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Abstract: We consider a coefficient inverse problem to determine the dielectric permittivity in Maxwell’s equations, with data
consisting of boundary measurements. The true dielectric permittivity is assumed to belong to an ideal space of very finefinite elements.
The problem is treated using a Lagrangian approach to the minimization of a Tikhonov functional, where an adaptive finiteelement
method forms the basis of the computations. A new a posteriori error estimate for the norm of the error in the reconstructed permittivity
is derived. The adaptive algorithm is formulated and testedsuccessfully in numerical experiments for the reconstruction of two, three,
and four small inclusions with low contrast, as well as the reconstruction of a superposition of two Gaussian functions.
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1 Introduction

In this note we study an adaptive finite element method
for the reconstruction of a dielectric permittivity function
ε = ε(x), x = (x1, x2, x3) ∈ Ω , where Ω ⊂ R

3 is a
bounded convex domain with piecewise smooth boundary
Γ . We assume that the true permittivity belongs to an
ideal space of very fine finite elements. The data
considered consists of a finite number of observations of
(one or two) backscattered or transmitted waves. This is a
coefficient inverse problem (CIP) for Maxwell’s
equations, where the dielectric permittivity functionε,
acting as the coefficient in the equations, characterizes an
inhomogeneous, isotropic, non-magnetic, non-conductive
medium in Ω . Although we are in this note concerned
with the reconstruction of a real-valued coefficientε, our
future applications are, eventually, in medical imaging,
such as microwave imaging of breast cancer, and early
diagnosis of stroke (see [1,2,3,4] for details).

The method studied is based on a Lagrangian
approach to the minimization of a Tikhonov functional,
where the functions involved are approximated by
piecewise polynomials in a finite element method. Such
an approach to coefficient inverse problems of the type we
consider has previously been studied extensively in the

context of a two-stage procedure in [5,6,7,8]. The main
application considered in those publications was detection
of explosives. With such applications, the low amount of
data one can expect – usually only backscattered data for
a single incident wave of one frequency – makes the
problem of reconstruction challenging.

The main theoretical result of this paper is Theorem1,
which provides a new, direct a posteriori error estimate
for the norm of the error in the reconstructed dielectric
permittivity function. Qualitative computable, or a
posteriori, error estimates are an essential tool for finite
element based adaptive algorithms in the optimization
approach to our inverse problem. Previously, in [5], such
an estimate was given for our coefficient inverse problem.
However, this estimate was an indirect one, estimating the
size of an error in the computed Lagrangian, as apposed
to a direct estimate of the error in the computed
permittivity as presented here. A similar estimate, also in
the computed Lagrangian, was shown for a modified
Maxwell system in [9].

We illustrate our theoretical results with several
numerical examples. With the above-mentioned aspects
of contrast and size of inclusions in mind, we present
reconstructions of two, three, and four different small
inclusions, respectively, of low contrast. We also evaluate
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how variations in the type of data collected affect the
reconstruction. More precisely, we consider the effect of
working with only backscattered data, with only
transmitted data, with both backscattered and transmitted
data, as well as backscattered data from two anti-parallel
incident waves. In addition to these reconstructions of
inclusions, we also present a reconstruction of a more
complicated function, to wit, a superposition of two
gaussians.

Here is an outline of the remaining part of this note:
In the Section 2 we present the mathematical
formulations of the direct and inverse problems and state
the basic results prior to discretization of the problems. In
Section 3 we state the finite element formulations,
perform the error analysis, and summarize the results in
terms of a mesh refinement strategy. The adaptive
algorithm for solving the inverse problem is described in
Section4, and numerical examples are given in Section5.
Section6 concludes the paper.

2 The direct and inverse problems

Before proceeding with the mathematical statement of the
problem, we introduce some notation. For the bounded
convex polyhedral domainΩ ⊂ R

3 with boundaryΓ , we
write ΩT := Ω × (0, T) and ΓT := Γ × (0, T), where
T > 0 is a (sufficiently large) fixed time. IfX ⊂ R

n,
n ∈ N, is a domain, we denote by〈·, ·〉X and ‖·‖X the
L2-inner product and norm, respectively, over the domain
X.

LetVper
0 be the space of Lipschitz continuous functions

defined by

Vper
0 := {v∈C(Ω̄ ) : ∇v∈ [L∞(Ω)]3}.

In the spirit of [6], we define a finite dimensional subspace
of piecewise linears

Vper := {v∈Vper
0 : v|K ∈ P1(K)∀K ∈ Tf},

whereTf = {K} is a very fine, quasi-uniform (see [10]),
face-to-face partition ofΩ̄ into tetrahedra, andP1(K)
denotes the set of polynomials of degree no greater than 1
over K. We equip this space with theL2-norm overΩ ,
and define the set of admissible dielectric permittivity
functions

Uper := {v∈Vper : 1≤ v(x)≤ εmax ∀x ∈ Ω ,

v|Γ ≡ 1, ∇v|Γ ≡ 0}
(1)

for some known upper boundεmax. The spaceVper can be
thought of as a very fine finite element space (see Section
3), hence it is of (large but) finite dimension, which, by
the equivalence of norms on finite dimensional spaces,
justifies the use of theL2-norm rather than the more
natural H1-norm. Although this space is finite
dimensional, it is considered too large to handle

numerically, and our goal is to approximateε ∈ Uper by
an element of a smaller subspace.

The setUper is defined to describe a heterogeneous
medium inΩ , immersed in a constant background with
permittivity 1 inR3 \Ω .

Under the assumption thatε ∈ Uper, we consider the
stabilized Maxwell system of [11,12] in time-domain for
an isotropic, non-magnetic, and non-conductive medium
in Ω . That is,

ε
∂ 2E
∂ t2 −∆E+∇(∇ ·E)− s∇(∇ · (εE)) = 0 in ΩT ,

∇ · (εE) = 0 in ΩT ,

∂E
∂n

= P onΓT ,

E(·, 0) =
∂E
∂ t

(·, 0) = 0 in Ω ,

(2)

where we have expanded the usual double curl term as
∇ × (∇ × E) = −∆E + ∇(∇ · E) to simplify further
manipulations of the equation. We use the notation
∂

∂n = n ·∇, wheren denotes the outward unit normal on
Γ . The functionP ∈ [L2(ΓT)]

3 is given Neumann data
(see Section 4 of [7] for details), and s ≥ 1 is a
stabilization parameter. For well-posedness of problems
of this class, we refer to [13,14].

The mathematical statement of the coefficient inverse
problem is:
Inverse Problem. Given time-resolved boundary
observationsG ∈ [L2(ΓT)]

3 of the electric field, determine
ε ∈Uper such thatE = G onΓT .

Here the observationsG are defined on the whole
boundaryΓT . For the case of incomplete data, which we
consider in our numerical examples, we prescribe
E − G = 0 on all parts of ΓT where we have no
observations.

Inverse problems, such as the one above, are typically
ill-posed in nature. Thus we cannot expect to be able to
find an exact unique solution for any given dataG (which
in practicewill contain noise). Instead we will follow the
concept of regularization (see for instance [15,16]) and
assume that the given dataG is a perturbation of ideal
dataG∗, for which there exists a unique solutionε∗ to the
Inverse Problem. The goal is then to systematically
compute an approximation ofε∗, a so-called regularized
solution which hereafter will be denoted simply byε,
which is as close toε∗ as can be achieved given the level
of noise ‖G−G∗‖ΓT

. Such a regularized solution is
obtained by minimizing a Tikhonov functional, to be
defined below (see equation (4)).

Uniqueness of the solution of coefficient inverse
problems with a finite number of observations is typically
obtained via the method of Carleman estimates [17].
Examples where this method is applied to inverse
problems for Maxwell’s equations can be found in, for
example, [18], additional examples are [19] where
simultaneous reconstruction of two coefficients is
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considered, and [20,21] for bi-isotropic and anisotropic
media. However, this technique requires non-vanishing
initial conditions for the underlying partial differential
equation, which is not the case here. Thus, to date,
uniqueness of the solution to the problem we study is not
known. For the purpose of this work, we will assume that
uniqueness holds. This assumption is justified by the
numerical reconstruction results presented in the
experimental works [7,8].

We introduce the space

Vdir := {v ∈ [H1(ΩT)]
3 : v(·, 0) = 0}

for solutions to the direct problem, and

Vadj := {v ∈ [H1(ΩT)]
3 : v(·, T) = 0}

for adjoint solutions. Both spaces are equipped with the
usual norm and inner product on[H1(ΩT)]

3. Then,
multiplying the first equation in (2) by a test function
φφφ ∈ Vadj and integrating overΩT yields, after integration
by parts,

0=−
〈

ε ∂E
∂ t ,

∂φφφ
∂ t

〉
ΩT

+
〈

ε ∂E
∂ t (·, T), φφφ (·, T)

〉
Ω

−
〈

ε ∂E
∂ t (·, 0), φφφ (·, 0)

〉
Ω
+ 〈∇E, ∇φφφ 〉ΩT

−
〈

∂E
∂n , φφφ

〉

ΓT
−〈∇ ·E, ∇ ·φφφ〉ΩT

+ 〈∇ ·E, n ·φφφ 〉ΓT
+ s〈∇ · (εE), ∇ ·φφφ 〉ΩT

− s〈∇ · (εE), n ·φφφ 〉ΓT

=−
〈

ε ∂E
∂ t ,

∂φφφ
∂ t

〉
ΩT

+ 〈∇E, ∇φφφ〉ΩT

−〈∇ ·E, ∇ ·φφφ 〉ΩT
+ s〈∇ · (εE), ∇ ·φφφ 〉ΩT

−〈P, φφφ 〉ΓT

:= D(ε, E, φφφ ),

(3)

where the second equality holds becauseφφφ (·, T) = 0,
∂E
∂ t (·, 0) = 0, ∂E

∂n = P on ΓT , and∇ ·E = ∇ · (εE) = 0 on
ΓT . This last observation follows from the second
equation of (2), and the fact thatε ∈ Uper implies that
ε ≡ 1 in some neighborhood ofΓ . We arrive at the
following weak description of the electric field:
Continuous Direct Problem. Givenε ∈ Uper, determine
E ∈Vdir such thatD(ε, E, φφφ ) = 0 for everyφφφ ∈Vadj.

Let Eε ∈ Vdir denote the solution to the Continuous
Direct Problem for a givenε ∈ Uper. We can then define
the Tikhonov functionalF : Uper→ R+,

F(ε, Eε) :=
1
2
‖(Eε −G)zδ‖

2
ΓT

+
α
2
‖ε − ε0‖

2
Ω , (4)

where α > 0 is a regularization parameter and
zδ = zδ (t) ∈ C∞([0, T]) is a cut-off function for the data,
dropping from a constant level of 1 to a constant level of

t

TT − δ

zδ(t)

1

T −
δ

2

Fig. 1: Schematic illustration of the cut-off functionzδ appearing
in the Tikhonov functional (4).

0 within the small interval(T − δ , T − δ/2), 0< δ ≪ T,
as schematically shown in Figure1. The functionzδ is
introduced to ensure data compatibility in the adjoint
problem arising in the minimization of (4). To simplify
the notation, we writeF(ε) := F(ε, Eε ).

How to choose the regularization parameterα with
respect to the level of noise in the data is a widely studied
topic. Several methods exist. Examples are the
(generalized) discrepancy principle [16] and iterative
methods [22]. In future studies, we are planning to
investigate iterative methods, similarly to [23]. However,
for the results presented here, we regardα as a fixed
parameter.

We assume that the initial approximationε0 is
sufficiently close to an ideal solutionε∗, corresponding to
noiseless dataG∗ in the Inverse Problem, to ensure local
strong convexity of the Tikhonov functional. By
theorem 3.1 of [6], this can be achieved by applying the
approximately globally convergent method discussed in
that paper. ThenF is strongly convex in a neighborhood
N ⊂ Vper of ε0, containingε∗. More precisely, we have
the estimate

α
2
‖ε1− ε2‖

2
Ω ≤ F ′(ε1; ε1− ε2)−F ′(ε2; ε1− ε2) (5)

for everyε1, ε2 ∈ N ∩Uper, whereF ′(ε; ε̄) denotes the
Fréchet derivative ofF at ε, acting onε̄.

Throughout the remaining part of this text we will
assume that the hypothesis of Theorem 3.1 of [6], and
hence strong convexity, holds. Then we may seek a
minimizer ε ∈ Uper of F by applying any gradient based
method (such as steepest descent, quasi-Newton, or
conjugate gradient), starting fromε0.

Such an approach requires that we compute the
Fréchet derivative ofF , which is complicated, since it
involves the implicit dependence ofEε upon ε. To
simplify the analysis, in the spirit of optimal control (see
for example [24,25] for the general theory and some
specific examples), we introduce the Lagrangian
associated to the problem of minimizingF(ε, E),
ε ∈ Uper, E ∈ Vdir, with D(ε, E, φφφ ) = 0 for all φφφ ∈ Vadj

acting as a constraint. This Lagrangian is

L(u) := F(ε, E)+D(ε, E, λλλ ),
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where u = (ε, E, λλλ ) ∈ U := Uper×Vdir ×Vadj ⊂ V :=
Vper × Vdir × Vadj, F(ε, E) was defined in (4), and
D(ε, E, λλλ ) was defined in (3).

We can now minimizeF over Uper by finding a
stationary point ofL overU . With the strong convexity as
above, this would imply that we solve
Continuous Saddle Point Problem.Find u∈U such that
L′(u; v) = 0 for every v∈V.

Again we use the notationL′(u; v) for the Fréchet
derivative ofL at u, acting onv. It can be shown that

L′(u; v) =
∂L
∂ε

(u; ε̄)+
∂L
∂E

(u; Ē)+
∂L
∂λλλ

(u; λ̄λλ ),

whereu= (ε, E, λλλ ) ∈U , v= (ε̄ , Ē, λ̄λλ ) ∈V, and

∂L
∂ε

(u; ε̄) = α 〈ε − ε0, ε̄〉Ω −
〈

∂E
∂ t ·

∂λλλ
∂ t , ε̄

〉

ΩT

+ s〈∇ ·λλλ , ∇ · (ε̄E)〉 ,

∂L
∂E

(u; Ē) =
〈
(E−G)z2

δ , Ē
〉

ΓT
−
〈

ε ∂λλλ
∂ t ,

∂ Ē
∂ t

〉

ΩT

+
〈
∇λλλ , ∇Ē

〉
ΩT

−
〈
∇ ·λλλ , ∇ · Ē

〉
ΩT

+ s
〈
∇ ·λλλ , ∇ · (εĒ)

〉
:= A (ε, λλλ , Ē),

∂L
∂λλλ

(u; λ̄λλ ) = D(ε, E, λ̄λλ ).

(6)

In particular, we note that the solutionu = (ε, E, λλλ )
to the Continuous Saddle Point Problem must satisfy
D(ε, E, λ̄λλ ) = 0 for everyλ̄λλ ∈ Vadj andA (ε, λλλ , Ē) = 0
for every Ē ∈ Vdir. The former means thatE solves
Continuous Direct Problem and the latter thatλλλ solves
the following adjoint problem:
Continuous Adjoint Problem. Givenε ∈Uper, determine
λλλ ∈Vadj such thatA (ε, λλλ , φφφ) = 0 for everyφφφ ∈Vdir.

The functionalA in the Continuous Adjoint Problem
was defined in (6). The problem can be seen as a weak
analogue of the following system, adjoint to (2):

ε
∂ 2λλλ
∂ t2 −∆λλλ +∇(∇ ·λλλ)− sε∇(∇ ·λλλ ) = 0 in ΩT ,

∂λλλ
∂n

=−(E−G)z2
δ onΓT ,

λλλ (·, T) =
∂λλλ
∂ t

(·, T) = 0 in Ω .

These observations will be used in the error analysis to
be described below. But first we shall make some remarks
concerning the relation between the Fréchet derivative of
Tikhonov functional and that of the Lagrangian.

Let uε = (ε, Eε , λλλ ε ) be the element ofU obtained by
taking Eε as the solution to the Continuous Direct
Problem andλλλ ε as the solution to the Continuous Adjoint
Problem for the givenε ∈ Uper. Then, under assumption
of sufficient stability of the weak solutionsEε and λλλ ε
with respect toε, the observation that

F(ε) = F(ε, Eε) = F(ε, Eε )+D(ε, Eε , λλλ ε ) = L(uε ),

(asD(ε, Eε , λλλ ε) = 0) leads to

F ′(ε; ·) =
∂L
∂ε

(uε ; ·). (7)

Estimate (5) and identity (7) will play an important role in
the error analysis for the Tikhonov functional and for the
coefficient.

3 Finite element formulations and error
analysis

In this section we will give finite element formulations for
discretizing the Continuous Direct, Saddle Point, and
Adjoint Problems. After that we will turn to the error
analysis. We begin by defining finite-dimensional
analogues of the spacesVper, Vdir, Vadj, andV, as well as
subsets corresponding toUper andU .

Let Th := {K} be a quasi-uniform face-to-face
partition of Ω into tetrahedra, such thatTf can be
obtained fromTh by subdivision of tetrahedra. LetIτ be
a uniform partition of(0, T) into subintervals(tk, tk+1],
tk = kτ, k = 0, . . . , Nτ , of lengthτ = T/Nτ . With Th we
associate a mesh-functionh= h(x) such that

h(x) = diam(K) (8)

for x ∈ K ∈ Th. On these meshes we define

Vper
h := {v∈Vper

0 : v|K ∈ Pq(K) ∀K ∈ Th},

Uper
h :=Vper

h ∩Uper,

Vdir
h := {v∈Vdir : v|K×I ∈ [P1(K)]3×P1(I)

∀K ∈ Th ∀I ∈ Iτ},

Vadj
h := {v∈Vadj : v|K×I ∈ [P1(K)]3×P1(I)

∀K ∈ Th ∀I ∈ Iτ},

Vh :=Vper
h ×Vdir

h ×Vadj
h ,

Uh :=Uper
h ×Vdir

h ×Vadj
h ,

wherePn(X) denotes the space of polynomials of degree
at most n ∈ N over X, and the degreeq used in the
finite-dimensional analogueVper

h of Vper is at least 1.
Observe that the dependence on the step sizeτ in time is
not explicitly included in the notation for the
finite-dimensional spaces. This is justified by the fact that
τ should be selected with regard toh in accordance with
the Courant-Friedrichs-Lewy condition.

Using these spaces we can state finite element versions
of the Continuous Direct and Adjoint Problems as follows:
Discrete Direct Problem.Givenε ∈Uper, determineEh ∈

Vdir
h such thatD(ε, Eh, φφφ h) = 0 for everyφφφ h ∈Vadj

h .
Discrete Adjoint Problem. Given ε ∈ Uper, determine
λλλh ∈Vadj

h such thatA (ε, λλλ h, φφφ h) = 0 for everyφφφ ∈Vdir
h .

The finite-dimensional analogue for the Continuous
Saddle Point Problem is:
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Discrete Saddle Point Problem.Find uh = (εh, Eh, λλλ h)∈
Uh such that L′(uh, v) = 0 for every v∈Vh.

The same remark that was made in conjunction with
the Continuous Saddle Point Problem is also valid here: it
holds thatEh solves the Discrete Direct Problem, andλλλ h
solves the Discrete Adjoint Problem, forε = εh.

Having stated the Inverse Problem, the continuous
problems, and their discrete counterparts, let us briefly
summarize how these problems relate to each other,
before turning to the error analysis.

Recall that our main goal is to find the dielectric
permittivity which gave rise to the observed dataG, in
other words to solve the Inverse Problem. Due to
ill-posedness, this goal is practically unattainable, andwe
focus instead on finding a regularized solution, which can
be done by finding a stationary point to the Lagrangian,
that is, by solving the Continuous Saddle Point Problem.
This, in turn, relies upon solving the Continuous Direct,
and Adjoint Problems. However, the continuous problems
cannot, in general, be solved exactly, but approximately
through their finite-dimensional analogues, the Discrete
Direct, Adjoint, and Saddle Point Problems.

The purpose of the error estimation below is to
quantify the discrepancy between the solutions to the
continuous problems, and the solutions to the discrete
problems, in order to be able to adaptively refine the latter
three problems so that the solution to the Discrete Saddle
Point Problem, the approximation of the regularized
solution, fits the solution to the Continuous Saddle Point
Problem, the true regularized solution, as closely as
desired. We will now focus on this estimation.

We begin by introducing some additional notation. For
v = (ε, E, λλλ ) ∈ V we denote (with some slight abuse of
notation) its interpolant inVh by

Πhv= (Πhε, ΠhE, Πhλλλ),

and the interpolation error by

rhv= v−Πhv= (rhε, rhE, rhλλλ ).

We will also need to consider jumps of discontinuous
functions overTh and Iτ . Let K1, K2 ∈ Th share a
common facef . Forx ∈ f we define

{v}s(x) := n1 ·

(
lim

y→x,y∈K1
v(y)− lim

y→x,y∈K2
v(y)

)
, (9)

where n1 is the outward unit normal ofK1. This is
well-defined since interchanging the roles ofK1 and K2
changes the sign of both the outward unit normal and the
quantity inside the parentheses. We extend{·}s to every
face in Th by defining {v}s(x) = 0 for x ∈ K ∩ Γ ,
K ∈ Th. The corresponding maximal jump is defined by

[v]s(x) := max
y∈∂K

|{v}s(y)| , x ∈ K ∈ Th, (10)

where∂K denotes the boundary ofK.

For jumps in time, we define

{v}t (tk) := lim
s→0+

(
v(tk+ s)− v(tk− s)

)
, (11)

with {v}t (0) = {v}t (T) = 0, and

[v]t (t) := max{|{v}t (tk)| , |{v}t (tk+1)|} (12)

for t ∈ (tk, tk+1).
In the theorems and proofs to be presented, we will

frequently use the symbols≈ and . to denote
approximate equality and inequality, respectively, where
higher order terms (with respect to mesh-size or errors)
are neglected. We letC denote various constants of
moderate size which are independent of the mesh-sizes
and the unknown functions.

We now proceed to an error estimation for the
coefficient. An error estimate for the Tikhonov functional
will follow as a corollary.

Theorem 1. (A posteriori error estimate for the
coefficient.) Suppose that the initial approximationε0 and
the regularization parameterα are such that the strong
convexity estimate(5) holds. Let u= (ε, E, λλλ ) ∈U be the
solution to the Continuous Saddle Point Problem, and let
uh = (εh, Eh, λλλ h) ∈ Uh be the solution to the Discrete
Saddle Point Problem, computed on meshesTh and Iτ .
Then there exists a constant C, which does not depend on
u, uh, h, orτ, such that

‖ε − εh‖Ω .
2C
α

(η + ‖Rε‖Ω ), (13)

whereη = η(uh) is defined by

η :=
〈

1
τ

[
∂λλλh
∂ t

]
t
+ s|∇ ·λλλ h|, h[∇Eh]s+ τ

[
∂Eh
∂ t

]
t

〉

ΩT

+
〈

1
τ

[
∂Eh
∂ t

]
t
, h[∇λλλ h]s+ τ

[
∂λλλh
∂ t

]
t

〉

ΩT

+ s
〈
|∇ ·λλλ h|, [∇Eh]s+ τ

[
∂∇·Eh

∂ t

]

t

〉

ΩT

+ s
〈
|∇ ·Eh|+ |Eh|, [∇λλλh]s+ τ

[
∂∇·λλλh

∂ t

]
t

〉

ΩT

,

(14)

and

Rε := α(εh− ε0)−

∫ T

0

∂Eh

∂ t
·

∂λλλ h

∂ t
dt

+
s

2h

∫ T

0
[(∇ ·λλλ h)Eh]s dt.

(15)

Proof.Using strong convexity (5), we obtain

‖ε − εh‖
2
Ω ≤

2
α
(
F ′(ε; ε − εh)−F ′(εh; ε − εh)

)
.

Sinceε minimizesF(ε) we haveF ′(ε;ε−εh) = 0 and thus

‖ε − εh‖
2
Ω ≤

2
α
∣∣F ′(εh; ε − εh)

∣∣

=
2
α

∣∣∣∣
∂L
∂ε

(ũ; ε − εh)

∣∣∣∣ ,
(16)
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where we have denoted bỹE and λ̃λλ the solutions to the
Continuous Direct Problem and the Continuous Adjoint
Problem, respectively, with permittivityεh, and set
ũ = (εh, Ẽ, λ̃λλ) ∈ U . The last equality follows from (7).
We remark that (16) implies ‖ε − εh‖Ω ≤ 2

α ‖F ′(εh)‖,
which would be an effective estimate. Unfortunately, we
cannot computeF ′(εh) exactly, since it depends on the
exact solutionsẼ and λ̃λλ as indicated in the text; hence
further estimation is needed.

We expand, using the triangle inequality,

∣∣∣∣
∂L
∂ε

(ũ; ε − εh)

∣∣∣∣≤
∣∣∣∣
∂L
∂ε

(ũ; ε − εh)−
∂L
∂ε

(uh; ε − εh)

∣∣∣∣

+

∣∣∣∣
∂L
∂ε

(uh; ε − εh)

∣∣∣∣
:= |Θ1|+ |Θ2| ,

(17)

and estimate the two terms|Θ1| and|Θ2| separately.
ForΘ1 we assume that the second partial derivatives of

L exist, and use the linearization

Θ1 =
∂L
∂ε

(ũ; ε − εh)−
∂L
∂ε

(uh; ε − εh)

=
∂ 2L
∂ε2 (uh; εh− εh; ε − εh)+o(‖εh− εh‖Ω )

+
∂ 2L

∂E∂ε
(uh; Ẽ−Eh;ε − εh)+o(‖Ẽ−Eh‖H1(ΩT )

)

+
∂ 2L

∂λλλ ∂ε
(uh; λ̃λλ −λλλ h;ε − εh)+o(‖λ̃λλ −λλλ h‖H1(ΩT )

),

where ∂ 2L
∂E∂ε and ∂ 2L

∂λλλ∂ε denote mixed second partial
Fréchet derivatives ofL. The first two terms vanish, since
the first components of ˜u anduh are bothεh, and again the
remainder terms are neglected as they are of higher order
with respect to the error. Thus, after exchanging the order
of differentiation, we are left with

Θ1 ≈
∂ 2L

∂E∂ε
(uh; Ẽ−Eh;ε − εh)

+
∂ 2L

∂λλλ ∂ε
(uh; λ̃λλ −λλλ h;ε − εh)

= D1|ε−εh

∂L
∂E

(uh; Ẽ−Eh)

+D1|ε−εh

∂L
∂λλλ

(uh; λ̃λλ −λλλ h),

(18)

whereD1|ε−εh denotes differentiation with respect to the
first component inuh and action onε − εh.

We split Ẽ−Eh = (Ẽ−ΠhẼ)+ (ΠhẼ−Eh) = rhẼ+
(ΠhẼ−Eh) and use the fact thatλλλ h solves the Discrete
Adjoint Problem with coefficientεh, so that∂L

∂E (uh; ΠhẼ−

Eh) = 0 asΠhẼ−Eh ∈Vdir
h . This gives

∂L
∂E

(uh; Ẽ−Eh)

=
∂L
∂E

(uh; rhẼ)+
∂L
∂E

(uh; ΠhẼ−Eh)

=
∂L
∂E

(uh; rhẼ).

(19)

Similarly, we have

∂L
∂λλλ

(uh; λ̃λλ −λλλh)

=
∂L
∂λλλ

(uh; rhλ̃λλ )+
∂L
∂λλλ

(uh; Πhλ̃λλ −λλλ h)

=
∂L
∂λλλ

(uh; rhλ̃λλ )

(20)

asEh solves the Discrete Direct Problem with coefficient
εh.

Combining (18), (19), and (20), and recalling (6) gives

Θ1 ≈ D1|ε−εh

(
∂L
∂E

(uh; rhẼ)+
∂L
∂λλλ

(uh; rhλ̃λλ )
)

=−
〈
(ε − εh)

∂ rhẼ
∂ t , ∂λλλh

∂ t

〉
ΩT

+ s
〈
∇ · ((ε − εh)rhẼ), ∇ ·λλλh

〉
ΩT

−
〈
(ε − εh)

∂Eh
∂ t , ∂ rhλ̃λλ

∂ t

〉
ΩT

+ s
〈

∇ · ((ε − εh)Eh, ∇ · rhλ̃λλ
〉

ΩT
.

We now aim to lift time derivatives from the
interpolation residualsrhẼ and rhλ̃λλ by splitting the
integral over [0, T] into the sum of integrals over the
subintervals inIτ , and integrating by parts in each
subinterval. Thus we obtain

〈
(ε − εh)

∂ rhẼ
∂ t , ∂λλλh

∂ t

〉

ΩT

=
Nτ

∑
k=1

∫ tk

tk−1

〈
(ε − εh)

∂ rhẼ
∂ t , ∂λλλh

∂ t

〉

Ω
dt

=
Nτ

∑
k=1

(
−

∫ tk

tk−1

〈
(ε − εh)rhẼ, ∂ 2λλλ h

∂ t2

〉
Ω

dt

+
〈
(ε − εh)rhẼ, ∂λλλh

∂ t

〉

Ω

∣∣∣
t=tk

−
〈
(ε − εh)rhẼ, ∂λλλh

∂ t

〉
Ω

∣∣∣
t=tk−1

)
.

We note that∂
2λλλh
∂ t2

≡ 0 on each subinterval, sinceλλλ h is
piecewise linear, and identify the jumps form (11),
obtaining

〈
(ε − εh)

∂ rhẼ
∂ t , ∂λλλ h

∂ t

〉
ΩT

=
Nτ

∑
k=1

〈
(ε − εh)rhẼ,

{
∂λλλh
∂ t

}
t

〉

Ω

∣∣∣
t=tk

.
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Next, we use the approximation

f (tk)≈
1
τ

∫ tk

tk−1

f (t)dt

to obtain terms defined in the whole time-interval. That is
〈
(ε − εh)

∂ rhẼ
∂ t , ∂λλλh

∂ t

〉
ΩT

≈
Nτ

∑
k=1

1
τ

∫ tk

tk−1

〈
(ε − εh)rhẼ,

[
∂λλλ h
∂ t

]
t

〉

Ω
dt

=
〈
(ε − εh)rhẼ, 1

τ

[
∂λλλh
∂ t

]
t

〉

ΩT

.

Similarly, we have
〈
(ε − εh)

∂Eh
∂ t , ∂ rhλ̃λλ

∂ t

〉
ΩT

=
〈
(ε − εh)

1
τ

[
∂Eh
∂ t

]
t
, rhλ̃λλ

〉

ΩT

.

Thus

|Θ1|.
〈
|ε − εh|

1
τ

[
∂λλλ h
∂ t

]
t
,
∣∣rhẼ

∣∣
〉

ΩT

+ s
〈∣∣∇ · ((ε − εh)rhẼ)

∣∣, |∇ ·λλλh|
〉

ΩT

+
〈
|ε − εh|

1
τ

[
∂Eh
∂ t

]
t
,
∣∣∣rhλ̃λλ

∣∣∣
〉

ΩT

+ s
〈
|∇ · ((ε − εh)Eh)|,

∣∣∣∇ · rhλ̃λλ
∣∣∣
〉

ΩT

≤ ‖ε − εh‖L∞(Ω)

〈
1
τ

[
∂λλλh
∂ t

]
t
,
∣∣rhẼ

∣∣
〉

ΩT

+ ‖ε − εh‖L∞(Ω)

〈
1
τ

[
∂Eh
∂ t

]
t
,
∣∣∣rhλ̃λλ

∣∣∣
〉

ΩT

+ s‖ε − εh‖L∞(Ω)

〈∣∣∇ · rhẼ
∣∣, |∇ ·λλλ h|

〉
ΩT

+ s‖ε − εh‖L∞(Ω)

〈
|∇ ·Eh|,

∣∣∣∇ · rhλ̃λλ
∣∣∣
〉

ΩT

+ s‖∇(ε − εh)‖L∞(Ω)

〈∣∣rhẼ
∣∣, |∇ ·λλλ h|

〉
ΩT

+ s‖∇(ε − εh)‖L∞(Ω)

〈
|Eh|,

∣∣∣∇ · rhλ̃λλ
∣∣∣
〉

ΩT
.

(21)

Note that, by Theorem 4.5.11 of [10], there is a positive

constantC ∝ h−5/2
f (in the notation of the cited theorem,

the exponent ism− l +min{0, n/p− n/q}, where in our
casem= 0, l = 1, n= 3, p = ∞, andq = 2), wherehf is
the mesh size inVper, such that

‖ε − εh‖L∞(Ω)+ ‖∇(ε − εh)‖L∞(Ω) ≤C‖ε − εh‖Ω .

Finally, we use standard interpolation estimates (see for
instance [26]) for rhẼ

∣∣rhẼ
∣∣≤C

(
h2

∣∣D2Ẽ
∣∣+ τ2

∣∣∣∣
∂ 2E
∂ t2

∣∣∣∣
)

≈C
(

h2
∣∣h−1 [∇Eh]s

∣∣+ τ2
∣∣∣τ−1

[
∂Eh
∂ t

]

t

∣∣∣
)

.C
(

h[∇Eh]s+ τ
[

∂Eh
∂ t

]
t

)
,

as well as forrhλ̃λλ , ∇ · rhẼ, and∇ · rhλ̃λλ
∣∣∣rhλ̃λλ

∣∣∣.C
(

h[∇λλλ h]s+ τ
[

∂λλλh
∂ t

]
t

)
,

∣∣∇ · rhẼ
∣∣.C

(
[∇Eh]s+ τ

[
∂∇·Eh

∂ t

]
t

)
,

∣∣∣∇ · rhλ̃λλ
∣∣∣.C

(
[∇λλλh]s+ τ

[
∂∇·λλλh

∂ t

]
t

)
,

where the jumps[·]s and[·]t were defined in equations (9),
(10), (11), and (12). Applying these estimates in (21), we
get

Θ1 .Cη ‖ε − εh‖Ω , (22)

with η as in (14).
Turning toΘ2 of (17), we recall from (6) that

Θ2 =
∂L
∂ε

(uh; ε − εh)

= α 〈εh− ε0, ε − εh〉Ω

−
〈
(ε − εh)

∂Eh
∂ t , ∂λλλh

∂ t

〉
ΩT

+ s〈∇ · ((ε − εh)Eh), ∇ ·λλλ h〉ΩT
.

(23)

Starting with the last term in the above expression, we split
the integral overΩ into the sum of integrals overK ∈ Th,
and integrate by parts to get

〈∇ · ((ε − εh)Eh), ∇ ·λλλh〉ΩT

= ∑
K∈Th

〈∇ · ((ε − εh)Eh), ∇ ·λλλ h〉KT

= ∑
K∈Th

(
−〈(ε − εh)Eh, ∇(∇ ·λλλ h)〉KT

+〈(ε − εh)n ·Eh, ∇ ·λλλ h〉∂KT

)
,

whereKT := K × (0, T), and∂KT := (∂K)× (0, T). we
observe that∇ · (∇λλλh) ≡ 0 on eachK ∈ Th for the
piecewise linearλλλ h, and identify the jumps from (9),
obtaining

〈∇ · ((ε − εh)Eh), ∇ ·λλλ h〉ΩT

= ∑
K∈Th

〈(ε − εh)n ·Eh, ∇ ·λλλ h〉∂KT

=
1
2 ∑

K∈Th

〈{(∇ ·λλλ h)Eh}s, ε − εh〉∂KT
,

where the factor12 appears since every non-zero jump is
encountered exactly twice in the sum overK ∈ Th.

Seeking to obtain expressions defined over the whole
of Ω , as opposed to those defined only on boundaries of
elementsK ∈ Th, we use the following approximation,
similar to the one used above for the jumps in time:

∫

∂K
f dS≈

∫

K

f
hK

dx.
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This yields

〈∇ · ((ε − εh)Eh), ∇ ·λλλ h〉ΩT

≈
1
2 ∑

K∈Th

〈
1

hK
[(∇ ·λλλ h)Eh]s, ε − εh

〉

KT

=
〈 1

2h [(∇ ·λλλ h)Eh]s, ε − εh
〉

ΩT
.

With the above estimate in (23), we can now conclude that

|Θ2|.
∣∣∣〈α(εh− ε0), ε − εh〉Ω

−
〈∫ T

0
∂Eh
∂ t · ∂λλλh

∂ t dt, ε − εh

〉
Ω

+
〈

s
2h

∫ T
0 [(∇ ·λλλ h)Eh]s dt, ε − εh

〉
Ω

∣∣∣

≤ ‖Rε‖Ω ‖ε − εh‖Ω ,

(24)

with Rε as defined (15).
Combining estimates (22) and (24) with (16) and (17),

we conclude that

‖ε − εh‖
2
Ω .

2C
α

(η ‖ε − εh‖Ω + ‖Rε‖Ω ‖ε − εh‖Ω ) ,

and the result (13) follows.

We see that if the numerical errors for solving the
direct and adjoint problems are relatively small, that is,
when ũ ≈ uh with relatively high accuracy so that the
jump and divergence terms in (14) are small, then
‖Rε‖Ω ≈ ‖F ′(εh)‖ dominates the error estimate.

Corollary 1. (A posteriori error estimate for the Tikhonov
functional.) Under the hypothesis of Theorem1, we have

|F(ε)−F(εh)|.
4C2

α2

(
η2+ ‖Rε‖

2
Ω

)
,

with η as defined in(14), and Rε as in(15).

Proof. Using the definition of the Fréchet derivative and
(7), we get

F(ε)−F(εh) = F ′(εh;ε − εh)+o(‖ε − εh‖
2
Ω )

=
∂L
∂ε

(ũ; ε − εh)+o(‖ε − εh‖
2
Ω ).

Neglecting the remainder term as it is of higher order with
respect to the error, and estimating∂L

∂ε (ũ; ε − εh) = Θ1+
Θ2 as in the proof of Theorem1, we obtain

|F(ε)−F(εh)|.
2C
α

(η + ‖Rε‖Ω )‖ε − εh‖Ω .

Applying Theorem1 to estimate‖ε − εh‖Ω , we arrive at

|F(ε)−F(εh)|.
4C2

α2 (η + ‖Rε‖Ω )2 ≤C
(

η2+ ‖Rε‖
2
Ω

)
.

We will conclude this section by describing how these
theorems can be translated into concrete
recommendations for refining the computational mesh in
the adaptive algorithm, outlined in Section4.

3.1 Mesh refinement recommendations

From Theorem1 and Corollary1, it is clear that the error
in the reconstruction can be estimated in terms of two
quantities,η , and Rε . The former essentially represents
how well the Continuous Direct and Adjoint Problems are
approximated by their finite element counterparts, the
Discrete Direct and Adjoint Problems, respectively. The
latter, Rε , describes the error incurred by the
approximation of the coefficient itself.

In our computational experience from [7,8], on given
meshesTh and Iτ , the solutions to direct and adjoint
problems are in general approximated better than the
coefficient itself. As remarked above, this implies that
η ≪ ‖Rε‖Ω , and thus contributions to the error are the
greatest in regions where|Rε | ≈ |F ′(εh)| is close to its
maximum value. Thus we propose the following mesh
refinement recommendation:

Mesh Refinement Recommendation 1Using Theorem1
we conclude that we should refine the mesh in
neighborhoods of those points inΩ where the function
|Rε | attains its maximal values. More precisely, let
β ∈ (0, 1) be a tolerance number which should be chosen
in computational experiments. Then, refine the meshTh
in such subdomains ofΩ where

|Rε | ≥ β max
Ω

|Rε | .

Since a relatively large value of the reconstructed
coefficientεh indicates a region where the permittivity is
different from the background value of 1, we can also
propose the following heuristic:

Mesh Refinement Recommendation 2We should refine
the mesh in neighborhoods of those points inΩ where the
function|εh| attains its maximal values. More precisely, we
refine the mesh in such subdomains ofΩ where

|εh| ≥ β̃ max
Ω

|εh| ,

where β̃ ∈ (0,1) is a number which should be chosen
computationally.

4 Adaptive algorithms for the inverse
problem

In this section we will present different algorithms which
can be used for the solution of the inverse problem we
consider: usual conjugate gradient algorithm and two
different adaptive finite element algorithms. Conjugate
gradient algorithm is applied on every finite element mesh
Th which we use in computations. We note that in our
adaptive algorithms the time meshIτ is refined globally
accordingly to the Courant-Friedrichs-Lewy condition of
[27].
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Taking into account the remark of Section3.1 we
denote by

Rn
ε(x) := α(εh− ε0)−

∫ T

0

∂En
h

∂ t
(x, t) ·

∂λλλn
h

∂ t
(x, t)dt

+ s
∫ T

0
∇ ·En

h(x, t)∇ ·λλλn
h(x, t)dt,

(25)

where functionsλλλ n
h, andEn

h are finite element solutions of
direct and adjoint problems computed withε := εn

h ,
respectively, andn is the iteration number in the
conjugate gradient algorithm.

4.1 Conjugate Gradient Algorithm

Here we outline the conjgate gradient algorithm, which
will be used in the two adaptive algorithms presented
below.

Algorithm 1 (Conjugate Gradient Algorithm)
Step 0. Discretize the computational space-time domain
Ω × [0,T] using partitionsTh and Iτ , respectively, see
Section3. Start with the initial approximationsε0

h = ε0
and compute the sequence ofεn

h , n= 1, 2, . . ., as:
Step 1. Compute solutionsEn

h and λλλ n
h of the Discrete

Direct and Adjoint Problems, respectively, using the
coefficientεn

h .

Step 2. Update the coefficient onTh and Iτ via the
conjugate gradient method

εn+1
h (x) = εn

h(x)+ γn
ε dn

ε (x),

where

dn
ε (x) =−Rn

ε(x)+β n
ε dn−1

ε (x),

with

β n
ε =

‖Rn
ε‖

2
Ω∥∥Rn−1

ε
∥∥2

Ω

,

d0
ε (x) = −R0

ε(x), and γn
ε are step-sizes in the gradient

update which can be computed as in [28]

γn
ε =−

〈Rn
ε , dn

ε 〉Ω

α ‖dn
ε‖

2
Ω

. (26)

Step 3. Stop computing updatesεn
h at the iteration

M := n and obtain the functionεh := εM
h if either

‖Rn
ε‖Ω ≤ θ , whereθ is the tolerance in n updates of the

gradient method, or norms
∥∥εn

h

∥∥
Ω are stabilized.

Otherwise update n to n+1 and return to Step 1.

4.2 Adaptive algorithms

In this section we present two different adaptive
algorithms for the solution of our coefficient inverse
problem (more precisely, the Discrete Saddle Point
Problem, approximating the solution to the Continuous
Saddle Point Problem), where in the first adaptive
algorithm we apply Mesh Refinement Recommendation1
of Section3.1, while in the second adaptive algorithm we
use Mesh Refinement Recommendation2 of Section3.1.

We define the minimizer of the Tikhonov functional
(4) and its approximated finite element solution onk
times adaptively refined meshThk by ε and εhk,
correspondingly. The latter is obtained at the final step of
the conjugate gradient iteration of Section4.1 on the
meshThk.

Algorithm 2 (The First Adaptive Algorithm)
Step 0. Choose an initial space-time meshTh0 ×Iτ0

in Ω × [0, T]. Computeεhk, k> 0, via following steps:

Step 1. Obtain numerical solutionεhk on Thk using
the Conjugate Gradient Method of Section4.1. Denote
the number of conjugate gradient steps by Mk.

Step 2. In accordance with the first mesh refinement
recommendation, refine such elements in the meshThk
where the expression

∣∣RM
ε,k

∣∣≥ βk max
Ω

∣∣RM
ε,k

∣∣ , (27)

where RM
ε,k is the gradient on the last iteration of the

conjugate gradient method on the k times adaptively
refined meshis satisfied, and the tolerance numbers
βk ∈ (0, 1) are chosen by the user.

Step 3. Define a new refined mesh asThk+1 and
construct a new time partitionIτk+1 such that the
Courant-Friedrichs-Lewy condition of [27] is satisfied.
Interpolateεhk on the new meshThk+1, perform Steps 1–3
on the space-time meshThk+1 ×Iτk+1, and end up with
εhk+1.

Step 4. Stop mesh refinements when either∥∥εhk − εhk−1

∥∥
Ω < θ1, or for some n,‖Rn

ε‖Ω < θ2, where
θi , i = 1, 2 are tolerances chosen by the user, and Rn

ε is
the gradient on the n:th iteration of the conjugate
gradient method on the new mesh. We then set the final
number of refinements krec := k, and the reconstructed
coefficientεrec := εhk .

Algorithm 3 (The Second Adaptive Algorithm)
This algorithm follows the same procedure as the

First Adaptive Algorithm, except that the refinement
criterion (27) is replaced, in accordance with the second
mesh refinement recommendation, by

∣∣εhk

∣∣≥ β̃k max
Ω

∣∣εhk

∣∣ (28)
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for some tolerance numbers̃βk ∈ (0, 1) , possibly different
from βk, chosen by the user.

Before continuing with the details of our numerical
examples, some remarks are in order:

–Firstly, we comment on how to choose the tolerance
numbersβk, andβ̃k in (27), (28). Their values depend

on the concrete values of maxΩ

∣∣∣RM
ε,k

∣∣∣ and maxΩ
∣∣εhk

∣∣,
correspondingly. If we take values ofβk and β̃k very
close to 1 then we will refine the mesh in very a
narrow region of the domainΩ , and if we will choose
βk, and β̃k ≈ 0 then almost all elements in the finite
element mesh will be refined. Thus, we will get global
and not local mesh refinement. Our numerical tests of
Section5 show that the choice ofβk, andβ̃k = 0.7 is a
quasi-optimal one, since with these values of the
parametersβk, andβ̃k the finite element meshThk is
refined exactly at the places, where we have computed
non-trivial parts of the functionsεhk.

–Secondly, to compute norms
∥∥εhk − εhk−1

∥∥
Ω in Step 3

of the adaptive algorithms, the solutionεhk−1 is
interpolated from the meshThk−1 to the meshThk.

5 Numerical examples

In this section we present numerical studies of the
solution of our inverse problem using the adaptive
algorithms of Section4.2. The algorithms are efficiently
implemented in the software package WavES ([29]),
using the domain decomposition technique of [30].

To do that we here consider a rectangular domainΩ ,
which we enlarge to another rectangular domainΩ̃ ⊃ Ω .
We then decomposẽΩ into two subregionsΩFEM and
ΩFDM such thatΩFEM = Ω , andΩFEM ∩ ΩFDM = /0. In
ΩFEM we will use the finite element method (FEM) and,
in ΩFDM, the finite difference method (FDM). The
boundary ∂Ω̃ of the domain Ω̃ is such that
∂Ω̃ = ∂1Ω̃ ∪ ∂2Ω̃ ∪ ∂3Ω̃ , where ∂1Ω̃ and ∂2Ω̃ are,
respectively, front and back sides of̃Ω , and∂3Ω̃ is the
union of left, right, top and bottom sides of this domain.
We will collect time-dependent observations over
ST := ∂1Ω̃ × (0, T) at the backscattering side∂1Ω̃ of Ω̃ .
We also define S1,1 := ∂1Ω̃ × (0, t1],
S1,2 := ∂1Ω̃ × (t1, T), S2 := ∂2Ω̃ × (0, T) and
S3 := ∂3Ω̃ × (0, T).

As in [7,8] we initialize only the componentE2 of the
electric fieldE = (E1, E2, E3) on ST as a plane wavef (t)
such that

f (t) =

{
sin(ωt) if 0 < t < 2π/ω ,

0 if t > 2π/ω .
(29)

We assume that the functionε ≡ 1 insideΩFDM. The
numerical tests of our previous studies [31] show that the

best reconstruction results are obtained forω = 40 in (29).
Thus, we perform our tests withω = 40 in (29).

In our computations, we consider computational
domainsΩ̃ := (−0.8, 0.8)3, and ΩFEM := (−0.7, 0.7)3,
where the length scales are in decimeters. We choose the
mesh sizeh0 = 0.05 in the overlapping layers between
ΩFEM andΩFDM as well as in the coarse mesh. We note
that we have generated our transmitted data using a four
times locally refined initial meshΩFEM, and in a such
way we avoid variational crimes. To generate transmitted
data we solve the model problem in timeT = [0, 3.0] with
the time step τ = 0.006 which satisfies to the
Courant-Friedrichs-Lewy condition [27]. We then pollute
our data additive noise to levelsσ = 3%, and 10%,
respectively.

Similarly to [5,7,8,30,31] in all our computations we
choose a constant regularization parameterα = 0.01
because it gives the smallest relative error in the
reconstruction of the functionε. This parameter was
chosen via trial and error because of our computational
experience: such a choice of the regularization parameter
gave the smallest relative erroreε =

∥∥ε − εhk

∥∥
Ω /

∥∥εhk

∥∥
Ω .

An iteratively regularized adaptive finite element method
when both dielectric permittivity and magnetic
permeability are reconstructed, has recently been
presented in [23]. Here, iterative regularization is
performed via the algorithms of [22]. We also refer to [15,
16] for different techniques for the choice of
regularization parameters.

We perform four different tests:

Test 1:The goal of this numerical test is to reconstruct a
smooth functionε only insideΩFEM. We define this
function forx ∈ ΩFEM as

ε(x) := 1.0+1.0e−|x−x1|
2/0.2+1.0e−|x−x2|

2/0.2,

x1 := (0.3, 0.0, 0.0) ∈ ΩFEM,

x2 := (−0.4, 0.2, 0.0) ∈ ΩFEM.
(30)

Test 2:In this test we reconstruct three small inclusions of
diameterd = 2 mm with the centers of the inclusions
at (−0.3, 0.0,−0.25), (0.3, 0.2,−0.25) and
(0.3,−0.2,−0.25), respectively, andε = 2.0 inside
the inclusions.

Test 3:In this test we reconstruct four small inclusions of
diameterd = 2 mm with the centers of the inclusions
at (−0.3, 0.0, 0.25), (0.0, 0.2, 0.25),
(0.0,−0.2,−0.25), and (0.3,−0.2,−0.25),
respectively, andε = 2.0 inside the inclusions.

Test 4:The inclusions of this test are the same as in Test 3,
but here the data consists of measurements of two
backscattered wave fields: one backscattered field
initiated at the front boundary∂1Ω̃ , and another one
at the back boundary∂2Ω̃ .

We start to run the adaptive algorithm with a
homogeneous initial approximationε0 ≡ 1.0 in ΩFEM. In
our recent work [31], it was shown that such choice of the
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a) Test1:Ω̃ = ΩFEM∪ΩFDM b) Test 1:ΩFEM

Fig. 2: Domain decomposition in numerical tests of Section5. a) The decomposed domaiñΩ = ΩFEM∪ΩFDM. b) The finite element
domainΩFEM.

initial approximation gives a good reconstruction. Such
homogeneous initial approximations were also used in
[32]. See also [5,7,8,30] for a similar choice of initial
approximations. We also assume the upper bound
εmax = 5 in (1). This is a reasonable value, given that our
target applications are in medical imaging, and typically
involves low contrasts.

To get final images of our reconstructed functionεhk
we use a post-processing procedure which has been
described before in [5,7,30,31]. The post-processing
allows us to identify distinct shapes from the continuous
reconstructionεrec.

5.1 Reconstructions

5.1.1 Test 1

In this section we present numerical results of the
reconstruction of the functionε given by (30). Tables 1–2
present computed results of the reconstructions on
adaptively refined meshes after applying the First
Adaptive Algorithm. Figures3–6 display results of the
reconstruction of the function given by (30) with additive
noise of the levelσ = 10%. Quite similar results are
obtained forσ = 3%, see Tables 1, and 2, and thus they
are not presented here. In Figures3–6 we observe that the
location of the maximal value of the function (30) is
imaged correctly. It follows from Figure5 and Table 1
that on the coarse mesh we obtain good contrast, with
maxΩFEM εh0 = 1.94. However, Figure5 reveals that it is
desirable to improve the location of the maxima of the
reconstructed function inx3 direction as well as remove
some artifacts which appeared in the reconstruction on
the coarse mesh.

The reconstructionεrec of ε on a final, five times
adaptively refined mesh are presented in Figure6. We

observe significant improvement of the reconstruction of
the functionε obtained on the final adaptively refined
mesh: the artifacts are removed and the reconstructed
function is moved more closer to the exact function inx3
direction, compared with results of Figure5.

5.1.2 Test 2

In the test of this section we consider the problem arisen
in microwave imaging: reconstruction of high contrast in
malign tumors and detection of small tumor sizes (less
than 1 cm) in breast cancer screening. Most of existing
numerical methods for solution of these problems uses
minimization of conventional least-squares functionals
and Gauss-Newton methods. See, for example, [1,33,34,
35,36,37,38]. We propose to use an adaptive finite
element method which will allow achievement of high
contrast in the malign tumor and efficiently detect very
small sizes of inclusions during adaptive mesh
refinement. Although only reconstruction of a real
dielectric permittivity function is considered in our test,
the obtained results can be extended for the
reconstruction of the complex permittivity function which
is one of the goals of our current research.

We tested the Second Adaptive Algorithm on the
reconstruction of three small inclusions with centers at
(−0.3, 0.0,−0.25), (0.3, 0.2,−0.25), and
(0.3,−0.2,−0.25) located inside spherical geometry of
Figure 2, see also Figure9 where they are visualized.
These inclusions model three small malign tumors of a
size 2 mm. We performed simulations with two additive
noise levels in the data:σ = 3% and σ = 10%, see
Tables 1–2 for the results.

The reconstruction of the three inclusions on the
initial coarse mesh withσ = 10% is presented on the left
figures of Figure9. In this figure and Table 1 we observe
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x1x2-view x1x3-view x2x3-view

Fig. 3: Test 1. Five times adaptively refined mesh when the level of the noise in the data wasσ = 10%.
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Fig. 4: Test 1. Transmitted data of component E2 at different times. The noise in the data isσ = 10%.
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Table 1.Results obtained on the coarse mesh. We present reconstructions of the maximal contrast̃ε = maxΩFEM εM0
h0

together with
computational errors in percents. Here, M0 is the final number of iteration in the conjugate gradient method on the coarse mesh.

σ = 3% σ = 10%
ε̃ error, % M0

Test 1 1.93 3.5 2
Test 2 2.94 47 2
Test 3 1.77 11.5 2
Test 4 1.9 5 2

ε̃ error, % M0
Test 1 1.94 3 2
Test 2 2.81 40.5 2
Test 3 2.04 2 2
Test 4 2.03 1.5 2

Table 2.Results obtained on krec times adaptively refined mesh. We present reconstructions of the maximal contrast̃ε = maxΩFEM εrec
together with computational errors in percents.

σ = 3% σ = 10%
Case ε̃ error, % Mkrec krec
Test 1 2.04 2 5 4
Test 2 1.99 0.5 1 5
Test 3 1.55 22.5 1 2
Test 4 1.9 5 1 1

Case ε̃ error, % Mkrec krec
Test 1 1.97 1.5 1 5
Test 2 1.92 4 1 5
Test 3 1.88 6 1 2
Test 4 2.15 7.5 1 1

x ∈ ΩFEM : εh0(x) = 1.2 x ∈ ΩFEM : εh0(x) = 1.5 x ∈ ΩFEM : εh0(x) = 1.8

x 1
x 2

vi
ew

x 1
x 3

vi
ew

x 2
x 3

vi
ew

Fig. 5: Test 1. In red: isosurfaces on a coarse mesh. Here,maxΩFEM εh0 = 1.94, and the noise level in the data isσ = 10%. For
comparison we also present as wireframes the correspondingisosurface of the function(30) in every figure.
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x ∈ ΩFEM : εrec(x) = 1.2 x ∈ ΩFEM : εrec(x) = 1.5 x ∈ ΩFEM : εrec(x) = 1.8
x 1

x 2
vi

ew
x 1

x 3
vi

ew
x 2

x 3
vi

ew

Fig. 6: Test 1. In red: isosurfaces on the final mesh. Here,εrec was obtained on a five times refined mesh,maxΩFEM εrec= 1.97, and the
noise level in the data isσ = 10%. For comparison we also present as wireframes the corresponding isosurface of the function(30) in
every figure.

that, on the coarse mesh, we obtain quite correct locations
of all inclusions and achieve maximal contrast of
maxΩFEM εh0 = 2.8 in the inclusions. However,
Figures 9-e), and g) show us that the locations of all
inclusions in x3-direction can still be improved. The
figures on the right of Figure9 present the reconstruction
εrec of ε on the five times locally adaptively refined mesh.
In Figure9-f), and h) we observe an improvement of the
reconstructions of the three inclusions in thex3-direction
on the final adaptively refined mesh, compared with
reconstructions obtained on the coarse mesh. Comparing
Tables 1 and 2 we also can conclude that adaptive mesh
refinement allowed us to obtain more correct contrast for
all three inclusions.

5.1.3 Test 3

This test is similar to Test 2, only here the goal was to
reconstruct four small inclusions located at different parts
of ΩFEM: two inclusions were located closer to the
backscattering boundary, and two other inclusions were
placed closer to the transmission boundary ofΩFEM, see
Figure 10 where they are presented. These inclusions
model four small malign tumors of a size 2 mm. We
performed simulations with two additive noise levels in
the data:σ = 3% andσ = 10%, see Tables 1–2 for the
results.

The reconstruction on the initial coarse mesh with a
noise levelσ = 10% in the data is presented on the left
figures of Figure10. From this figure and Table 1 we
observe that we get quite correct locations of all
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Fig. 7: Test 2. Transmitted data of the component E2 at different times. The noise level in the data isσ = 10%.
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Fig. 8: Test 2. Five times adaptively refined mesh when the noise level in the data wasσ = 10%.
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Fig. 9: Test 2. Reconstructions (in red color)εh0 of ε obtained on the coarse mesh (upper figures), andεrec on the five times adaptively
refined mesh (lower figures). The noise level in the data isσ = 10%. For comparison we also present exact isosurfaces of the three
small inclusions to be reconstructed (in light blue color).

x1x2 view x1x3 view x2x3 view

O
n

co
ar

se
m

es
h,

x
∈

Ω
F

E
M

: ε
h 0
(x
)
=

2.
04

O
n

fin
al

m
es

h,
x
∈

Ω
F

E
M

:ε
re

c(
x)

=
1.

88

Fig. 10: Test 3. Reconstruction of four inclusions (in red color) obtained on the coarse mesh (upper figures) and on the two times
adaptively refined mesh (lower figures). The noise level in the data isσ = 10%. For comparison we also present exact isosurfaces of
the four small inclusions to be reconstructed (in light bluecolor).
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Fig. 11: Test 4. Reconstruction obtained with two plane waves. We present reconstruction of the four inclusions (in red color) obtained
on the coarse mesh (upper figures) and on the two times adaptively refined mesh (lower figures). The level of noise in the datais
σ = 10%. For comparison we also present exact isosurfaces of the four small inclusions to be reconstructed (in light blue color).

inclusions and achieve a maximal contrast of
maxΩFEM εh0 = 2.04 on the coarse mesh. However,
Figure 9-e), and g) show that the locations of all
inclusions in thex3-direction can still be improved. These
figures also show that one of the four small inclusions is
almost not present in the initial reconstruction.

The figures on the right of Figure10 present the
reconstructionεrec on the two times locally adaptively
refined mesh. In Figure10-f), and h) we observe that the
two lower inclusions are well reconstructed. However,
since in this quite challenging test we have used only
transmitted data resulted from a single measurement of a
plane wave, we do not observe significant improvement
of the reconstruction of the four inclusions in the
x3-direction.

5.1.4 Test 4

In this test we decided improve the results of Test 3 and
we tried to reconstruct the four inclusions using
measurements of two backscattered wave fields. First, we
initialized a plane wave at the front boundary∂1Ω̃ in time
[0, T] and collected backscattered data here. Next, we
initialized a plane wave at the back boundary∂2Ω̃ in time
[T, 2T] and collected backscattered data for this wave
field. We chooseT = 3 andτ = 0.006 as in all previous
tests. Figure11 and Tables 1–2 show the results of the
reconstruction. Now we see that all inclusions are of the

same size and they are reconstructed in correct positions
and with correct contrasts on the coarse mesh as well as
on the refined mesh. From Tables 1–2 we see that
adaptive algorithm converged already after first mesh
refinement. The drawback of this test is that computations
of one optimization iteration took twice as much time as
the corresponding iterations of the previous tests, because
of two measurements of the backscattered wave fields.

6 Conclusion

In this work we have derived two a posteriori error
estimates, for the direct error in the approximated
permittivity as well as in the Tikhonov functional, in the
finite element approximation of the Lagrangian approach
to our coefficient inverse problem. Both estimates consist
of two parts which can be interpreted as representing the
error incurred by the approximation of the solution to the
direct and adjoint problems, and the error incurred by the
approximation of the coefficient itself, respectively. These
estimates are important in the adaptive algorithms we
have studied. Moreover, they further justify the use of
similar error indicators in our previous works [7,8].

Numerically we have tested the adaptive algorithms
with two different additive noise levels,σ = 3%, and
10%, in the data. Our numerical tests show that with mesh
refinements, as was expected, the quality of the
reconstruction is improved a lot. Compare, for example,
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the results of Figure5 with those of Figure6. Using these
figures and tables 1 and 2 we observe that, with mesh
refinements, the artifacts obtained on a coarse mesh are
removed and the reconstructed functionεhk has more
correct location inx3 direction.

We can conclude that we have supported the tests of
our previous works [6,7,8,30,31,39,40,41], and have
shown that the adaptive finite element method is a
powerful tool for the reconstruction of coefficients in
Maxwell’s equations from limited observations.

Our adaptive algorithms can also be applied for the
case when edge elements are used for the numerical
simulation of the solutions of forward and adjoint
problems, see [42,43] for finite element analysis in this
case. This, as well as development of different techniques
for iterative choice of regularization the parameter in the
Tikhonov functional, can be considered as a challenge for
future research.

For the applications to medical imaging, an additional
important challenge, both from a computational and
theoretical point of view, is the extension of the adaptive
Lagrangian methods to the case of a complex coefficient.
This corresponds to considering a conductive medium,
which is more realistic for organic tissues, and is a topic
of our current research.
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