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Abstract: A non-linear Tavis Cummings model is studied, especially, two-level atoms interacting with two modes of radiatia@idi
with Stark shift effect. The time-dependent wave functiod aonsequently the density matrix are obtained from whieldiscussed
the effect of Stark shift on different statistical aspeasthe present system, for example, atomic inversion, gh¢ament, variance
squeezing and degree of coherence. Itis observed thataHessift parameter plays an important role on the evolutithese aspects.
When Stark shift parameter moves away from 1, the atomiasiwe is shifted upwards, entanglement decreases and moeezng
occur.
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1 Introduction solution of the system, this is followed by a discussion of
the atomic inversion in Sec. 4, and entanglement in Sec.

Quantum correlation and quantum entanglement are twé®. Variance squeezing is considered in Sec. 6. Second

interesting quantities in quantum world. They play a order coherence for one of the field modes is discussed in

central role in revealing the quantum features of quantunfSec. 7. Finally, some conclusions are given in Sec. 8.

information and communication theofyp, 3,4]. Also the

inseparable (entangled) states have applications in

quantum computing], teleportationf], cryptographic o Description of the model

[7] and dense codind].

In atomic physics, the Stark effect is the split and shift We consider a system of two three-level atoms in the
of a spectral line into several components in the presencgyme cavity, each atom interacting with two modes of
of an electric field. The amount of spliting is called the aqiation field. We obtain the Stark shift contribution to
Stark shift b, 10,11]. Its effect has been studied on some o two-level atoms by using the adiabatic elimination
phenomena in different quantum systeb®13 14,15.  method for the intermediate level. The effective
It has been shown that an increase in the value of the4amiltonian of a two two-level atoms interacting with
Stark shift parameter leads to an increase in the degree afvo modes in the presence of Stark shift is obtairks) [
entanglemenf]5 also, Squeezing phenomena have 16,17,18]. The effective Hamiltonian of this system in
affected by any variation in the Stark parameté&}[ the rotating wave approximation (RWA) can be written as
In this paper we study the interaction between an atomiqgh= 1)
system described by a two two-level atoms and the 5
quantized field in the rotating wave approximation taking \j_ . — 5 w14 +% S Q60 + > (EDpy 5

into account Stark shift effect. We obtain the wave = = A& B
function of the total system at any tinte> 0 and we _ 2 .

study the effect of Stark shift on some statistical aspects. +& 606 0) + 5 A0 (6Valal + 6V a4),
This paper is arranged as follows: Sec. 2, is devoted to the =1

physical system. Sec. 3, is devoted to the analytical 1)
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where w; (Qj), (j = 1,2) is the field (the atomic respectively. In this case the wave function of the system
transition) frequenci&a}r’(éj) is the creation (annhilation) att =0 can be written as
operator that satisfy the Boson commutation relation o
[4.4]] = &;. The operatorss))(6()) and §(are the W) =+ Y Gumlnn), (6

usual raising (lowering) and the inversion operators for N1,z =0
the j" two-level atomic system, satisfying the
N where
commutation relatlons[a(> 0] = £260) &; and
[69%6&1 | =60a;, (,j =1,2). &Y, 52(1) are the q :exp(—:—Li ;) alal?
parameters of ‘the intensity- dependent Stark shifts to the M 24 /gt

two levels of thej atom, that are due to the virtual
transitions to the intermediate level, and we note that The wave function¥(t)) att > 0 for the system takes
A0) — El(j)52<j>- the following form
Wt) = Y e X Xa(n,np,t) [++,n1,n2)
n1,N>=0
+Xo(ng,n,t) [+—, M+ 1np+1)
In this section we derive the wave functio¥(t)), the +X3(ng, N2, t) |—+,n1+1,np+ 1)
reduced atomic density matrix and the reduced density +Xa(N, N, t) | ——, M+ 2,5+ 2)], @)
operator of the field. o
By using the Heisenberg equation of motion — wherex = (ni+ 1jcwn + (n2+1)wp. The coefficients

3 The analytical solution

%_cta _ %[éaﬁ] ) for the operators)|"= é}réj and 52(1)7 Xj(n1,ny,1), (j =1,2,3,4) can be obtained by solving the
(j = 1,2), we can deduce the following constants of Schrodinger equatiofio/ot)[%(t)) = H [¥(t)), whereH
" is given by Q).

motion . .
otio The explicit expressions for these coefficients are

Ry = 2y + (639 + 67), Ry =2+ (817 + 612, (2)  9ivenby

. . . . Xl(nl>n2>t) = in,ng*
Here, we consider the case in which the atoms and the field 5 2
pi (N, n2) — 207 (g, N2) (1 — cospg (N, No)t)

are exactly resonant ], 51(1) = —51(2), Ez(l> = —62(2> and ( 2(ng.10) )
A =A@ = A. Thus, the Hamiltoniarlj becomes Hilh M2
Xz(nl7n27t) = _Qm,nz *
- 1 - 1 . A A _
Ferr = SRy + Sl + A +C 3) (A (M,12)0 (N, N2) (1 = COSpy (M, N2)t)
2 2 p2(ng,ny)
where i Ul(nl,nz)Sinﬂl(nl,nz)t)
2 1z A A@AQ pa(ng,nz) '
C= iél(nlanZ)(o-+ O-, - O-+ O-, ) X3(nl>n2>t) = qnl-,nz*
1o o a A A(D) A(2) A2 A(ng, n2) Vs (ng, N2) (1 — cospy (Ng, Mp)t)
_E (nlanZ)(O{ ) J(r ) O-E )O-J(r )) ( uf(nan)
2 e . L1(m, ng) sinpg (N, np)t
+A 71(05” I 42r+0£”a1a2) pr(ng,n2) )
"~ x4(n17n27t) = —in,nz*
Ls (6060 _ 5252
and A = >Z1(f1,hz)(61V 6 —6176'9) (ZUl(nl,nz)Uz(nl,nz)(l—COSlll(nan)t)) (®)
1. HZ (e, ng)
+§Zz(ﬁ1,nz)(0(l)0(l) —-6%512) (4)  where
with v1(n,p) = A/ (N +1)(n2+1),
Ug(rll7 2) = )\\/ n1+2 n2+2
A1 (A, Mp) = &1y — &a(fz + 1), A(ng,nz) = Z(n,n) +8(ng, np),
& (fig,fz) = &1 (A —1,fiz — 1), andpy (ng,np) = \//\2 (n,M2) 4+ 2(02 (N, Mz) + V2 (N1, Np)),
Zy (1, fip) = (éafn + &2(M2+ 1)) with
andZy(Ay,fy) = Z1 (M — 1, A, — 1). (5)
(M.2) ( ) Z(ny,m) = Zy(np+1,n2 4 1) — Z3(ng, np)
We assume that the two atoms and the field are initially ~ au(ng+ 1,4 1) + Gi(ng, )
prepared in excited states and uncorrelated coherens staténd d(ny,nz) = > :
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These results consider more general than the resultd The single atomic inversion
which have been obtained earlier, where the cavity field
(one mode) has interacted with two coupled atoms and th& he atomic inversion is defined as the difference between
interaction between the atoms taken in to considerationthe probability of finding the atom in the excited state

Also, the Stark shift effect has been neglected [ and in the ground state—). To discuss the atomic
We can write the reduced atomic density matrix in the inversion for the first atom we use Edslj and (2), thus
following form we have
wi(t) = p(t) — pig 1): (15)
Patoms (1) = Triaa [ (1)) (P(1)], 9)

We display the evolution of the atomic inversion for

. . ) different values of the Stark shift parameter={ £1/&>)
where|(1)) is the time-dependentwave functioh.( iy Fig 1, where the values of the intensity of the initial

The density matrix for a single atom is obtained when -oherent parameters have been fixedras- a, = 3. In
we take the trace over one of the atoms, thus we have g 1(a), at r = 1 (almost absence of the Stark shift
A (i) . o effects), it is noted that there are regular fluctuation
P, (1) =Tra; Paoms(t), 1, j=12. (10)  petween excited and ground state as should be expected.
The maximal state be clear on a regular basis and the
function W(t) is symmetric aroundW(t) = 0.1. To

P = (1) [+) (+]+ oD () |+) (| visualize the influence of the Stark shift in the atomic
(1) ) inversion, we set = 0.5, it is noted that the oscillations
+pge (1) [=) (+]+pg" (1) [=) (=, (11)  decreased during the revival period also there is
propagation of collapse period and the functibfit) is
where symmetric aroundW(t) = 0.4, see Fig. 1(b). By
® decreasing the Stark shift paramete0.25 orr = 0.1),
,Déel) t) = Z (IXa(ng, no,t)[2 4 [Xa(ng, no,t)[?), it is noted that the atom oscillates in the excited state and
ny,nz=0 never reaches its ground state and the amplitude of
) ® 2 2 oscillation decreases as observed-igs. 1(c) and 1(d).
Py’ () =5 (IXa(ng,nz,t)["+ [Xa (g, n2,1)[%), In Fig. 1(c), there is superstructure froit = 67T to 8.
N1,n2=0 We conclude that the influence of the Stark shift on the
A= 3 e m Ly o ersion s very sl e and becomes
nl,nZ:O

FXo(My+ Lo+ 16X (N, 1, t)) = pie ™ (1),
(12) 5 Entanglement

Also the reduced density operator of the field is it js well known that a key aspect of quantum information
obtained when we take the trace over the atoms processing is the concept of entanglement, therefore this
R section is devoted to measure the entanglement.
Priga (t) = Traoms |¥ (1)) (W(1)], (13)

thus we have 5.1 Quantum entropy

pi(t) = z z The quantum dynamics described by the HamiltonBn (
M, 2=01my, mp=0 leads to an entanglement between the field and the atoms.
[X1(ng, g, t)X{ (Mg, My, t) [Ny, N2) (Mg, My Therefore, a suitable diagnostic tool which is used in this
+Xo(ng, Np, t) X5 (Mg, mp, t) case to measure the degree of entanglement between the

field and the atoms is the quantum entropy (or von

n+21n,+1)(m+1 1 . : . .
N1+ 3,2+ 1) (M + 1, + 1| Neumann entropy). It is defined in quantum mechanics as

+X3(Ng, N2, 1) X3 (Mg, My, 1) a generalization of the classical Boltzmann entr@py[
[N1+21,np+1) (M + 1, mp+1] 21,22],

+Xa(ng, N2, )X, (M, My, t) S=-Tr[pInp] (16)
[Ny +2,m2+2) (Mg + 2,mp + 2]]. where p is the density operator for a given quantum

(14) system, we set Boltzmann constéht= 1. For an initial
pure state of the system the entropy of the total system
In what follows we employ the results obtained here, vanishes &= 0), while if p describes a mixed state, then
in order to discuss some statistical aspects of the preser® # 0. We can either use the field entrof8(t) to
system. This is performed in the forthcoming sections.  measure the amount of entanglement. The field entropy
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maximum value (In2), seeFig. 2(a). It reachs to
disentanglement at the ponits of revival as showFig.
1(a). If we decrease the value of in order to visualize
the influence of the stark shift in the field entropy, we see
that wherr = 0.5 the functionS; (t) oscillates around.8,

this means that, the maximum value of this function
decreases, sefig. 2(b), this effect is also shown clearly
in Figs. 2(c) and2(d), where in the case af= 0.25 the
function S¢(t) oscillates around .@5 and weakly
entanglement occurs most of the time (almost
disentanglement). Ar = 0.1, S;(t) oscillates around
0.06, this means that, very weakly entanglement occurs.
Thus we conclude that wherincreases the entanglement
phenomenon between the field and the atom increases.

In this subsection, we measure the amount of
entanglement between the field and the first atom using
guantum entropy which is a suitable tool to measure
entanglement in a pure state. But in the next subsection
we use the negativity to measure the amount of
entanglement between the two atoms.
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Fig. 1: The time evolution of the atomic inversion as a function
of scaled timeAt with fixed parametersr; = a» = 3, (a) r=1,
(b)r=0.50, (c) r=0.25 and (d) r=0.10. EI'T

may be expressed in terms of the eigenvalugs), : i S
(i=1,2,3,4) for the reduced atomic density matrix as

(17)

i—a
Si(t) = __Zif\i(t)ln)\i(t)-

For the first atom, the field entropy can be written as
Si(t) = —A-()INA_(t) — A+ (t) A (1),

where A.(t) are the eigenvalues of the reduced
density matrixp(Y) (t) which can be easily evaluated from
Egs. (L1) and (L2) as the following form

\/ (60 + (6" 0) + (60,
(19)

(18)

§i

1,1
"2

Jyveyrres

pry =

AL(t)

o =

where

(o

v) = 2Repig V) (6, )

Fig. 2: The time evolution of the field entropy as a function of
the scaled tim@dt and other parameters same as in Hig.(

and (61" (1)) = P&/ (1) - P (V). (20)

It is worth mentioning that the relations related to the
second atom can be obtained from the relations related t N
the first atom by using the interchange 3.2The negativity

Xa(ng, 2, t) > Xa(ng, n2,t). This subsection is devoted to discuss the entanglement

Now, we turn our attention to examine numerically measures through the negativity, which is definedasy [
the dynamical evolution of the field entropy, we use the

same initial parameters of the above figures (for the single

-
Pagll —1
atomic inversion). When = 1, the entropy reaches to the =

- d-1"7 (21)

N(p)
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with 6 Variance squeezing

ol = (5

v

_zgi)Jrl’ The squeezi_ng phenomenon is one of .the nonclassical
| phenomena in the field of quantum optics. It has been
established that squeezing in entropy and variance
squeezing are useful tools to measure the phenomenon of
squeezing in quantum fluctuations. In fact, both the
squeezing in entropy and variance squeezing are built up
. on the concept of uncertainty relations. There is another
corresponds to maximum entanglement, WiNip) =0 ying of squeezing that depends on the field quadratures
indicates that the bipartite system is separable. rather than on the atomic quadratures, which is the usual
Now, we measure the entanglement between the tweingle-mode squeezing. In this section, we study the
atoms using the negativity by using the reduced atomicvariance squeezing.
density matrixdaoms(t) (9), then we take partial transpose For a quantum mechanical system with two _physical
of one of the atoms. We display Fig. 3 the evolution of ~ observables represented by the Hermitian oper#tansd
the negativity with the scaled timkt, in order to see the B satisfying the commutation relatidA, B] = iC, one can
effect of the Stark shift on the degree of the entanglementrite the Heisenberg uncertainty relation in the form
between the two atoms. We take the values of the

wherep,Ig is the partial transpose @hg andy; [ is
sum of the all eigenvalues gf3. The valueN(p) = 1

intensity of the initial coherent parameters as <(A A)2> <(A §)2> > }‘<é>|2’ (22)
la1|?> = |az|? = 2. It is noted that at = 1 the maximum 4
degree of the entanglement id0When Stark shift effect where
increases the entanglement decreases, also it is noted that <(A A)2> _ <A2> _ <A>2'
when r = 0.25, the sudden death and rebirth of . .
entanglement is clearly displayed, &ig. 3(c). Thus we Consequent.ly, the uncertainty relat|op foAr a two:level
conclude that, in this system the degree of thea@tom characterized by the Pauli operatdxs dy and J;
entanglement between the two atoms is weak. satisfying the commutation relatiddy, Gy = 2i0; can be

written as

A Ox A Oy > |(G7)]. (23)

Fluctuations in the componen?r,(,i> of the atomic

dipole are said to be squeezed sf c},(,” satisfies the
following condition24]

o.14
0.12
.10

22t [\/\J\AA«/\[’\AJ\{\/ V(&) =08)0-/|(a" )] <o, (24)

y=xory, i=12

o.14F 3 Here, we examine the effect of Shark shift on the
oa2p 3 atomic dipole squeezing of the first atom; so we plot
) several figures of the variance squeezing against the

.08

Nig)

e ’\ !\ A E scaled timeAt. First, we measure the variancééd,”)
P A LWAVAVAVI VaAWAWAWI VLY L0 andV (&Y against< “Z<1)>. Atr =1, it is observed that
’ the squeezing occurs in the quadrature varian(zﬁx}l))
S 3 and no squeezing occurs in the quadrature variance
_ ooz0f 3 V(@El)). In this case it is found that maximum squeezing
= oot 3 equal to 02, see Fig. 4(a). When Stark parameter
o.00sE ]Q decreases, it is found that the squeezing occurs in the
o.000 E '"I n . ~ (1) . .
o = & & w18 1= 14 quadrature varianceV(0x) and squeezing in the

quadrature variancla’(“y(l>) is almost non-existent, see

Fig. 4(b). Second, we measure the varianVeéé,El)) and
Fig. 3: The time evolution of the negativity as a function of scaled (1)

(1) . ~ . .
time At with the atomic initially in excited state, and the field is V(6, ) agalnst<ax > In Fig. 5(a), itis observed that no

prepared in a coherent states with fixed parametesr squeezing occurs in the two quadrature variances. By
la1|? = |az)? = 2, (a) r=1,(b) r=0.50 and (c) r=0.25. decreasing the value ofto 0.1 it is observed that, there is

squeezing all the time in quadrature variah/c{é;l)) and
no squeezing occurs in the quadrature variamcé)(,l)),

(@© 2017 NSP
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seeFig. 5(b). Third, we measure the variancwé)ﬁl))
andV(éz(l)) against<c})(,l>>. By taking different value of

r, it is observed that, there is squeezing most of the time
in quadrature variandé(&z(l)) and no squeezing occurs in

the quadrature variandé(a)il)), seeFig. 6. Finally, we
conclude that the influence of the Stark shift on the
variance squeezing shows clearly. In the case of smal . . . .
values of Stark shift parameter we observe that more . A e
squeezing occur and the phenomenon gets mor
pronounced, also the maximum squeezing occurs after
short of time.

Pl e Fud Wy Faf s,

Vi, Vi
=

o Jf»%%#?ﬂsr

ViV

e S T ™ T
i1
5 Fig. 5: The time evolution of the variandé( “)gl)) andV(c}z(1>)
against< 6§1)> and the same parameters of Fid), the dashed
" (blue) curve represeit( “)ﬁl)) and the solid (red) curve represent
v(ei).
s o N s A ;
= u:‘ = an
E “':I a6
= " e o4
o II R 20 "
An
A
Fig. 4: The time evolution of the varianc)é(c“fﬁl)) andV(6§l>)
against<c“fz<l)> as a function of the scaled tint, with fixed 4
D g o o o e e e i e o ]
parametersr; = ap = 3, (a) r=1, and (b) r=0.10. the dashed v =S
(blue) curve represem(cﬁl)) and the solid (red) curve represent P ]
v(ey).
i = & "

7 Second-order coherence for one of the field

modes
Fig. 6: The time evolution of the variandé( “ﬁl)) andV ( Azm)

. . . ; ~ (1) ; _
In fact the correlation function is usually used to d|scussaga'”5t<ay > and the same parameters of Fid), (a) r=1 and

the sub-Poissonian and super-Poissonian behaviour of th@) r=0.01, the dashed (blue) curve represét6”) and the
photon distribution from which we can distinguish g (red) curve represem(c“fZ(l)).

between classical and nonclassical behaviour. The
normalized second-order correlation function is defined
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by [23]

(da)"

where the subscript i relates to tifémode. In order to

g2 (t) (4%) (25)

discuss the behaviour of the correlation function of the: firs
mode, we calculate the expectation values of the quantity:

<a{2a§> and<a{al>

(48) -

S ImXa(nnz 0 + (n+ 1) [Xe(n .02
ng,N;=0

(e + 1) [Xa(n 2,07+ (m+2) [Xa(ng, . )2l
(26)

(alag) = (P - 1)

= S (- D) Xa(ng a2

ny,np=0

+n1(n + 1) [Xo(ng, np, t) 2

(g + 1) [Xa(ng, nz, t)[?

+(ng+1)(ny +2) [X4(ng, N2, 1)]?]. (27)

By using Eqgs. 25)-(27) we can easily geggz) (t). We

1.
ooz b E
- 1o | q
=
1 OO0 E
oo | E

ol

1.032

101 F

1o f e

oo b

0.7

(e

LU

1 CHHMHIZ2 0

1O T

1O T -
1O 10 B |
L TRTSTRTaTa =} E

[ e ]

LI
(e Eli] .S .10 .15 O 220

ax

Fig. 7: The time evolution of the correlation function against time
At and the other parameters are the same as inlidd)r=1,
(b)r=0.10 and (c)r=0.010.

display the correlation function against the scaled timeeffect leads to an increase in the degree of entanglement
At, to exhibit the effect of the Stark shift on the behavior penyeen the field and the atoms. We have observed that
of the state..When =1,itis r)oted that during t.he short  more squeezing occurs and the phenomenon is more
period of time the behavior of the function start hronounced in the case of small values of Stark shift

Poissanian then changes from super-Poissonian tBarameter. Also maximum squeezing is occurred after a
sub-Poissonian until it reaches to the Poissonian behavidghort time. By increasing the effect of the Stark shift, the

again and this behavior is repeated during the time periodpehavior of the state leads to super-Poissonian behavior.

seeFig. 7(a). In Figs. 7(b) and 7(c), the state has a light

Moreover, in all statistical aspects, when the Stark shift

super-Poissonian behavior almost all the time. In the engyarameter increases the effect of the Stark shift is
we conclude that by increasing the effect of the Stark shiftjecreased.

on the present system the behavior of the state shown

super-Poissonian.

8 Conclusion

This paper has been proposed to study the effect of Star 2
shift parameter on some statistical aspects related to
system of non-linear interaction of a two two-level atoms
and two modes of radiation field such as atomic inversion,,
entanglement, variance squeezing and degree o
coherence. The constants of motion and the waves)
function of the system Hamiltonian are obtained. It is
shown that the influence of the Stark shift on the atomic
inversion is very small at = 1, (almost disappears) and [g]
becomes strong whendecreased, where, we found that
the atomic inversion is shifted upwards which means that
energy is stored in the atomic system and it does no{7]
return to the ground state. The increase in the Stark shift
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