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Abstract: In many real epidemiology or clinical trials, doubly ceriagris a common practice. Where the generated data sets may
result in right or left censored failure times along with qaete times. In this article, the nonparametric maximuralifood estimation
technique for approximating the survival function when sarovariates are involved under doubly censoring schenmaptoged. The
Taylor series is used to extract the baseline hazard funitithe Cox model and hence the likelihood ratio test is at&mlio determine

the appropriate order for Taylor series. This analyticarapch demonstrates by a simulation study followed by ac&se study using

HIV data set.
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1 Introduction

In survival analysis, nonparametric maximum likelihoodiraation (NPMLE) of the survival function with various
censoring models is a common practice. Where, in censottadtds not possible to obtain complete information for the
entire group of units in the study. Different censoring ty@gise depending on the way of data collection from the
experiment. The most generalized censoring type is interr@soring which studied extensively irL{], [10], [16] and
[2])and so many others, where the exact failure time of thesiddals enrolled in the study is not exactly observed and it
is only known that it belongs to an observed interval with Ivikelown limits (i.e inspection points), the notation of
interval censored data | ,tr] wheret,. andtr are two adjacent inspection points. The interval censamag produce
another sub censoring types especially such as left antlaggisoring, where left censoring occurs if the interestete
occurred prior to the starting point of the study with unkmogxact failure time, while right censoring occurs when the
unit has not yet experience the interested event at the ssireed inspection point. In some situations and when the
cohort of data set consisted of both right and left censoteskivations, then this well-known as doubly censoring,
Where, this model is common in many situations especialljféntesting experiments, and it can be described briefly
whenn units are involved in a life testing study and thgrelements may be left censoring due to some certain problems
at the beginning point and the experiment terminates as sgulien‘t experience the interested event (right censoring),
wherer; +rp, <n.

A well-known example of doubly censoring arises from HIVdiess, where hemophiliacs who enrolled in a sufficient
follow up studies and thus death or being at risk of develgpit\V due to AIDS as a result of receiving tainted blood
is the main interest. In these studies, the AIDS incubatime tis the main interested variable for the clinicians, and
determination of the accurate time of HIV infection is impie and this latent variable is only known to belong to
certain interval that has a lower limit at starting time oé tepidemic and the upper limit is the HIV diagnosis. On the
other hand, if the period between HIV infection and deattderelopment of HIV is quite long, the HIV patients may
alive with AIDS and they may not develop HIV. In such case winesuch data set as being doubly censored contains
both "right” and "left” censoring patterns in the same graipatients (b]; [4]; [6]). The fundamental variances amongst
doubly censoring and other common censoring types inducelkiation of the common techniques such as Turnbull
estimator of the survival function in case of doubly cendodata sets ([2]). Some work on doubly censoring was
conducted by§], [17], [4], [14] , and [2].
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However, under doubly censored data a satisfying procedget the NPMLE of the survival function is not available
and hence an iterative technique can be used to extra&®]t [[L4],and [3]). Therefore, in this article, the nonparametric
approach is used to estimate the survival function usindplyazensoring model when the covariates are employed in the
analysis. The Taylor series are employed in the approxanatiocedure with a likelihood ratio test to assign the ideal
order for Taylor expansion.

The data structure and statistical models for doubly cetsatata are presented in Section 2. Taylor series
approximation for the baseline hazard function will be dissed in Section 3. Section 4 illustrates the results ofigirv
function approximation using simulation studies with daoiding remarks.

2 Statistical M odels for Doubly Censored Data
2.1 Doubly Censoring

Let T be a continuous random variable on the intef@a) with distribution functionF(T), and letL andU be two
positive random variables which are independent Witbuch thal. < U. In this article the main interest is to estimate
the survival function such that:

St)=1-F(t)=P(T >t), Vt>0

and letTy, Ty, ..., Tn be the observed lifetimes for a sample dfobservations. In case of doubly censoring, we may
consider the situation that some of tiie, are censored on the left and some are censored on the rigtsoamel are
exactly observed. Thus, for each itétne recorded information % such that:

Xi:max[min('l'i,ui),Li, Vi=1..N where L <U,Vi

However, for exact failure time the§ = T;, and for left censoring case it is known thqt= L; (late entry), while
whenX; = U; the item considered as right censoring (loss).

Consequently, define as censoring indicator variable such tlgat 1 for exact failure time, while in case of right
censoringe = 2, ande = 3 for left censoring. Therefore under doubly censoring,abgerved independent observations
areD = (D4,Ds,...,Dn) where:

(T,1): if L<X<U
D=(X,e)=¢{ (U,2): if X=U
(L3): if X=L

2.2 The Full Likelihood Function

Suppose that the observed information for the entire grédsplojects are given in the form 0D, D>, ...,Dyn). Then the
likelihood function for the observed data is given by:

N

L(S) = rl[f(xi)]gi:l [S(X)]8=2 1 — S(X))]5=2 W

Conventionally, the probability density functidi{X;) in the computation of the NPMLE can be replaced by the jump
of the survival function at the given poifite. (X)) = S(Xi_1) — S(X;)). Assume that the experiment composedrof
inspection points such thatdt; <t, < ... <ty < o, and assume that for=1,2,....m

Al = Thenumber of itemsat tj with e = 1
A? = Thenumber of itemsat tj with € = 2

AP = Thenumber of itemsat t; with e =3

Based on these notations, the log-likelihood functiongive(1) can be written as:

(/D) = 3 AMoglS(-1) ~S)]+ 5 AlogiSit)]+ 5 Alogl1—S() @

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro4, No. 3, 353-360 (2015)www.naturalspublishing.com/Journals.asp NS = 355

The NPMLE of the survival function is the vect(;, S, ..., Sn) that maximizes the log-likelihood function {2) subject

to 0 < S(tm) < S(tm-1) < ... < Stz2) < S(t1) < 1. When the covariates involved in the analysis, the Cox qntignal
hazard model (briefly, Cox model) that incorporates thectfdé covariates on the survivorship of a group of subjects
enrolled in a study might be employed. Given an observedr@ies vectoZ = (23,2, ..., zp)T then the Cox model is:

A(t/Z,B.8) = A (t/6)exp(B"Z) (3)

WhereA (t/Z,3,0) andA.(t/0) are the hazard function and baseline hazard function résglc = (B1, B2, ...,Bp)T

is the parameters vector of the corresponding covaria®d amthe parameters vector of the baseline hazard function.
An important advantage of the Cox model is the direct refeiop of the hazard function to survival function such

that:

S(t/Z) = exp(=A(t/2)) (4)

WhereA (t/Z) is the cumulative hazard function given the covariatesare€such that

A/Z.8.0)= [ Ay/Z.8.0)dy

—ep(572) [ Auly/6)dy
— A(t/0)exp(872)

WhereA,(t/0) is the cumulative baseline hazard function.
Based on these notations the survival function in equatipodn be defined as

S(t/2.B.6) = exp[-A (t/6)exp(BTZ)]
=S.(t/0)>F"? (5)

WhereS,(t/0) is the baseline cumulative survival function that has ania relation with the baseline cumulative
hazard function as it is shown in the following expression:

5.1/6) =e( ~ [ A.y/6)dy) =ew(-A.(1/6)) ©

Therefore, the log-likelihood function if2) can be rewritten as

I(S/D) = .Zmﬁllog[&(ti_l/e>e‘p<ﬁTZ> ~S(t/6)F ]+ iAFIog[soai/e)“WH
- iaﬂ og[1 — S, (t/6)*PF"2)] (7)

and hence, the desired estimates of the parameters candirenbby maximizing the log-likelihood function given in
equation(7). The maximization procedure can be handled using artiiteraumerical technique since no explicit form

of the maximum likelihood estimators can be found. In caskuafe number of covariates and hence many parameters
involved in the model, then it is necessary to be bear in mhiad numerical maximization may produce estimates with
high level of errors. Thus, the proposed procedure mightsieel under some warnings unless an advanced maximization
procedure can be adopted.

The maximization procedure is basically depends on thenagtid baseline survival functidh (t/6) which can be
obtained parametrically by choosing some well-known fiomgt such as Weibull function or any other adequate
distribution, or assuming that the baseline survival fioictis to be piecewise constant which leads to the
semi-parametric approach which is discussed extensiveljOpand this technique is available in some statistical
softwares such aR. But it has a drawback which is that the baseline survivatfiom is not continuous and it is only a
step function. Therefore, another technique might be epeplcsuch as Taylor series approximation to overcome the
drawback of discontinuity and hence get smoother baselinaval function.
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2.3 Taylor Series Approximation

Approximating functions using finite number of terms of thEdylor series is a common practice. However, this techmiqu
will be employed in this article to get the best approximaid the baseline survival function from the observed dath an
to avoid the drawbacks of the other proposed techniquesrashiee circumstances. In Taylor series approximation the
optimal order can be determined using the likelihood rats.t

In order to estimate the baseline survival function, it iisient to approximate the baseline hazard functlo(t,/6)
and then the extraction of the baseline survival function lba obtained by equation (6). Furthermore, to a void the
negativity of the baseline hazard that might be raised, weagnsider Taylor approximation of the logarithm of the
hazard function such that

0 (1/8) =10g(Aa(t/8)) =Xo Xat + 2t2+. +§qtq

Whereys, (t/0) denotes the Taylor series of orapand6 = (x., Xy, ...,Xq) represents the baseline parameters vector to be
estimated. Thus, the baseline cumulative survival fumaten be obtained by

s.t/0)=em(~ [ A(y/0))
—ep( - [ exolu.y/0)))
:exp(—/ot[xo+x1y+ §y2+...+$yq]dy) (8)

Then the baseline survival functi@(t/0) can be involved in the log likelihood function defined in etjoia (7) and then
the parameters can be estimated by maximizing the logiticet! function using maximum likelihood theory to make
statistical inference for parameters significance.

The optimal number of terms of Taylor series can be deterthi@sed on the following procedure (S@p{

1.Fitting the likelihood function with only the first term dfaylor series(i.e. q = 0) and getting the maximum
likelihood estimates of the parameteﬂsand 6 = X, and denote the fitted value of the likelihood function as
h, = max(l (B,e)]. Note that forq = 0 the baseline hazard function is the commonly used exp@bédrazard
function

2.Fitting the likelihood function with one more order of Tayseries(i.e. q= 1) which is equivalent to the Gompertz
monotonic hazard function, where the parameters in sucharef and@ = (X,,%;) and similar to stej1), the fitted
value of the likelihood function represented foy= max(| (B, 6)].

3.Using an adequate significant level suchoas: 5% and for degrees of freedom (df)of the Chi square distiobut
equals to 1, then:
@If —=2(h, —hy) < xl (1-a) then the selected order of Taylor seriegjis- 0 and hence the maximum likelihood

estimates of the parameters @rande Xs.

(b)If the condition in(a) violated then we will get new estimates of the parametegs-a®, and denote the new fitted
value of the likelihood function as; = max(l (B, é)] and then follow to step3) again usind; andh; values.
Repeat this procedure for suitable valuesxaiintil a stopping condition such as2(hg:—1 — hg-) < Xf<1_a), where
the desired order of Taylor series(g= q* — 1) and hence the desired parametersfbwdé = (Xo, X1, .., X —1)-
Note that choosing various valuesamthis may affect the number of iterations in Taylor approxio® where smaller

values ofa may increase the number of iterations to get the optimal rmrmabterms in Taylor approximation and
vice versa.

3 Simulation Study

In this section, the simulation study conducted based omithalated biomedical clinical trials. For each data set, th
simulation is performed based on the following procedure:

1.A random sample of one hundred observations (patienésjaardomly generated and classified into two different
groups with probability equals to.®; placebo and drug treatment groups, where an indicat@ablarz is used such
thatz = O for placebo subset arm = 1 for drug treatment group.
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2.Another two continuous covariates and zz are generated based on normal distribution with randomigcsed
parametersy=2, 0% = 1)

3.For simplicity, the failure timét) for each patient is generated from exponential distrdsutvith scale parameter
0 = exp(Bs + B1z1 + Bozo + Bsz3), where the initial values of the parameters vector is sépto=0,3; = 0.5,8, =
0.5, B3 = 0.5). Note that under the exponential distribution assumptiompaseline hazard function is constant and it
is easy to show that it is equivalent tgekp(3; + B1z1 + Bozo + B373).

4.For censored observations, an interval is generatedlgifitand right endpointsl(andR). The right end pointR)
is obtained as thg™ quantile of exponential distribution with the proposedsgarameter ir{3), while for the left
endpoint(L) the 1— ¢ quantile is considered to generate this point. Ghalue is set consequently to700.8 and
0.9 to variate the censoring rate.

5.The censoring indicatar is generated in the most common manner based on the gengriaiedation in steps (3)
and (4) such that if the failure time is less thathent is left censoring time and the censoring indicator varizhke
set to 3, while if the failure time is greater th&thent is right censoring timéz = NA and the censoring indicator
variable is set to 2, otherwiges exact failure time and henee= 1.

The proposed simulation algorithm is run 1000 times and &mhedata set; the proposed estimation technique for
survival function estimation is employed. The mean squacg and the coverage probability for the estimated pararset
are also investigated from 100 bootstrapping samples fmge of censoring starting from 10% up to 60%. The simulation
is setup in theR software.

The simulation results is shown in table 1 below. This taloletains the average of estimated parameters, the mean
square error (MSE) and the coverage probabil@P) considering the three simulated covariates under the wsrio
censoring range.

Table 1: The average of the estimated parameters, mean squareartesverage probabilities.

Censoring Aver age of Mean Square  Coverage Probability
Rate Parameters  Error (MSE) (CP)
P=10% B 0.261 0.212 0.971

B 0.137 0.231 0.945
Bs 0.136 0.233 0.940
P =20% B 0.262 0.289 0.961
B 0.139 0.476 0.922
Bs 0.135 0.501 0.930
P =30% B 0.269 0.712 0.941
B 0.149 0.722 0.921
Bs 0.148 0.851 0.907
P = 40% B 0.275 1.150 0.902
B 0.144 3.351 0.851
Bs 0.147 3.612 0.841
P =50% B 0.277 2.012 0.861
B 0.147 6.321 0.824
Bs 0.146 7.213 0.813
P=60% pi 0.297 3.362 0.851
B 0.156 8.256 0.802
Bz 0.157 11.31 0.810

The results in the above table show the effect of the threar@tes on the survival probability, where the effect of
treatment type§;) has the highest impact on the estimation of the survivattion as it can be easily explored from
the estimated parameters values. Furthermore, thesésresutal the dramatic increasing of the mean square erm@r as
result of the increment in the censoring rate in the datal$et.increment pattern of the mean square error for the three
parameters is more distinctive for high censoring ratesnfiore than 30%) which indicates that the proposed estimatio
technique may produce distorted results of parameter astimas a result of the high censoring rates in the data sets
under consideration, especially for the parameters bsltmthe continuous covariates, where as it is shown in tHe tab
that the mean square error 85 and 33 belongs to the two continuous covariates have the highestsecompared to
B1. Consequently, a concordance of the conclusions can belfonice the coverage probability is reviewed, where the
coverage probability of the parameters based on the prerided maximum likelihood theory given in equati6r) are
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not much satisfactory when the censoring rate exceeds 3pétiedly for the parameters from the normal approximation,
however, this drawback might be avoided once we resort tatansive bootstrapping approach, but this is not guardntee
in the existence of heavy censoring in the data sets.

4 Applicationsto HIV Data Set

The HIV data from hemophiliacs study are fully describedh [n this study the data set described by Kim is used in
particular to detect the efficiency of the proposed techafgu survival function estimation and for the existencearhs
explanatory variables, where the population in this HI\tigtaonsisted of 257 individuals who had been treated in Feranc
since 1978. By a sufficient follow up and by the end of the sttlagre were 188 individuals found to be infected with
the HIV virus as a result of receiving various amount of taghblood. Furthermore, this group of patients were claskifie
into two subsets according to the amount of blood they reckduring the treatment for hemophililightly andheavily
treated groups, where the individuals in these two sets atarisk for infection by HIV virus through the contaminated
blood factor that the individuals were received duringtir&atment.

The studies of HIV have provided many examples of doubly aeéng where the exact infection time of HIV is
usually interval censoring and right censoring which isjecito death. However, the data set in this study considted o
the observed intervals for HIV infection time assuming ttieg diagnosis of HIV equals to the right end point of the
observed intervals even thought it would be possible toidenshe left end point or the midpoint of the intervals, tigh
censored times and two covariates, which they are the ageatod that indicates whether the age of the individuals at
the infected time point was below or above 20 years old, shatthis indicator is set to 1 if the infection time was lower
than 20 and O otherwise, and the other covariate is the gralipétor such that for lightly treated group it is 1 and 2 for
heavily treated group. For more details about this datasset[].

The analysis of the proposed data set started with the sedistent algorithm proposed b%3] for doubly censored
data to estimate the survival function and then the proptegthique for survival function approximation using Taylo
series will employed to this data set. The estimated surfinactions based on Turnbull algorithm for the lightly and
heavily treated groups are shown in the following figure:

1.0

R Lightly treated group
---#--  Heavily treated group

06
|

04

02

Time

Fig. 1: The survival curve for lightly and heavily treated groupsdxdon Turnbull algorithm
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From the above figure, it is noted that the estimated surfivadtions are differ noticeably between the two groups and
hence the risk of developing HIV for the individuals in thealidy treated group is greater than the individuals in the
lightly group, and this result is already confirmed by Kétral. (1993), and many others.

However, under the described situation and to begin withTdndor series approximation, it is first assumed that the
entire set of individuals have the same distribution of tH¥ kfection time. The Taylor approach is employed on the
same data set considering the two covariates and the resalshown in the following table which is consisted of the
estimated parameters of the covariates as well as the sthedar respectively, where the first paramgdebelongs to
the treatment covariate aifid belongs to the age covariate.

Table 2: The estimated parameters of the covariates for HIV data

Estimated value  Standard error
B1 0.6891 0.3210
B 0.0824 0.4982

The results indicate that there is a clear variation in thk of developing HIV for the individuals in the two treatment
subsets and there seems a weak effect to the age factor om\Mthiefettion. However, the above results concordant with
the results in the previous discussions and studies. Thuspntradiction with the proposed technique and hence it can
be employed in the survival function approximation usingloly censoring and the following figure shows the behavior
of the survival function under the given data set.

1.0

06
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02
1

00
1

Time

Fig. 2: The survival curve using Taylor series approximation

5 Conclusion

In this article, an approximation of the survival functioashbeen investigated for doubly censoring time to event data
The covariates imputed to the data set has been involvedeiratialysis by the means of Cox model, where the
cumulative baseline survival function has been extractedaylor series. the underlying technique may be distorted
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once the censoring rate exceeds 30% and as a rule of thumik thisre reasonable since heavy censoring may distort
the datum and outcomes of any proposed estimation techrpét should be aware about the censoring rate before
going through this analytical approach.
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