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Abstract: In this paper we study the coefficients of the powers of an ordinary generating function and their properties. A new class
of functions based on compositions of an integern is introduced and is termed composita. We present theorems about compositae and
operations with compositae. We obtain the compositae of polynomials, trigonometric and hyperbolic functions.
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1 Introduction

The computations based on combinatorial objects are an
important direction of research in enumerative
combinatorics and related fields of mathematics. For
example, ordered partitions of a finite set is used to derive
the formula for a composition of exponential generating
functions [1]. Computations that use compositions of an
integern are found in various problems: derivation of a
convolution of convolutions [2], composition of ordinary
generating functions [3] that allow us to obtain many
properties of polynomials [4,5], calculation of then-th
order derivatives of a composite function [6], generation
of ordered root trees [7], etc. However, there is no unified
approach to solving problems based on compositions.

In this work, we consider a unified approach to the
above problems, using a special function termed a
composita. The notion of the composita is close to that of
a Riordan array [8,9], but the composita characterizes
only one function, and potential polynomials for
exponential generating functions [10].

Most of all papers and books related to combinatorial
problems and generating functions use coefficients of the
powers of an ordinary generating function [1,3,10,11].
However, as an independent object of study this has not
considered. So investigation of the coefficients of the
powers of an ordinary generating function is very
important.

2 Composita

Now we introduce the definition of composita.

Definition 1.The composita of the generating function
F(x) = ∑n>0 f (n)xn is the function of two variables

F∆ (n,k) = ∑
πk∈Cn

f (λ1) f (λ2) . . . f (λk), (1)

where Cn is a set of all compositions of an integer n,πk is
the composition n into k parts such that∑k

i=1 λi = n.

It follows from the definition of a composita that it is
defined for a generating functionF(x) for which
f (0) = 0. Let us consider a generating function
F(x) = x

1−x = ∑n>0xn. On the strength of formula (1), the
composita of this function is

F∆ (n,k) =

(

n−1
k−1

)

.

For all n> 0 we havef (n) = 1; therefore, the formula (1)
counts the number of compositions ofn into k parts.

Next we obtain a recurrent formula for the composita
of a generating function.

Theorem 1.For the composita F∆ (n,k) of the generating
function F(x) = ∑

n>0
f (n)xn the following recurrent

relation holds true

F∆ (n,k) =







f (n), if k = 1;
n−k+1

∑
i=1

f (i)F∆ (n− i,k−1), if k ≤ n.
(2)
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Proof.The compositionπk for k= 1 is unique and is equal
to n; from whence it follows thatF∆ (n,1) = f (n). Now
for k > 1 we group in the formula (1) all products
f (λ1) f (λ2) . . . f (λk) of the compositionπk with equalλ1.
Let us takef (λ1) out of the brackets; we see that the sum
of the products in the brackets is equal to
F∆ (n−λ1,k−1). Then for all values ofλ1 we obtain

F∆ (n,k) = f (1)F∆ (n−1,k−1)+ f (2)F ∆ (n−2,k−1)+ · · ·

· · ·+ f (i)F∆ (n− i,k−1)+. . .+ f (n−(n−k+1))F ∆ (k−1,k−1).

Thus, the theorem is proved.

It is obviously that

F∆ (n,n) = f (1)F∆ (n−1,n−1) = f (1)n
.

The formula (2) allows the conclusion that the composita
is a characteristic of the generating functionF(x).

In tabular form, the composita is presented as a triangle
as follows

F∆
1,1

F∆
2,1 F∆

2,2
F∆

3,1 F∆
3,2 F∆

3,3
F∆

4,1 F∆
4,2 F∆

4,3 F∆
4,4

. .
. ...

...
...

. . .
F∆

n,1 F∆
n,2 . . . . . . F∆

n,n−1 F∆
n,n

or, sinceF∆
1,n = f (n), F∆

n,n = [ f (1)]n, as

f (1)
f (2) f 2(1)

f (3) F∆
3,2 f 3(1)

f (4) F∆
4,2 F∆

4,3 f 4(1)

. .
. ...

...
...

. . .
f (n) F∆

n,2 . . . . . . F∆
n,n−1 f n(1)

Presented below are the first terms of the composita of
the generating functionF(x) = x

1−x (it is the Pascal
triangle)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

For the given generating functionF(x) = ∑n>0 f (n)xn

the compositaF∆ (n,k) always exists and is unique.
Next we consider a generating function of the

composita. The generating function of the composita of
F(x) is equal to

[F(x)]k = ∑
n≥k

F∆ (n,k)xn
. (3)

It follows from

[F(x)]k = ∑
n≥k

∑
πk∈Cn

f (λ1) f (λ2) . . . f (λk)x
n = ∑

n≥k

F∆ (n,k)xn
.

The composita is the coefficients of the powers of an
ordinary generating function

F∆ (n,k) := [xn]F(x)k
.

3 Operations with composita

The above result allows us to use generating functions for
computation of compositae. In this section we introduce
several theorems for computation of compositae.

Theorem 2.Suppose F(x) = ∑n>0 f (n)xn is a generating
function, F∆ (n,k) is the composita of this generating
function. Then for the generating function A(x) = xF(x)
the composita is equal to

A∆ (n,k) = F∆ (n− k,k). (4)

Proof.Using (3), we get

[A(x)]k = [xF(x)]k = xk[F(x)]k = ∑
m≥k

F∆ (n,k)xm+k
.

Substitutingn for m+ k, we get the following expression

[A(x)]k = ∑
n≥2k

F∆ (n− k,k)xn
.

Therefore,
A∆ (n,k) = F∆ (n− k,k).

Corollary 1.Suppose B(x) = ∑n≥0b(n)xn is a generating
function such that[B(x)]k = ∑n≥0B(n,k)xn. Then the
composita of the generating function A(x) = xB(x) is
equal to

A∆ (n,k) = B(n− k,k). (5)

Corollary 2.Suppose A(x) = ∑n>0a(n)xn is a generating
function, A∆ (n,k) is the composita of this generating
function. Then for the generating function
[B(x)]k = [F(x)

x ]k = ∑n≥0B(n,k)xn such that
B(x) = ∑n≥0b(n)xn the expression of coefficients is equal
to

B(n,k) = A∆ (n+ k,k). (6)

Theorem 3.Suppose B(x) = ∑n≥0b(n)xn is a generating
function such that[B(x)]k = ∑n≥0B(n,k)xn. Then the
composita of the generating function A(x) = B(x)−b(0)
is equal to

A∆ (n,k) =
k

∑
j=1

(

k
j

)

B(n, j)(−1)k− jb(0)k− j
. (7)
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Proof.Raising the generating functionA(x) to the power of
k and applying the binomial theorem, we obtain

A(x)k = [B(x)−b(0)]k =
k

∑
j=0

(

k
j

)

B(x) j(−1)k− jb(0)k− j
.

From
[B(x)]k = ∑

n≥0

B(n,k)xn
,

andB(x)0 = 1, we have

B(n,0) =

{

1, if n= 0;
0, if n> 0.

SinceA(x) = ∑n>0a(n)xn, we get

A∆ (n,k) =
k

∑
j=1

(

k
j

)

B(n, j)(−1)k− jb(0)k− j
.

Theorem 4.Suppose F(x) = ∑n>0 f (n)xn is the
generating function, F∆ (n,k) is the composita of this
generating function, andα is constant. Then for the
generating function A(x) = αF(x) the composita is equal
to

A∆ (n,k) = αkF∆ (n,k). (8)

Proof.Using (3), we get

[A(x)]k = [αF(x)]k = αk[F(x)]k =

= ∑
n≥k

αkF∆ (n,k)xn = ∑
n≥k

A∆ (n,k)xn
.

Therefore,
A∆ (n,k) = αkF∆ (n,k).

Theorem 5.Suppose F(x) = ∑n>0 f (n)xn is the
generating function, F∆ (n,k) is the composita of this
generating function, andα is constant. Then for the
generating function A(x) = F(αx) the composita is equal
to

A∆ (n,k) = αnF∆ (n,k). (9)

Proof.Using (3), we get

[A(x)]k = [F(αx)]k = ∑
n≥k

F∆ (n,k)(αx)n =

= ∑
n≥k

αnF∆ (n,k)xn = ∑
n≥k

A∆ (n,k)xn
.

Therefore,
A∆ (n,k) = αnF∆ (n,k).

Theorem 6.Suppose we have the generating function
F(x) = ∑n>0 f (n)xn, the composita of this generating
function F∆ (n,k); the following generating functions
B(x) = ∑n≥0b(n)xn and [B(x)]k = ∑n≥0B(n,k)xn. Then
for the generating function A(x) = F(x)B(x) the
composita is equal to

A∆ (n,k) =
n

∑
i=k

F∆ (i,k)B(n− i,k). (10)

Proof.Sincea(0)= f (0)b(0) = 0, the functionA(x) has the
compositaA∆ (n,k).

Using (3), we get

[A(x)]k = [F(x)]k[B(x)]k.

Then, from the rule of product of generating functions, we
have

A∆ (n,k) =
n

∑
i=k

F∆ (i,k)B(n− i,k).

Corollary 3.If for the generating function B(x) we have
b(0) = 0, then the formula (10) takes the form

A∆ (n,k) =
n−k

∑
i=k

F∆ (i,k)B∆ (n− i,k). (11)

Theorem 7.Suppose we have the generating functions
F(x) = ∑n>0 f (n)xn, G(x) = ∑n>0g(n)xn, and their
compositae F∆ (n,k), G∆ (n,k) respectively. Then for the
generating function A(x) = F(x)+G(x) the composita is
equal to

A∆ (n,k) = F∆ (n,k)+G∆(n,k)+

+
k−1

∑
j=1

(

k
j

)n−k+ j

∑
i= j

F∆ (i, j)G∆ (n− i,k− j). (12)

Proof.Using (3) and the binomial theorem, we get

[A(x)]k =
k

∑
j=0

(

k
j

)

[F(x)] j [G(x)]k− j
.

Note that

[F(x)] j = ∑
n≥ j

F∆ (n, j)xn
,

and

[G(x)]k− j = ∑
n≥k− j

G∆ (n,k− j)xn
.

Then, fromF(x)0 = 1, G(x)0 = 1 and the rule of product
of generating functions, we have

A∆ (n,k) = F∆ (n,k)+G∆(n,k)+

+
k−1

∑
j=1

(

k
j

)n−k+ j

∑
i= j

F∆ (i, j)G∆ (n− i,k− j).

Remark.For the casek= 0, we haveF(x)0 = 1. It is mean
that

F∆ (n,0) =

{

1, if n= 0;
0, if n> 0.

(13)
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4 Compositae of generating functions

In this section we consider several examples of
computation of compositae.

For derivation of a composita of the generating
functionF(x) = ∑n>0 f (n)xn, we have to find coefficients
of the generating functionF(x)k. As an example, in Table
1 we present compositae of several known generating
functions [1,2,10].

Table 1: Examples of generating functions and their compositae

Generating function F(x) CompositaF∆ (n,k)

xm δn,mk, m> 0
bx

1−ax

(n−1
k−1

)

an−kbk

xex kn−k

(n−k)!

ln(1+x) k!
n! s(n,k)

ex−1 k!
n! S(n,k)

Here δn,k is the Kronecker delta,s(n,k) and S(n,k)
stand for the Stirling numbers of the first kind and of the
second kind, respectively (see [10,2]).

The Stirling numbers of the first kinds(n,k) count the
number of permutations ofn elements withk disjoint
cycles. The Stirling numbers of the first kind are defined
by the following generating function

ψk(x) = ∑
n≥k

s(n,k)
xn

n!
=

1
k!

lnk(1+ x).

The Stirling numbers of the second kindS(n,k) count
the number of ways to partition a set ofn elements intok
nonempty subsets. A general formula for the Stirling
numbers of the second kind is given as follows

S(n,k) =
1
k!

k

∑
j=0

(−1)k− j
(

k
j

)

jn.

The Stirling numbers of the second kind are defined by
the following generating function

Φk(x) = ∑
n≥k

S(n,k)
xn

n!
=

1
k!
(ex−1)k

.

Compositae of polynomials
Let us obtain compositae for polynomials. First we

obtain the composita of the generating function
F(x) = ax+ bx2. Raising this generating function to the
power ofk and applying the binomial theorem, we get

[F(x,a,b)]k = xk(a+bx)k = xk
k

∑
m=0

(

k
m

)

ak−mbmxm
.

Substituting n for m + k, we get the following
expression

[F(x,a,b)]k =
2k

∑
n=k

(

k
n− k

)

a2k−nbn−kxn =
2k

∑
n=k

F∆ (n,k,a,b)xn
.

Therefore, the composita is

F∆ (n,k,a,b) =

(

k
n− k

)

a2k−nbn−k
. (14)

Next we obtain the composita of the generating
function F(x) = ax+ bx2 + cx3. For this purpose, we
write the generating function as the sum of the functions
F1(x) = axandF2(x) = x(bx+ cx2).

The composita of the generating functionF1(x) = ax,
according to Theorem4, is equal to

F∆
1 (n,k,a) = akδn,k.

Using Theorem2 and the formula (14), the composita
of the generating functionF2(x) is equal to

F∆
2 (n,k,b,c) =

(

k
n−2k

)

b3k−ncn−2k
.

Using Theorem7, we obtain

F∆ (n,k,a,b,c) =
k

∑
j=0

(

k
j

)n−k+ j

∑
i= j

F∆
1 (i, j,b,c)δn−i,k− ja

k− j
.

Since

δn−i,k− j =

{

1, if n− i = k− j;
0, otherwise,

the composita ofF(x) = ax+bx2+ cx3 is

F∆ (n,k,a,b,c)=
k

∑
j=0

(

k
j

)(

j
n− k− j

)

ak− jb2 j+k−ncn−k− j
.

(15)
With the above theorems (Section 3), we can obtain

compositae for different polynomials. Some examples are
presented in Table2.

Compositae of trigonometric functions
For computation of compositae of trigonometric

functions, we use the Euler identityeix = cos(x)+ i sin(x).
Let us obtain the composita of the generating function

F(x) = sin(x).
Using the expression

sin(x) =
eix −e−ix

2i
,

c© 2014 NSP
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Table 2: Compositae of polynomials

GF F(x) CompositaF∆ (n,k)

ax+bx2
( k

n−k

)

a2k−nbn−k

ax+bx2+cx3
k
∑
j=0

(k
j

)( j
n−k− j

)

ak− jb2 j+k−ncn−k− j

ax+cx3 1+(−1)n−k

2

( k
n−k

2

)

a
3k−n

2 c
n−k

2

ax+bx2+dx4
k
∑

j=⌊ 4k−n
3 ⌋

a4k−n−2 j bn−4k+3 jdk− j
( j

n−4k+3 j

)(k
j

)

we obtain sin(x)k

sin(x)k =
1

2kik

k

∑
m=0

(

k
m

)

eimxe−i(k−m)x(−1)k−m =

=
1

2kik

k

∑
m=0

(

k
m

)

ei(2m−k)x(−1)k−m =

= ∑
n≥k

1
2k in−k

k

∑
m=0

(

k
m

)

(2m− k)n

n!
(−1)k−mxn

.

Then the composita is equal to

1
2k in−k

k

∑
m=0

(

k
m

)

(2m− k)n

n!
(−1)k−m

.

Since n− k is an even number and the function is
symmetric with respect tok, we obtain the composita of
the generating functionF(x) = sin(x):

if n− k is even, we have

F∆ (n,k) =
1

2k−1n!

⌊ k
2⌋

∑
m=0

(

k
m

)

(2m− k)n(−1)
n+k

2 −m
, (16)

if n− k is odd, we have

F∆ (n,k) = 0.

With the above theorems (Section 3), we can obtain
compositae for different trigonometric and hyperbolic
functions. Some examples are presented in Table3.

5 Composition of generating functions and
its composita

Let us consider the application of compositae for
computation of compositions of ordinary generating
functions. For this purpose, we prove the following
theorem.

Theorem 8.Suppose we have the generating function
F(x) = ∑n>0 f (n)xn, the composita of this generating

Table 3: Compositae of trigonometric and hyperbolic functions

GF F(x) CompositaF∆ (n,k)

sin(x) 1+(−1)n−k

2kn!

⌊ k
2 ⌋

∑
m=0

(k
m

)

(2m−k)n(−1)
n+k

2 −m

xcos(x) 1+(−1)n−k

2k(n−k)! (−1)
n−k

2

⌊ k−1
2 ⌋

∑
j=0

(k
j

)

(k−2 j)n−k

tan(x) 1+(−1)n−k

n!

n
∑
j=k

2n− j−1
{

n
j

}

j !(−1)
n+k

2 + j
( j−1

k−1

)

arctan(x)

(

(−1)
3n+k

2 +(−1)
n−k

2

)

k!

2k+1

n
∑
j=k

2j

j!

(n−1
j−1

)

s( j ,k)

sinh(x) 1
2k

k
∑
j=0

(−1) j
(k

j

) (k−2 j)n

n!

xcosh(x) 1
2k

k
∑
j=0

(k
j

) (k−2 j)n−k

(n−k)!

function F∆ (n,k), and the generating function
R(x) = ∑n≥0 r(n)xn. Then for the composition of
generating functions A(x) = R(F(x)) the following
condition holds

a(n) =

{

r(0), if n = 0;

∑n
k=1F∆ (n,k)r(k), if n > 0,

(17)

where A(x) = ∑n≥0a(n)xn.

Proof.For computationA(x) = R(F(x)) we can write

A(x) = R(F(x)) = ∑
k≥0

r(k)F(x)k
.

ReplacingF(x)k by ∑n≥k F∆ (n,k)xn and considering that
F(x)0 = 1, we get

A(x) = r(0)+
+r(1)F(1,1)x +r(1)F(2,1)x2 + . . .+ r(1)F(n,1)xn + · · ·

+r(2)F(2,2)x2 + . . .+ r(2)F(n,2)xn + · · ·
· · ·
+ r(n)F(n,n)xn + · · ·

+ · · ·

Summing the coefficients of equal powers ofxn, we obtain
the desired formula

a(0) = r(0), n= 0;

a(n) =
n

∑
k=1

F∆ (n,k)r(k), n> 0.

Further, for the compositionA(x) = R(F(x)) the
conditiona(0) = r(0) is implied.

Example 1.Let us obtain an expression of coefficients of
the generating function

A(x) =
1

1−ax−bx2− cx3 ,
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wherea,b,c 6= 0.
RepresentA(x) as the composition of generating

functionsA(x) = R(F(x)), whereF(x) = ax+ bx2 + cx3

andR(x) = 1
1−x.

According to Table2, the composita ofF(x) = ax+
bx2+ cx3 is

k

∑
j=0

(

k
j

)(

j
n− k− j

)

ak− jb2 j+k−ncn−k− j
.

Using Theorem8, we obtain the expression of
coefficients ofA(x)

a(n) =
n

∑
k=1

k

∑
j=0

(

k
j

)(

j
n− k− j

)

ak− jb2 j+k−ncn−k− j
.

Example 2.Let us consider the generating functionA(x) =
esinh(x).

Using the composita ofF(x) = sinh(x) (see Table3)
and Theorem8, we obtain the expression of coefficients of
A(x)

a(n) =
n

∑
k=1

1
2k

k

∑
j=0

(−1) j
(

k
j

)

(k−2 j)n

n!
1
k!
.

Theorem 9.Suppose we have the generating functions
F(x) = ∑n>0 f (n)xn, G(x) = ∑n>0g(n)xn, and their
compositae F∆ (n,k), G∆ (n,k) respectively. Then for the
composition of generating functions A(x) = G(F(x)) the
composita is equal to

A∆ (n,k) =
n

∑
m=k

F∆ (n,m)G∆ (m,k). (18)

Proof.Using the formula (3), we have

[A(x)]k = [G(F(x)]k = ∑
n≥k

A∆ (n,k)xn
.

The function of coefficients of the generating function
[G(x)]k is the compositaG∆ (n,k)

[G(x)]k = ∑
n≥k

G∆ (n,k)xn
.

Then, according to Theorem8, we get

[G(F(x)]k = ∑
n≥k

n

∑
m=1

F∆ (n,m)G∆ (m,k).

Since
G∆ (m,k) = 0, if m< k,

we obtain the composita of the composition of generating
functionsA(x) = G(F(x))

A∆ (n,k) =
n

∑
m=k

F∆ (n,m)G∆ (m,k).

6 Composita of reciprocal generating
function

First we consider the notion ofreciprocal generating
functions[12].

Definition 2.Reciprocal generating functions are
functions that satisfy the condition

H(x)B(x) = 1.

Remark.If we have the reciprocal generating functions
H(x) = ∑n≥0h(n)xn and B(x) = ∑n≥0B(n)xn such that
H(x)B(x) = 1, then by the composita of the reciprocal
generating function ofB(x) we mean the composita of
xH(x) = x

B(x) .

In the following theorem we give the formula of the
composita of a reciprocal generating function.

Theorem 10.Suppose H(x) = ∑n≥0h(n)xn is a generating
function, B(x) = ∑n≥0b(n)xn is the reciprocal generating
function of H(x), and B∆

x (n,k) is the composita of xB(x).
Then the composita of the generating function xH(x) is
equal to

H∆
x (n,k) =











1
B∆

x (1,1)k
, if n = k;

n−k
∑

m=1

(m+k−1
k−1

)
m
∑
j=1

(−1) j(m
j )

B∆
x (1,1) j+k B∆

x (n− k+ j, j), if n > k.

(19)

Proof.By Definition2, we get

xH(x) =
x

b(0)+B(x)−b(0)
.

Raising this generating function to the power ofk, we
obtain

[xH(x)]k =
[

x
b(0)+B(x)−b(0)

]k
=

[

1
b(0)

x
1+ 1

b(0) (B(x)−b0)

]k

.

Using Corollary2, Theorem3 and Theorem4, we
obtain the composita ofF(x) = 1

b0
(B(x)−b0)

F∆ (n,k) =
k

∑
j=1

b(0)− j (−1)k− j
(

k
j

)

B∆
x (n+ j, j).

The expression of coefficients of the generating

functionR(x) =
[

1
b(0)

1
1+x

]k
is equal to

R(n,k) =
1

b(0)k

(

n+ k−1
k−1

)

(−1)n
.

Then, according to Theorem 8, we get

H(n,k) =







1
b(0)k

, if n= 0;

∑n
m=1

(m+k−1
k−1

)

∑m
j=1

(−1) j (m
j )

b(0)k+ j B∆ (n+ j, j), if n> 0.

Therefore, from Corollary1 andb(0) = B∆
x (1,1), we

obtain the composita of the reciprocal generating function

c© 2014 NSP
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of B(x)

H∆
x (n,k) =











1
B∆

x (1,1)k
, if n= k;

n−k
∑

m=1

(m+k−1
k−1

)
m
∑
j=1

(−1) j(m
j )

B∆
x (1,1) j+k B∆

x (n− k+ j, j), if n> k.

For applications of Theorem10 we give some
examples.

Example 3.Let us find a composita of the generating
functionF(x) = x2csc(x). For this purpose, we write

F(x) = x2 csc(x) =
x

sin(x)
x

,

or
F(x)

x
sin(x)

x
= 1.

According to Table3, the composita of sin(x) is

1+(−1)n−k

2kn!

⌊ k
2⌋

∑
m=0

(

k
m

)

(2m− k)n(−1)
n+k

2 −m
.

Then, using Theorem10, we obtain the composita of
F(x): if n= k, we have

F∆ (n,k) = 1,

if n> k, we have

F∆ (n,k) =
n−k

∑
m=1

(

m+ k−1
k−1

) m

∑
j=1

(

m
j

)

1+(−1)n−k

2 j(n− k+ j)!
×

×
⌊ j

2⌋

∑
i=0

(

j
i

)

(2i − j)n−k+ j(−1)
n−k

2 −i
.

Example 4.Let us find a composita of the generating
functionF(x) = xH(x), whereH(x) = ∑n≥0h(n)xn is the
generating function for Bernoulli numbers

H(x) =
x

ex−1
.

According to Table1, the composita of the generating
functionex−1 is equal to

k!
n!

S(n,k).

The generating functionH(x) is the reciprocal
generating function ofe

x−1
x . Then, using Theorem10, we

obtain the composita of the generating function
F(x) = x2

ex−1

F∆ (n,k)=
n−k

∑
m=0

(

m+ k−1
k−1

) m

∑
j=0

(−1) j
(

m
j

)

j!S(n− k+ j, j)
(n− k+ j)!

.

7 Conclusion

In this paper we introduce the concept of composita for
ordinary generating functions and provide a number of
applications. The proposed apparatus of compositae is
applicable to solve the following problems: calculation of
the composition of ordinary generating functions; finding
expressions of reciprocal generating functions; finding
expressions of inverse generating functions; finding
solutions of functional equations; obtaining expressions
of polynomials and etc.
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