of missing entries in terms@fx can  data mechanism is hot ignorable (NI), the accuracy of
be employed to identify a point estimate within the these methods can drastically decrease. Additionally,

Pk (X175}, D)

p! (%k|75;,D)

© 2014 NSP
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Sabestiani and Romani state that the computational coghe network parameters, with structure search for model
of these methods depends mainly on the absolute numbeselection. The main idea of this method is that it attempts
of missing data, and this dependency can prevent theito maximize the expected score of models instead of their
scalability to large databases. actual scores at iteration. Russell proves a theorem that
The most important characteristic of BC is its ability the SEM algorithm makes progress in iteration on finding
to represent the pattern of available data and the assumdtle better scoring network. Then, he states that if one
pattern of missing data explicitly and separately. The BCchooses a model that maximizes the expected score at
algorithm provides probability intervals that can make theiteration, then a better choice is provably made in terms of
analyst aware of the range of possible estimates, anthe marginal score of the network. The SEM algorithm is
hence of the quality of information on which inference is exciting since it attempts to directly optimize the true
based. The probability intervals used by BC provide aBayesian score within EM iteration rather than an
specific measure of the quality of information conveyed asymptotic approximation.
by the database and explicit representation of the impact The most problematic aspect of SEM is that it might
of the assumption made on the pattern of missing dataconverge to a sub-optimal model. This could happen if the
Therefore, BC does not depend on the ignorability model generates a distribution that causes other models to
assumption. Furthermore, BC reduces the cost ofappear worse when the expected score is examined. This
estimating each conditional distribution of each variabledifficulty becomes more obvious when the ratio of
X to the cost of one exact Bayesian updating and onemissing information is higher. Russell suggests that, in
convex combination for each state ¥f in each parent practice, the algorithm needs to be run from several
configuration. This deterministic process does notstarting points to get a better estimate of the MAP model.
decrease the convergence rate and the convergendgother restriction of the SEM is that it focuses on
detection relative to stochastic processes. Additiopallylearning a single model. In practice, several high scoring
BC the method’'s computational complexity is models is necessary for better prediction. Additional to
independent of the number of missing data. this deficiency, the algorithm requires large number of
Consequently, the BC algorithm gives almost the samecomputations during learning. This is the main problem
results as EM and GS when the missing data is ignorablén applying this technique to large-scale domains. The
but it gives better results when the missing data mechanisrfollowing paragraphs provide a computationally cheaper
is not ignorable. The convergence rate of BC is also bettemethod.
than EM and GS. Thus, BC learns the network faster than The second algorithm was proposed by Sebastiani and
EM and GS methods. The experimental comparison withMarino. They were able to show that BC algorithm could
EM and GS proves that a substantial equivalence of theilso learn the structure of the network with small changes
estimates provided by these three methods and a dramatio the algorithm. This method is very similar to the search
gain in efficiency using BC. method which we had fully observed data. The only
Ramoni and Sebastiani claimed the estimateddifference is that, in this case, we have partially observed
provided by BC are more robust to departure of the datedata or incomplete data. Therefore, the estimation of the
from the true pattern of missing data. The computationalparameters of the network is also necessary. The BC
cost of BC is equal to the cost of two exact Bayesianmethod is employed to estimate the parameters of the
updates-one for each extreme distribution-plus the cost ofietwork. The estimation process is performed in each
a convex combination for each parameter in the BW.] ~ step, i.e., after adding each edge to the network.
One may ask what happens if the network structureConsequently, the method involves both parameter
is unknown in addition to partially observable data. Therelearning and structure learning. However, the main
is no easy answer to this question given in the literatureattention was given to the parameter estimation part since
Some possibilities are explored in the next section. it is newly discovered method. The structure learning part
can be modified as a greedy search algorithm. In that
case, "delete an edge” operator and "reverse an edge”
operator have to be incorporated to the algorithm.
2.4 Unknown Netv_vorkStructure and There is a slight difference between SEM and BC
Unobservable Variables methods and the problem of self- organizing agents in
terms of required data structure. The SEM and BC
This is the most difficult case to resolve because thealgorithms require a certain minimum length database.
structure of the networks is unknown and the variables aréJnfortunately, there will not be a prior database to work
not fully observable. There is no significant amount of with at the beginning of the agents’ exploration of the
research for this case. There are two recently developednvironment. Thus our learning method has to be online:
methods that recover the Bayesian network structure withestimation of the network structure and parameters will
unobserved variables. be performed simultaneously with the gathering of new
The first algorithm was proposed by Russ@][and  entries in the database. So, our method has to learn the
is called structural EM (SEM) algorithm. The algorithm network while the agents are exploring environment and
combines the standard EM algorithm, which optimizesorganizing themselves to manage a common task.
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