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Abstract: A non-linear Tavis Cummings model is studied, especially, two two-level atoms interacting with two modes of radiation field
with Stark shift effect. The time-dependent wave function and consequently the density matrix are obtained from which we discussed
the effect of Stark shift on different statistical aspects for the present system, for example, atomic inversion, entanglement, variance
squeezing and degree of coherence. It is observed that the Stark shift parameter plays an important role on the evolutionof these aspects.
When Stark shift parameter moves away from 1, the atomic inversion is shifted upwards, entanglement decreases and more squeezing
occur.
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1 Introduction

Quantum correlation and quantum entanglement are two
interesting quantities in quantum world. They play a
central role in revealing the quantum features of quantum
information and communication theory[1,2,3,4]. Also the
inseparable (entangled) states have applications in
quantum computing[5], teleportation[6], cryptographic
[7] and dense coding [8].

In atomic physics, the Stark effect is the split and shift
of a spectral line into several components in the presence
of an electric field. The amount of spliting is called the
Stark shift [9,10,11]. Its effect has been studied on some
phenomena in different quantum systems[12,13,14,15].
It has been shown that an increase in the value of the
Stark shift parameter leads to an increase in the degree of
entanglement[15] also, Squeezing phenomena have
affected by any variation in the Stark parameter[12].
In this paper we study the interaction between an atomic
system described by a two two-level atoms and the
quantized field in the rotating wave approximation taking
into account Stark shift effect. We obtain the wave
function of the total system at any timet > 0 and we
study the effect of Stark shift on some statistical aspects.
This paper is arranged as follows: Sec. 2, is devoted to the
physical system. Sec. 3, is devoted to the analytical

solution of the system, this is followed by a discussion of
the atomic inversion in Sec. 4, and entanglement in Sec.
5. Variance squeezing is considered in Sec. 6. Second
order coherence for one of the field modes is discussed in
Sec. 7. Finally, some conclusions are given in Sec. 8.

2 Description of the model

We consider a system of two three-level atoms in the
same cavity, each atom interacting with two modes of
radiation field. We obtain the Stark shift contribution to
two two-level atoms by using the adiabatic elimination
method for the intermediate level. The effective
Hamiltonian of a two two-level atoms interacting with
two modes in the presence of Stark shift is obtained [15,
16,17,18]. The effective Hamiltonian of this system in
the rotating wave approximation (RWA) can be written as
(h̄ = 1)

Ĥe f f =
2

∑
j=1

ω j â
†
j â j +

1
2

2

∑
j=1

Ω jσ̂ ( j)
z

+
2

∑
j=1

(ξ ( j)
1 n̂1σ̂ ( j)

+
σ̂ ( j)

−

+ξ ( j)
2 n̂2σ̂ ( j)

− σ̂ ( j)
+

)+
2

∑
j=1

λ ( j)(σ̂ ( j)
− â†

1â†
2+ σ̂ ( j)

+
â1â2),

(1)
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where ω j (Ω j), ( j = 1,2) is the field (the atomic
transition) frequencie, ˆa†

j(â j) is the creation (annhilation)
operator that satisfy the Boson commutation relation
[âi, â

†
j ] = δi j. The operatorsσ̂ ( j)

+
(σ̂ ( j)

− ) and σ̂ ( j)
z

are the
usual raising (lowering) and the inversion operators for
the jth two-level atomic system, satisfying the
commutation relations[σ̂ (i)

z
, σ̂ ( j)

± ] = ±2σ̂ ( j)
± δi j and

[σ̂ (i)
+
, σ̂ ( j)

− ] = σ̂ ( j)
z

δi j, (i, j = 1,2). ξ ( j)
1 , ξ ( j)

2 are the
parameters of the intensity-dependent Stark shifts to the
two levels of the j atom, that are due to the virtual
transitions to the intermediate level, and we note that

λ ( j) =

√

ξ ( j)
1 ξ ( j)

2 .

3 The analytical solution

In this section we derive the wave function|Ψ(t)〉 , the
reduced atomic density matrix and the reduced density
operator of the field.
By using the Heisenberg equation of motion

( dÔ
dt = 1

ih̄ [Ô, Ĥ] ) for the operators ˆn j = â†
j â j and σ̂ ( j)

z ,

( j = 1,2), we can deduce the following constants of
motion

N̂1 = 2n̂1+(σ̂ (1)
z + σ̂ (2)

z ), N̂2 = 2n̂2+(σ̂ (1)
z + σ̂ (2)

z ). (2)

Here, we consider the case in which the atoms and the field
are exactly resonant [15], ξ (1)

1 =−ξ (2)
1 , ξ (1)

2 = −ξ (2)
2 and

λ (1) = λ (2) = λ . Thus, the Hamiltonian(1) becomes

Ĥe f f =
1
2

ω1N̂1+
1
2

ω2N̂2+ η̂ + Ĉ (3)

where

Ĉ =
1
2

δ̂1(n̂1, n̂2)(σ̂ (1)
+

σ̂ (1)
− − σ̂ (2)

+
σ̂ (2)

− )

−1
2

δ̂2(n̂1, n̂2)(σ̂ (1)
− σ̂ (1)

+
− σ̂ (2)

− σ̂ (2)
+

)

+λ
2

∑
j=1

(σ̂ ( j)
− â†

1â†
2+ σ̂ ( j)

+
â1â2)

and η̂ =
1
2

Ẑ1(n̂1, n̂2)(σ̂ (1)
+

σ̂ (1)
− − σ̂ (2)

+
σ̂ (2)

− )

+
1
2

Ẑ2(n̂1, n̂2)(σ̂ (1)
− σ̂ (1)

+
− σ̂ (2)

− σ̂ (2)
+

) (4)

with

δ̂1(n̂1, n̂2) = ξ1n̂1− ξ2(n̂2+1),

δ̂2(n̂1, n̂2) = δ̂1(n̂1−1, n̂2−1),

Ẑ1(n̂1, n̂2) = (ξ1n̂1+ ξ2(n̂2+1))

andẐ2(n̂1, n̂2) = Ẑ1(n̂1−1, n̂2−1). (5)

We assume that the two atoms and the field are initially
prepared in excited states and uncorrelated coherent states

respectively. In this case the wave function of the system
at t = 0 can be written as

|Ψ(0)〉= |+,+〉⊗ (
∞

∑
n1,n2=0

qn1,n2 |n1,n2〉), (6)

where

qn1,n2 = exp(−1
2

2

∑
j=1

∣

∣α j
∣

∣

2
)

αn1
1 αn2

2√
n1!n2!

.

The wave function|Ψ(t)〉 at t > 0 for the system takes
the following form

|Ψ(t)〉 =
∞

∑
n1,n2=0

e−iχt [X1(n1,n2, t) |++,n1,n2〉

+X2(n1,n2, t) |+−,n1+1,n2+1〉
+X3(n1,n2, t) |−+,n1+1,n2+1〉
+X4(n1,n2, t) |−−,n1+2,n2+2〉], (7)

whereχ = (n1+ 1)ω1+(n2+ 1)ω2. The coefficients
X j(n1,n2, t), ( j = 1,2,3,4) can be obtained by solving the
Schrödinger equation(i∂/∂ t) |Ψ(t)〉= Ĥ |Ψ(t)〉 , whereĤ
is given by (3).

The explicit expressions for these coefficients are
given by

X1(n1,n2, t) = qn1,n2 ∗

(
µ2

1(n1,n2)−2υ2
1(n1,n2)(1−cosµ1(n1,n2)t)

µ2
1(n1,n2)

),

X2(n1,n2, t) = −qn1,n2 ∗

(
Λ (n1,n2)υ1(n1,n2)(1−cosµ1(n1,n2)t)

µ2
1(n1,n2)

+i
υ1(n1,n2)sinµ1(n1,n2)t

µ1(n1,n2)
),

X3(n1,n2, t) = qn1,n2 ∗

(
Λ (n1,n2)υ1(n1,n2)(1−cosµ1(n1,n2)t)

µ2
1(n1,n2)

−i
υ1(n1,n2)sinµ1(n1,n2)t

µ1(n1,n2)
),

X4(n1,n2, t) = −qn1,n2 ∗

(
2υ1(n1,n2)υ2(n1,n2)(1−cosµ1(n1,n2)t)

µ2
1(n1,n2)

), (8)

where

υ1(n1,n2) = λ
√

(n1+1)(n2+1),

υ2(n1,n2) = λ
√

(n1+2)(n2+2),

Λ (n1,n2) = Z(n1,n2)+δ (n1,n2),

andµ1(n1,n2) =
√

Λ 2(n1,n2)+2(υ2
1(n1,n2)+υ2

2(n1,n2)),

with

Z(n1,n2) = Z1(n1+1,n2+1)−Z1(n1,n2)

and δ (n1,n2) =
δ1(n1+1,n2+1)+ δ1(n1,n2)

2
.
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These results consider more general than the results
which have been obtained earlier, where the cavity field
(one mode) has interacted with two coupled atoms and the
interaction between the atoms taken in to consideration.
Also, the Stark shift effect has been neglected [19].

We can write the reduced atomic density matrix in the
following form

ρ̂atoms(t) = Tr f ield |Ψ(t)〉〈Ψ(t)| , (9)

where|Ψ(t)〉 is the time-dependent wave function (7).
The density matrix for a single atom is obtained when

we take the trace over one of the atoms, thus we have

ρ̂ ( j)
a

(t) = Tra(i) ρ̂atoms(t), i, j = 1,2. (10)

ρ̂ (1)
a

(t) = ρ (1)
ee

(t) |+〉〈+|+ρ (1)
eg

(t) |+〉〈−|

+ρ (1)
ge (t) |−〉〈+|+ρ (1)

gg
(t) |−〉〈−| , (11)

where

ρ (1)
ee

(t) =
∞

∑
n1,n2=0

(|X1(n1,n2, t)|2+ |X2(n1,n2, t)|2),

ρ (1)
gg

(t) =
∞

∑
n1,n2=0

(|X3(n1,n2, t)|2+ |X4(n1,n2, t)|2),

ρ (1)
eg

(t) =
∞

∑
n1,n2=0

(X1(n1+1,n2+1, t)X∗
3(n1,n2, t)

+X2(n1+1,n2+1, t)X∗
4(n1,n2, t)) = ρ (1)∗

ge (t).

(12)

Also the reduced density operator of the field is
obtained when we take the trace over the atoms

ρ̂ f ield (t) = Tratoms |Ψ(t)〉 〈Ψ(t)| , (13)

thus we have

ρ̂ f (t) =
∞

∑
n1,n2=0

∞

∑
m1,m2=0

[X1(n1,n2, t)X
∗
1 (m1,m2, t) |n1,n2〉 〈m1,m2|

+X2(n1,n2, t)X
∗
2 (m1,m2, t)

|n1+1,n2+1〉〈m1+1,m2+1|
+X3(n1,n2, t)X

∗
3 (m1,m2, t)

|n1+1,n2+1〉〈m1+1,m2+1|
+X4(n1,n2, t)X

∗
4 (m1,m2, t)

|n1+2,n2+2〉〈m1+2,m2+2|].
(14)

In what follows we employ the results obtained here,
in order to discuss some statistical aspects of the present
system. This is performed in the forthcoming sections.

4 The single atomic inversion

The atomic inversion is defined as the difference between
the probability of finding the atom in the excited state|+〉
and in the ground state|−〉. To discuss the atomic
inversion for the first atom we use Eqs.(11) and (12), thus
we have

W (t) = ρ (1)
ee

(t)−ρ (1)
gg (t). (15)

We display the evolution of the atomic inversion for
different values of the Stark shift parameter (r = ξ1/ξ2)
in Fig. 1, where the values of the intensity of the initial
coherent parameters have been fixed asα1 = α2 = 3. In
Fig. 1(a), at r = 1 (almost absence of the Stark shift
effects), it is noted that there are regular fluctuation
between excited and ground state as should be expected.
The maximal state be clear on a regular basis and the
function W (t) is symmetric aroundW (t) = 0.1. To
visualize the influence of the Stark shift in the atomic
inversion, we setr = 0.5, it is noted that the oscillations
decreased during the revival period also there is
propagation of collapse period and the functionW (t) is
symmetric aroundW (t) = 0.4, see Fig. 1(b). By
decreasing the Stark shift parameter (r = 0.25 orr = 0.1),
it is noted that the atom oscillates in the excited state and
never reaches its ground state and the amplitude of
oscillation decreases as observed inFigs. 1(c) and 1(d).
In Fig. 1(c), there is superstructure fromλ t = 6π to 8π .
We conclude that the influence of the Stark shift on the
atomic inversion is very small whenr = 1 and becomes
strong whenr move away from 1.

5 Entanglement

It is well known that a key aspect of quantum information
processing is the concept of entanglement, therefore this
section is devoted to measure the entanglement.

5.1 Quantum entropy

The quantum dynamics described by the Hamiltonian (1)
leads to an entanglement between the field and the atoms.
Therefore, a suitable diagnostic tool which is used in this
case to measure the degree of entanglement between the
field and the atoms is the quantum entropy (or von
Neumann entropy). It is defined in quantum mechanics as
a generalization of the classical Boltzmann entropy[20,
21,22],

S =−Tr[ρ̂ ln ρ̂ ] (16)

where ρ̂ is the density operator for a given quantum
system, we set Boltzmann constantK = 1. For an initial
pure state of the system the entropy of the total system
vanishes (S = 0), while if ρ̂ describes a mixed state, then
S 6= 0. We can either use the field entropyS f (t) to
measure the amount of entanglement. The field entropy
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Fig. 1: The time evolution of the atomic inversion as a function
of scaled timeλ t with fixed parametersα1 = α2 = 3, (a) r=1,
(b)r=0.50, (c) r=0.25 and (d) r=0.10.

may be expressed in terms of the eigenvaluesλi(t),
(i = 1,2,3,4) for the reduced atomic density matrix as

S f (t) =−
i=4

∑
i=1

λi(t) lnλi(t). (17)

For the first atom, the field entropy can be written as

S f (t) =−λ−(t) lnλ−(t)−λ+(t) lnλ+(t), (18)

where λ±(t) are the eigenvalues of the reduced
density matrixρ̂ (1)

a
(t) which can be easily evaluated from

Eqs. (11) and (12) as the following form

λ±(t) =
1
2
± 1

2

√

〈

σ̂ (1)
x (t)

〉2
+
〈

σ̂ (1)
y (t)

〉2
+
〈

σ̂ (1)
z (t)

〉2
,

(19)
where

〈

σ̂ (1)
x (t)

〉

= 2Reρ (1)
eg (t),

〈

σ̂ (1)
y (t)

〉

= 2ρ (1)
eg (t)

and
〈

σ̂ (1)
z (t)

〉

= ρ (1)
ee (t)−ρ (1)

gg (t). (20)

It is worth mentioning that the relations related to the
second atom can be obtained from the relations related to
the first atom by using the interchange
X2(n1,n2, t)↔ X3(n1,n2, t).

Now, we turn our attention to examine numerically
the dynamical evolution of the field entropy, we use the
same initial parameters of the above figures (for the single
atomic inversion). Whenr = 1, the entropy reaches to the

maximum value (ln2), seeFig. 2(a). It reachs to
disentanglement at the ponits of revival as show inFig.
1(a). If we decrease the value ofr in order to visualize
the influence of the stark shift in the field entropy, we see
that whenr = 0.5 the functionS f (t) oscillates around 0.5,
this means that, the maximum value of this function
decreases, seeFig. 2(b), this effect is also shown clearly
in Figs. 2(c) and2(d), where in the case ofr = 0.25 the
function S f (t) oscillates around 0.25 and weakly
entanglement occurs most of the time (almost
disentanglement). Atr = 0.1, S f (t) oscillates around
0.06, this means that, very weakly entanglement occurs.
Thus we conclude that whenr increases the entanglement
phenomenon between the field and the atom increases.

In this subsection, we measure the amount of
entanglement between the field and the first atom using
quantum entropy which is a suitable tool to measure
entanglement in a pure state. But in the next subsection
we use the negativity to measure the amount of
entanglement between the two atoms.

Fig. 2: The time evolution of the field entropy as a function of
the scaled timeλ t and other parameters same as in Fig.(1).

5.2 The negativity

This subsection is devoted to discuss the entanglement
measures through the negativity, which is defined by [23]

N(ρ) =
‖ρTA

AB‖−1
d−1

, (21)
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with

‖ρTA
AB‖= (∑

i

|µ̀i|−∑
i

µ̀i)+1,

whereρTA
AB is the partial transpose ofρAB and∑i µ̀i is

sum of the all eigenvalues ofρTA
AB. The valueN(ρ) = 1

corresponds to maximum entanglement, whileN(ρ) = 0
indicates that the bipartite system is separable.

Now, we measure the entanglement between the two
atoms using the negativity by using the reduced atomic
density matrixρ̂atoms(t) (9), then we take partial transpose
of one of the atoms. We display inFig. 3 the evolution of
the negativity with the scaled timeλ t, in order to see the
effect of the Stark shift on the degree of the entanglement
between the two atoms. We take the values of the
intensity of the initial coherent parameters as
|α1|2 = |α2|2 = 2. It is noted that atr = 1 the maximum
degree of the entanglement is 0.1. When Stark shift effect
increases the entanglement decreases, also it is noted that
when r = 0.25, the sudden death and rebirth of
entanglement is clearly displayed, seeFig. 3(c). Thus we
conclude that, in this system the degree of the
entanglement between the two atoms is weak.

Fig. 3: The time evolution of the negativity as a function of scaled
time λ t with the atomic initially in excited state, and the field is
prepared in a coherent states with fixed parametesr
|α1|2 = |α2|2 = 2, (a) r=1,(b) r=0.50 and (c) r=0.25.

6 Variance squeezing

The squeezing phenomenon is one of the nonclassical
phenomena in the field of quantum optics. It has been
established that squeezing in entropy and variance
squeezing are useful tools to measure the phenomenon of
squeezing in quantum fluctuations. In fact, both the
squeezing in entropy and variance squeezing are built up
on the concept of uncertainty relations. There is another
kind of squeezing that depends on the field quadratures
rather than on the atomic quadratures, which is the usual
single-mode squeezing. In this section, we study the
variance squeezing.

For a quantum mechanical system with two physical
observables represented by the Hermitian operatorsÂ and
B̂ satisfying the commutation relation[Â, B̂] = iĈ, one can
write the Heisenberg uncertainty relation in the form

〈

(△ Â)2〉〈(△ B̂)2〉
>

1
4

∣

∣

〈

Ĉ
〉∣

∣

2
, (22)

where
〈

(△ Â)2〉=
〈

Â2〉−
〈

Â
〉2

.

Consequently, the uncertainty relation for a two-level
atom characterized by the Pauli operatorsσ̂x, σ̂y and σ̂z
satisfying the commutation relation[σ̂x, σ̂y] = 2iσ̂z can be
written as

△ σ̂x △ σ̂y > |〈σ̂z〉| . (23)

Fluctuations in the component̂σ (i)
γ of the atomic

dipole are said to be squeezed if△ σ̂ (i)
γ satisfies the

following condition[24]

V (σ̂ (i)
γ ) = △ σ̂ (i)

γ (t)−
√

∣

∣

∣

〈

σ̂ (i)
z (t)

〉∣

∣

∣
< 0, (24)

γ = x or y, i = 1,2.

Here, we examine the effect of Shark shift on the
atomic dipole squeezing of the first atom; so we plot
several figures of the variance squeezing against the

scaled timeλ t. First, we measure the variancesV (σ̂ (1)
x )

andV (σ̂ (1)
y ) against

〈

σ̂ (1)
z

〉

. At r = 1, it is observed that

the squeezing occurs in the quadrature varianceV (σ̂ (1)
y )

and no squeezing occurs in the quadrature variance

V (σ̂ (1)
x ). In this case it is found that maximum squeezing

equal to 0.2, see Fig. 4(a). When Stark parameter
decreases, it is found that the squeezing occurs in the

quadrature varianceV (σ̂ (1)
x ) and squeezing in the

quadrature varianceV (σ̂ (1)
y ) is almost non-existent, see

Fig. 4(b). Second, we measure the variancesV (σ̂ (1)
y ) and

V (σ̂ (1)

z ) against
〈

σ̂ (1)
x

〉

. In Fig. 5(a), it is observed that no

squeezing occurs in the two quadrature variances. By
decreasing the value ofr to 0.1 it is observed that, there is

squeezing all the time in quadrature varianceV (σ̂ (1)

z ) and

no squeezing occurs in the quadrature varianceV (σ̂ (1)

y ),
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seeFig. 5(b). Third, we measure the variancesV (σ̂ (1)
x )

andV (σ̂ (1)

z ) against
〈

σ̂ (1)

y

〉

. By taking different value of

r, it is observed that, there is squeezing most of the time

in quadrature varianceV (σ̂ (1)

z ) and no squeezing occurs in

the quadrature varianceV (σ̂ (1)

x ), seeFig. 6. Finally, we
conclude that the influence of the Stark shift on the
variance squeezing shows clearly. In the case of small
values of Stark shift parameter we observe that more
squeezing occur and the phenomenon gets more
pronounced, also the maximum squeezing occurs after a
short of time.

Fig. 4: The time evolution of the varianceV (σ̂ (1)
x ) andV (σ̂ (1)

y )

against
〈

σ̂ (1)
z

〉

as a function of the scaled timeλ t, with fixed

parametersα1 = α2 = 3, (a) r=1, and (b) r=0.10. the dashed

(blue) curve representV (σ̂ (1)
x ) and the solid (red) curve represent

V (σ̂ (1)
y ).

7 Second-order coherence for one of the field
modes

In fact the correlation function is usually used to discuss
the sub-Poissonian and super-Poissonian behaviour of the
photon distribution from which we can distinguish
between classical and nonclassical behaviour. The
normalized second-order correlation function is defined

Fig. 5: The time evolution of the varianceV (σ̂ (1)
y ) andV (σ̂ (1)

z )

against
〈

σ̂ (1)
x

〉

and the same parameters of Fig. (4), the dashed

(blue) curve representV (σ̂ (1)
y ) and the solid (red) curve represent

V (σ̂ (1)
z ).

Fig. 6: The time evolution of the varianceV (σ̂ (1)
x ) andV (σ̂ (1)

z )

against
〈

σ̂ (1)
y

〉

and the same parameters of Fig. (4), (a) r=1 and

(b) r=0.01, the dashed (blue) curve representV (σ̂ (1)
x ) and the

solid (red) curve representV (σ̂ (1)
z ).
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by [25]

g(2)i (t) =

〈

â†2
i â2

i

〉

〈

â†
i âi

〉2 , (25)

where the subscript i relates to theith mode. In order to
discuss the behaviour of the correlation function of the first
mode, we calculate the expectation values of the quantitys
〈

â†2
1 â2

1

〉

and
〈

â†
1â1

〉

〈

â†
1â1

〉

=
∞

∑
n1,n2=0

[n1

∣

∣

∣
X1(n1,n2, t)

2
∣

∣

∣
+(n1+1)

∣

∣

∣
X2(n1,n2, t)

2
∣

∣

∣

+(n1+1)
∣

∣

∣
X3(n1,n2, t)

2
∣

∣

∣
+(n1+2)

∣

∣

∣
X4(n1,n2, t)

2
∣

∣

∣
].

(26)

〈

â†2
1 â2

1

〉

= 〈n̂1(n̂1−1)〉

=
∞

∑
n1,n2=0

[n1(n1−1) |X1(n1,n2, t)|2

+n1(n1+1) |X2(n1,n2, t)|2

+n1(n1+1) |X3(n1,n2, t)|2

+(n1+1)(n1+2) |X4(n1,n2, t)|2]. (27)

By using Eqs. (25)-(27) we can easily getg(2)1 (t). We
display the correlation function against the scaled time
λ t, to exhibit the effect of the Stark shift on the behavior
of the state. Whenr = 1, it is noted that during the short
period of time the behavior of the function start
Poissanian then changes from super-Poissonian to
sub-Poissonian until it reaches to the Poissonian behavior
again and this behavior is repeated during the time period,
seeFig. 7(a). In Figs. 7(b) and7(c), the state has a light
super-Poissonian behavior almost all the time. In the end
we conclude that by increasing the effect of the Stark shift
on the present system the behavior of the state shown
super-Poissonian.

8 Conclusion

This paper has been proposed to study the effect of Stark
shift parameter on some statistical aspects related to a
system of non-linear interaction of a two two-level atoms
and two modes of radiation field such as atomic inversion,
entanglement, variance squeezing and degree of
coherence. The constants of motion and the wave
function of the system Hamiltonian are obtained. It is
shown that the influence of the Stark shift on the atomic
inversion is very small atr = 1, (almost disappears) and
becomes strong whenr decreased, where, we found that
the atomic inversion is shifted upwards which means that
energy is stored in the atomic system and it does not
return to the ground state. The increase in the Stark shift

Fig. 7: The time evolution of the correlation function against time
λ t and the other parameters are the same as in Fig.(1), (a)r=1,
(b)r=0.10 and (c)r=0.010.

effect leads to an increase in the degree of entanglement
between the field and the atoms. We have observed that
more squeezing occurs and the phenomenon is more
pronounced in the case of small values of Stark shift
parameter. Also maximum squeezing is occurred after a
short time. By increasing the effect of the Stark shift, the
behavior of the state leads to super-Poissonian behavior.
Moreover, in all statistical aspects, when the Stark shift
parameter increases the effect of the Stark shift is
decreased.
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