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Abstract: We consider a coefficient inverse problem to determine tledediric permittivity in Maxwell's equations, with data
consisting of boundary measurements. The true dielearimibtivity is assumed to belong to an ideal space of veryffirige elements.
The problem is treated using a Lagrangian approach to theamiziation of a Tikhonov functional, where an adaptive firetement
method forms the basis of the computations. A new a posteriar estimate for the norm of the error in the reconstrdigtermittivity

is derived. The adaptive algorithm is formulated and testextessfully in numerical experiments for the reconsimanadf two, three,
and four small inclusions with low contrast, as well as therestruction of a superposition of two Gaussian functions.

Keywords: coefficient inverse problem, finite element approximataatgptivity

1 Introduction context of a two-stage procedure i ,7,8]. The main
application considered in those publications was detectio
dof explosives. With such applications, the low amount of
data one can expect — usually only backscattered data for

£ = £(X), X = (X1, %, %) € Q, where Q c B3 is a a single incident wave of one frequency — makes the

bounded convex domain with piecewise smooth boundar)PrOblem of 'reconstru'cnon challengl'ng. _

. We assume that the true permittivity belongs to an  The main theoretical result of this paper is Theotkm
ideal space of very fine finite elements. The datawhich provides a new, direct a posteriori error estimate
considered consists of a finite number of observations ofor the norm of the error in the reconstructed dielectric
(one or two) backscattered or transmitted waves. This is @ermittivity function. Qualitative computable, or a
coefficient inverse problem (CIP) for Maxwell's posteriori, error estimates are an essential tool for finite
equations, where the dielectric permittivity functien ~ element based adaptive algorithms in the optimization
acting as the coefficient in the equations, characterizes approach to our inverse problem. Previously,3h puch
inhomogeneous, isotropic, non-magnetic, non-conductivén estimate was given for our coefficient inverse problem.
medium in Q. Although we are in this note concerned However, this estimate was an indirect one, estimating the
with the reconstruction of a real-valued coefficienpur ~ Size of an error in the computed Lagrangian, as apposed
future applications are, eventually, in medical imaging,to a direct estimate of the error in the computed
such as microwave imaging of breast cancer, and earlyermittivity as presented here. A similar estimate, also in

In this note we study an adaptive finite element metho
for the reconstruction of a dielectric permittivity funati

diagnosis of stroke (se&,,3,4] for details). the computed L.agrangian, was shown for a modified
The method studied is based on a LagrangianMaxwell systeming].
approach to the minimization of a Tikhonov functional, We illustrate our theoretical results with several

where the functions involved are approximated bynumerical examples. With the above-mentioned aspects
piecewise polynomials in a finite element method. Suchof contrast and size of inclusions in mind, we present
an approach to coefficient inverse problems of the type weaeconstructions of two, three, and four different small
consider has previously been studied extensively in theanclusions, respectively, of low contrast. We also evauat
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how variations in the type of data collected affect the numerically, and our goal is to approximates UP" by
reconstruction. More precisely, we consider the effect ofan element of a smaller subspace.
working with only backscattered data, with only The setUP®" is defined to describe a heterogeneous
transmitted data, with both backscattered and transmittechedium inQ, immersed in a constant background with
data, as well as backscattered data from two anti-parallgbermittivity 1 inR3\ Q.
incident waves. In addition to these reconstructions of  Under the assumption thate UP®', we consider the
inclusions, we also present a reconstruction of a morestabilized Maxwell system ofl[l,12] in time-domain for
complicated function, to wit, a superposition of two an isotropic, non-magnetic, and non-conductive medium
gaussians. in Q. Thatis,

Here is an outline of the remaining part of this note:
In the Section 2 we present the mathematical 9%E

formulations of the direct and inverse problems and state € 3¢z —AE+0(0-E)—s0(0- (6E)) =0 inQr,
the basic results prior to discretization of the problems. | . (¢E) =0 in Qr,
Section 3 we state the finite element formulations, OE )
perform the error analysis, and summarize the results in 2= — p onlt,
terms of a mesh refinement strategy. The adaptive on
algorithm for solving the inverse problem is described in (. ) — JE 0)=0 inO

. . . . ( bl ) - ( I ) - In )
Section4, and numerical examples are given in Secton ot

Section6 concludes the paper.
pap where we have expanded the usual double curl term as

Ox (OxE) =—-AE+0O(0O-E) to simplify further
manipulations of the equation. We use the notation

2 The direct and inverse problems ain =n-0, wheren denotes the outward unit normal on
. 3 . .

Before proceeding with the mathematical statement of the - The funcnonPf [sz(rT)(]j |s_|g|ven l(;leu;nanr} data

problem, we introduce some notation. For the bounde see“Se.cnon 4 of 7] for details), ands > 1 is a

convex polyhedral domaif2 c R3 with boundaryl™, we stabilization parameter. For well-posedness of problems

write O = Q x (0,T) and I := I x (0,T), where  ©Of this class, we refer tl 14]. o
T >0 is a (sufficiently large) fixed time. IK C RM, The mathematical statement of the coefficient inverse

neN, is a domain, we denote by, )y and||-||y the ~ Problemis: | _ , |
L,-inner product and norm, respectively, over the domain!Nverse Problem.  Given time-resolved  boundary

X observationss € [L,(I7)]? of the electric field, determine
LetV}*'be the space of Lipschitz continuous functions € € UPsuch thalE = G onT7. _
defined by Here the observation& are defined on the whole
boundaryl+. For the case of incomplete data, which we
Voper:: (veC(Q):Ove [LM(Q)]3}. consider in our numerical examples, we prescribe

E—- G =0 on all parts of [+ where we have no
In the spirit of 5], we define a finite dimensional subspace observations.

of piecewise linears Inverse problems, such as the one above, are typically
ill-posed in nature. Thus we cannot expect to be able to
VPEr— fve VP i vk € PLK)VK € %}, find an exact unique solution for any given d&tgwhich
in practicewill contain noise). Instead we will follow the
where.7 = {K} is a very fine, quasi-uniform (se&q), concept of regularization (see for instandé,[L6]) and

face-to-face partition ofQ into tetrahedra, andP!(K)  assume that the given da@is a perturbation of ideal
denotes the set of polynomials of degree no greater than dataG*, for which there exists a unique solutien to the

over K. We equip this space with thie,-norm overQ, Inverse Problem. The goal is then to systematically
and define the set of admissible dielectric permittivity compute an approximation af', a so-called regularized
functions solution which hereafter will be denoted simply lay

which is as close t@* as can be achieved given the level
of noise ||G—G*|\FT. Such a regularized solution is
obtained by minimizing a Tikhonov functional, to be
defined below (see equatiof)).

for some known upper bourg}ax. The spac&/P¢' can be Uniqueness of the solution of coefficient inverse
thought of as a very fine finite element space (see Sectioproblems with a finite number of observations is typically
3), hence it is of (large but) finite dimension, which, by obtained via the method of Carleman estimat&g|.[
the equivalence of norms on finite dimensional spacesExamples where this method is applied to inverse
justifies the use of thd.,-norm rather than the more problems for Maxwell's equations can be found in, for
natural H-norm. Although this space is finite example, 18], additional examples arel9] where
dimensional, it is considered too large to handlesimultaneous reconstruction of two coefficients is

UPE:= {ve VP 1 <v(X) < gmax VX € Q,

1
V|r = 1, |:|V|r EO} ( )
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considered, and2D,21] for bi-isotropic and anisotropic
media. However, this technique requires non-vanishing
initial conditions for the underlying partial differentia
equation, which is not the case here. Thus, to date,
uniqueness of the solution to the problem we study is not
known. For the purpose of this work, we will assume that
uniqueness holds. This assumption is justified by the ‘ — ‘ .
numerical reconstruction results presented in the T-§ T-
experimental worksf{, 8].
We introduce the space

VA= fve [HY(Q7)]®:v(-, 0) =0}

for solutions to the direct problem, and

Zg(t)

Fig. 1: Schematic illustration of the cut-off functiag appearing
in the Tikhonov functional4).

o L 5 0 within the small interva(T — 9, T —9/2),0< 0 < T,
Vadi={ve [HH(Qr)]:v(, T)=0} as schematically shown in Figufie The functionz; is
introduced to ensure data compatibility in the adjoint
for adjoint solutions. Both spaces are equipped with theproblem arising in the minimization of]. To simplify
usual norm and inner product ofH(Qr)]°. Then,  the notation, we write (€) := F (g, Eg).

multlpal‘)d/.lng the first equation inQ) by a test function How to choose the regularization parametemwith
@ € V@9 and integrating oveQr yields, after integration  yespect to the level of noise in the data is a widely studied
by parts, topic. Several methods exist. Examples are the
(generalized) discrepancy principlelgl and iterative
< %—t,a—¢> +<£‘Z,—IE(-,T),¢(-,T)> methods 22]. In future studies, we are planning to
Q investigate iterative methods, similarly t83. However,
< %_E O)> +(0E, D)o for the results presented here, we regarchs a fixed
0 T
parameter.
<[,—E > (0-E,0-@)q, We assume that the initial approximatiogy is
sufficiently close to an ideal solutiaat, corresponding to
+(H-E;n- @) +s{0-(€E), 0- @), noiseless dat&* in the Inverse Problem, to ensure local
—s(0 ( E),n-@) 3) strong convexity of the Tikhonov functional. By
T theorem 3.1 of §], this can be achieved by applying the
< a—E a_¢> +(COE, 0@) o approximately globally convergent method discussed in
T . . .
that paper. Theifr is strongly convex in a neighborhood
—(8- >QT +s(0-(eE), 0- @), N C VP of g, containinge*. More precisely, we have
—(P > the estimate
) ¢ It
=9(¢,E, @), % ler— &% <F'(er; 81— &) —F'(&; 61— &) (5)

where the second equality holds becawgse, T) = 0O, for everyer, & € .4 NUPE, whereF’(g; £) denotes the
9%E(-,00=0,% =Pon'r, and0-E=0-(¢E) =0 on - Lot o =

ot T Fréchet derivative of ate, acting one.

IT. This last’ observation follows fr(grm the second  Throughout the remaining part of this text we will
equation of ), and the fact thae € UP*" implies that  a5sume that the hypothesis of Theorem 3.16)f &nd

¢ =1 in some neighborhood of . We arrive at the pence strong convexity, holds. Then we may seek a

following weak description of the electric field: minimizer € € UP" of F by applying any gradient based
Continuous Direct Problem. Givene € U, determine  method (such as steepest descent, quasi-Newton, or
E € V9" such that7 (e, E, @) = O for everyp € V2%, conjugate gradient), starting frog.

LetEc € Vv dir denote the solution to the Continuous ~ Such an approach requires that we compute the
Direct Problem for a giver € UP®. We can then define  Frgchet derivative of, which is complicated, since it
the Tikhonov functionalF : UP*'— R, involves the implicit dependence d; upon . To
1 a simplify the analysis, in the spirit of optimal control (see
= H(ES_G)Z(SH%T +—|le—el%, (4) for example p4,25 for the general theory and some
2 2 specific examples), we introduce the Lagrangian

associated to the problem of minimizing (e, E),
g € UPE E c VIr with 2(¢, E, @) = 0 for all @ € \vad

where a > 0 is a regularization parameter and acting as a constraint. This Lagranglan is
z5 = z5(t) € C*([0, T)) is a cut-off function for the data,

dropping from a constant level of 1 to a constant level of L(u):=F(g,E)+2(¢,E, A),

F(g, Ee) =
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whereu = (g,E,A) € U 1= UP x VA o vadi c v i
VPer s vaIr x vadi F(g E) was defined in 4), and
2(¢, E, A) was defined ing).

We can now minimizeF over UP®" by finding a
stationary point oL overU. With the strong convexity as
above, this would imply that we solve
Continuous Saddle Point ProblemFind ue U such that
L'(u; v) = O for every ve V.

Again we use the notatioh’(u; v) for the Fréchet
derivative ofL atu, acting onv. It can be shown that

. __L LR ﬂ B ﬁ Y
L(u'v)_de(u’€)+ﬁE(u'E)+d)\ (u; A),
whereu= (¢, E,A) €U, v=(£,E,A) €V, and
oL
5 (U £)=a(e—&, &) <‘f,— 2. >
+s(0-A,0- ( E)),
oL — £
SEWE) = <(E—G)z§,E>rT—<si,—’t‘,f,—'§>QT ©
+(0A,DE), —(0-A,0-E) .
+s(0-A,0-(¢E)) := o/(g, A, E),
o - .
S5 (A) = (e, EA).

In particular, we note that the solutian= (¢, E, A)

(asZ(g,Ee, A¢) =0) leads to
F/(e5) = 9o (uei ) @

Estimate §) and identity ) will play an important role in
the error analysis for the Tikhonov functional and for the
coefficient.

3 Finite element formulations and error
analysis

In this section we will give finite element formulations for
discretizing the Continuous Direct, Saddle Point, and
Adjoint Problems. After that we will turn to the error
analysis. We begin by defining finite-dimensional
analogues of the space8®’, v vad andv, as well as
subsets correspondingtP¢" andU .

Let %, = {K} be a quasi-uniform face-to-face
partition of Q into tetrahedra, such thatt can be
obtained from%;, by subdivision of tetrahedra. Lef; be
a uniform partition of(0, T) into subintervals(ty, tk 1],
ty =kr, k=0,..., N, of lengtht = T /N;. With F, we
associate a mesh-functitin= h(x) such that

h(x) = diam(K) (8)

to the Continuous Saddle Point Problem must satisfyfor x € K € 7. On these meshes we define

9(g,E,A) =0 for everyA € V3 and.«/(g,A,E) =0
for every E € V4", The former means thaE solves
Continuous Direct Problem and the latter thatsolves
the following adjoint problem:
Continuous Adjoint Problem. Givene € UP®', determine
A e V& such thate/ (g, A, @) = 0 for everyg € VI,

The functionale in the Continuous Adjoint Problem

was defined in€). The problem can be seen as a weak
analogue of the following system, adjoint @):(

02)« .

5z ~OA+0(0-A) —se0(0-A) =0 inQr,

dA

%:—(E—G)zfs onlt,
dA .

These observations will be used in the error analysis t
be described below. But first we shall make some remark
concerning the relation between the Fréchet derivative o
Tikhonov functional and that of the Lagrangian.

Letu; = (&, B¢, A¢) be the element df obtained by
taking E as the solution to the Continuous Direct
Problem and\ ; as the solution to the Continuous Adjomt
Problem for the giverz € UP®". Then, under assumption
of sufficient stability of the weak solutions; and A,
with respect te, the observation that

F(e)=F(&,Be) =F(&,Ee) + 2(g,BEe, Ag) = L(Ug),

Yi

VP = {ve VP vk € PAK) VK € F},

UDET VDET Uper
VI = fv e VI : V)i € [PHK)]E x PY(I)
VK e VI € 1},
V2D = {ve Va9 vk, € [PHK))® x PY(I)
VK € GVl € 71},
Vi = VP s VA s V2,

Up := UL < VA Vﬁdj,

whereP"(X) denotes the space of polynomials of degree
at mostn € N over X, and the degree used in the
finite-dimensional analogug”®" of VP is at least 1.
Observe that the dependence on the step sinetime is
not explicitly included in the notation for the
inite-dimensional spaces. This is justified by the fact that
should be selected with regard tian accordance with
he Courant-Friedrichs-Lewy condition.

Using these spaces we can state finite element versions
of the Continuous Direct and Adjoint Problems as follows:
Discrete Direct Problem.Givene € UP®", determlneEh S

di such that? &, Ep, @y,) = 0 for everyg, € V2%,
D|screte.Ad10|nt Problem. Given € € UP®", determine
Ah € Vﬁdj such thate/ (g, A, @) = O for every@ € VAT,

The finite-dimensional analogue for the Continuous
Saddle Point Problem is:

(@© 2018 NSP
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Discrete Saddle Point ProblemFind u, = (&, Ep, Ap) € For jumps in time, we define
Uy, such that L(up, v) = 0 for every ve V. o
The same remark that was made in conjunction with Vh () = s|1>r9+ (Vlt+9) —v(t—9)), (11)

the Continuous Saddle Point Problem is also valid here: it
holds thatEy, solves the Discrete Direct Problem, akg ~ With {v}{(0) = {v};(T) =0, and
solves the Discrete Adjoint Problem, fer= &,. .:

Having stated the Inverse Problem, the continuous vl (©) = max{{vh (Gl {vh (G} (12)
problems, and their discrete counterparts, let us brieflyfort € (, tiy1).
summarize how these problems relate to each other, In the theorems and proofs to be presented, we will
before turning to the error analysis. frequently use the symbolss and < to denote

Recall that our main goal is to find the dielectric approximate equality and inequality, respectively, where
permittivity which gave rise to the observed da&a in higher order terms (with respect to mesh-size or errors)
other words to solve the Inverse Problem. Due toare neglected. We le€ denote various constants of
ill-posedness, this goal is practically unattainable, wed moderate size which are independent of the mesh-sizes
focus instead on finding a regularized solution, which canand the unknown functions.
be done by finding a stationary point to the Lagrangian, We now proceed to an error estimation for the
that is, by solving the Continuous Saddle Point Problem.coefficient. An error estimate for the Tikhonov functional
This, in turn, relies upon solving the Continuous Direct, will follow as a corollary.
and Adjoint Problems. However, the continuous problem
cannot, in general, be solved exactly, but approximatel
through their finite-dimensional analogues, the Discrete
Direct, Adjoint, and Saddle Point Problems.

The purpose of the error estimation below is to
quantify the discrepancy between the solutions to the
continuous problems, and the solutions to the dlscret%add
problems, in order to be able to adaptively refine the latter:
three problems so that the solution to the Discrete Saddl
Point Problem, the approximation of the regularized
solution, fits the solution to the Continuous Saddle Point
Problem, the true regularized solution, as closely as
desired. We will now focus on this estimation.

We begin by introducing some additional notation. For
v= (g E,A) €V we denote (with some slight abuse of p:=
notation) its interpolant ivy, by L [

T

STheorem 1. (A posteriori error estimate for the
Yeoefficient. ) Suppose that the initial approximat&rand
Cihe regularization parametesr are such that the strong
convexity estimatéb) holds. Let u= (¢, E,A) € U be the
solution to the Continuous Saddle Pomt Problem, and let
(&n, En, An) € Up be the solution to the Discrete
le Point Problem, computed on meshgsand .7;.
Then there exists a constant C, which does not depend on
%,Lh h, or 1, such that

2
le—alo < 21+ RN, (13

wheren = n(up) is defined by

} +5]0- Ay, h[DEh]s“[ } >QT
E

Mhv = (Mne, MRE, MhA),

1

+ =

and the interpolation error by <T L> (14)
90-Ep
I’hVZV—”hVZ(I’hE, rhE, I’h)\). +S<| h| [DEh +T[ L>

We will also need to consider jumps of discontinuous +S<|D En| +[En|, [DAnls+ [ } >
functions over.%, and ;. Let Kq, K, € %, share a
common facef. Forx € f we define and

_ T 9B, 0An
Re = a(en— &) — s a9t ot

.
o [ IO-AnE o

Proof.Using strong convexitys), we obtain

{v}s(x)::nl-( lim v(y)— lim v(y)), (9) (15)

y—X,yeKy y—X,yeKo

where ny is the outward unit normal oK;. This is
well-defined since interchanging the roleskf and K,
changes the sign of both the outward unit normal and the > 2, ., ;o

quantity inside the parentheses. We extgnd to every I€ —&nllo < a (F'(&; € —én) —F'(en; € —&n)) -
face in 9, by defining {v};(x) =0 for x e KN T,

K € . The corresponding maximal jump is defined by ~SiNCee minimizesF (¢) we have'(e; € — &) = 0 and thus

2
Vls(x) := max|{v}s(y)|, xeKe, (10 le—enlle <= \F’(eh; £—&n)
yedK oL (16)
wheredK denotes the boundary &f. 08(“ €—&n)l,

(@© 2018 NSP
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where we have denoted h?yandj the solutions to the Ep)=0 aslyE — Ep € Vﬁ". This gives
Continuous Direct Problem and the Continuous Adjoint

Problem, respectively, with permittivitye,, and set ZE(“W E—Ep)
0= (&, E, A) € U. The last equality follows from7). aL aL
We remark that 16) implies |l€ —&nllq < Z [[F'(en)|l, = T (U thE) + 2= (up; MRE —Ep)  (29)
which would be an effective estimate. Unfortunately, we JE JE
cannot computé='(gn) exactly, since it depends on the oL 9= (un; ).
exact solution€ and A as indicated in the text; hence TOE™
further estimation is needed. Similarly, we have
We expand, using the triangle inequality, P
L i X = An)
0A h’ h
— (G e—&)| <
‘55( V| < dl}{ (Un; ThA) + 0,\ (Uh, MA —Ap)  (20)
. oL oL
‘EW’ ) gt e a0 = 2 (U d)
+ ‘%(Uh; £— &) asEy solves the Discrete Direct Problem with coefficient
€ &h.
= |61 + 6], Combining (L8), (19), and Q0), and recalling §) gives
L oL ~
and estimate the two term®;| and || separately. Oy ~ Dy, (aE(Uh. rE) + A (Un; rh)\))
For ©; we assume that the second partial derivatives of A
L exist, and use the linearization <(s )‘”af}E, ‘3{,—th>
Q
oL L s(0-((e —&)rpE), 0-Ap
01 = ——(0; € — &) — 5 (Un; € — &n) + ) Jo
oJe Je 9En drpd
i <(£ &) 5 ot >QT
= 52 (Uni & — &n; € — &n) +0(|[&n — &nll ) z
+S<|:| -((e—&n)Ep, O- rh)\>
L, -~ _ ~ Qr
T aEag(uh’ E—Eni&—&n) +O(|E~Enlliqr) We now aim to lift time derivatives from the
2L . - interpolation residualsr,E and rhA by splitting the
+m(uh;A —An;€—€n) +0(|A = Anlly1qp)):  integral over[0, T] into the sum of integrals over the
subintervals in.#;, and integrating by parts in each
subinterval. Thus we obtain
where £ and 2L denote mixed second partial Hbinteival TS v !
Fréchet derlvatives df. The first two terms vanish, since <(£ - eh)a;,—*;E, %>Q

the first components af anduy, are bothg,, and again the

remainder terms are neglected as they are of higher order Ne 0rhé A\ gt

with respect to the error. Thus, after exchanging the order Z /m 1< h) 7ot T>Q
N

of differentiation, we are left with
i
(e—§ rE, > dt
( /t|<1< )l mz Q

2L N
Qlwﬁ(uh,E—Eh,e—Eh) o
2 . + <(€—€h)fhE, 05th> ’
oL ) ] Qlt=t
+m(uh,/\—/\h,€—€h) L )
oL = (18) B <(E_Eh)rhE’ aé\th>f2‘t—t ) '
= D1|s—sha—E(Uh; E—En) Tkt

aL ~ We note thata Ah — 0 on each subinterval, sinck, is
+D1|5—5h0_A(uh;A —An), piecewise Ilnear and identify the jumps fornilj,
obtaining
whereD1|._g, denotes differentiation with respect to the Ik 9A,
first component i, and action ore — g, <(5 — &)t T>QT
We splitE — Ep = (E — MMhE) + (IThE — Ep) = rhE + Ny
(l'lhE En) and use the fact that, solves the Discrete = <(g_gh)rh|§7 {%} > ‘ .
Adjoint Problem with coefficients, so thatgs (un; MhE — K=1 7 Qlt=t
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Next, we use the approximation

1 (%
= f(t)dt
r/tk,l“

f(tk) ~

to obtain terms defined in the whole time-interval. That is

<(£_£h)%’%>m

Nro1 i <(€ 6 E oA ot

2,7, (e-amt [%]),
L>QT'

= <(5—€h)fh|~5, 1 [%

Q

Similarly, we have

AEn drpA 1 [9E 3
(-G 25 ), = ((e-ami[Fo] md) -

Thus
@l < (Je—en 2 [Fe] . ImEl)

+S<‘D'((€—£h I'hE ‘, ||:|-Ah|>QT

+(le—anl [ %] ),
+S<|D-((5—€h)Eh)’ A >QT

< lle—anllio) (¥ | %] IEL)
a1 2], ),

+slle — nll.(0) )
+slle — enllL. (o <|D-Eh|,’D-th‘>QT
o) (Il 10-Anl)g

-
Jor

‘D-I’hE‘, |D'/\h| 0

+sl0(e — &)l

+5/0( — &n)lL.a) {

as well as forpA, O-rpE, and0 - rpA

‘rhj‘ gc(h[mhlsﬂ [%} )
|0-rhE| <c( OEn), +r["DEhL),

)

where the jump$], and[-|; were defined in equation8)(
(10), (12), and (2). Applying these estimates i), we

’D rh)\’ <c(mh] +r[‘3“

get

OL3Cnlle—anlq, (22)
with n asin (L4).

Turning to®, of (17), we recall from 6) that
oL
©2 = 5 (Un; € — &)
=a(en—&,E—§
(en—&0 h) o (23)

- <(£_Eh)%a %th>_(2-|—
+(0- ((€—&n)En), O-An) g,

Starting with the last term in the above expression, we split
the integral oveR into the sum of integrals ové¢ € %,
and integrate by parts to get

(O-((e—&n)En), O-An)g,

(21) = sz (O-((g— &n)En), O-An),
= —((e—&)En, O(O-A
Kez%( (& —&n)En, O(0-An))g,

+((€ —&)n-En, D-/\h>aKT) :

whereKr 1=K x (0, T), anddKt := (dK) x (0, T). we
observe thatd - (JAp) = 0 on eachK € % for the
piecewise linearAy, and identify the jumps from9j,
obtaining

Note that, by Theorem 4.5.11 dif(), there is a positive

constanC O h; 5/

(in the notation of the cited theorem,

(0-((e—&n)En), 0-An)g,

the exponent isn— | +min{0, n/p—n/q}, where in our — z ((€ — &n)N-En, O-An) s¢
’ T

casem=0,|l =1,n=3, p= o, andq = 2), wherehy is

the mesh size iNP®', such that

& = &nllL,(0) + 10(e — &)l

<Cle-énllgq-

Ke

=3 Kezgh ({(0-An)En}s, € — &n) ks -

Finally, we use standard interpolation estimates (see fofvhere the facto& appears since every non-zero jump is

instance 26]) for rpE

IrE| <C (hZ\DZE\ +1°

)

ot?

(W?Ih O]+ 72|t

%]

~C
gc(h[DEh] +r["Eh} )

encountered exactly twice in the sum o¥ee %,.

Seeking to obtain expressions defined over the whole
of Q, as opposed to those defined only on boundaries of
elementsK € 7, we use the following approximation,
similar to the one used above for the jumps in time:

/de /—dx
JK
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This yields 3.1 Mesh refinement recommendations
{0-((e = &n)En), 0-An)g, From Theoreni and Corollaryl, it is clear that the error
1 L (0. ADE in the reconstruction can be estimated in terms of two
2 KEZy <W [(0-An)Enls, €~ Eh>KT quantities,n, andR,. The former essentially represents
~h

how well the Continuous Direct and Adjoint Problems are
= <ih[(D-)\h)Eh]s,8—8h>QT- approximated by their finite element counterparts, the
Discrete Direct and Adjoint Problems, respectively. The
latter, R¢, describes the error incurred by the

approximation of the coefficient itself.

With the above estimate i”28), we can now conclude that

©2] 5 ‘ (a(en—£0). €~ Enlg In our computational experience frori, §], on given
/(T Mg g g meshesZ;, and .7, the solutions to direct and adjoint
< 0 ot ot ™% h>g (24) problems are in general approximated better than the

coefficient itself. As remarked above, this implies that

s T
+ <ﬁlo [(O-An)En]s dt, $_$h>g‘ N < |Rello. and thus contributions to the error are the

<IRello Nl —&nllg greatest in regions whel®;| ~ |F'(&,)]| is close to its
maximum value. Thus we propose the following mesh
with Re as defined15). refinement recommendation:
Combining estimate2@) and @4) with (16) and (L7),
we conclude that Mesh Refinement Recommendation Using Theorenmi
oc we conclude that we should refine the mesh in
le—enls < =(nlle—enllg+IRello lle—&nlla), neighborhoods of those points i@ where the function
a |Re| attains its maximal values. More precisely, let
and the result¥3) follows. B € (0, 1) be a tolerance number which should be chosen

in computational experiments. Then, refine the mégh

We see that if the numerical errors for solving the in such subdomains @ where

direct and adjoint problems are relatively small, that is,
when U= u, with relatively high accuracy so that the IRe| > Bmax|Re|.
jump and divergence terms inl4) are small, then T Q

~ ||F’(&,)|| dominates the error estimate. . .
IRelle ~ IF (&) Since a relatively large value of the reconstructed

Corollary 1. (A posteriori error estimate for the Tikhonov coefficientsy, indicates a region where the permittivity is
functional.) Under the hypothesis of Theorg&mve have different from the background value of 1, we can also
propose the following heuristic:

4c2
_ < = 2 2
[F(&) —F(en)l 5 a? (’7 + ”RSHQ)’ Mesh Refinement Recommendation 2Ve should refine
with 1) as defined if14), and R as in(15). the m_esh in nelghborhoocj_s of those pomt@uwhe_re the
function|gp| attains its maximal values. More precisely, we
Proof. Using the definition of the Fréchet derivative and refine the mesh in such subdomainsoivhere

(7), we get

&l > Bmax|en|,
F(€) — F () = F'(enie — &)+ ol — nl3) el = Pmgoden
oL . ~ . .
= 0—(u; e—sh)+0(|\£—£h|\f2). where 8 € (0,1) is a number which should be chosen
€ computationally.
Neglecting the remainder term as it is of higher order with
respect to the error, and estimatif(d; € — &,) = O1 +

©, as in the proof of Theorerhy we obtain 4 Adaptive algorithms for the inverse

2C roblem
IF(€)—F(£h)|§7(n+IIRsHQ)II€—€hIIQ- P

In this section we will present different algorithms which
can be used for the solution of the inverse problem we

4C2 consider: usual conjugate gradient algorithm and two
IF(e) —F(en)| S —(n+ [Rellg)2<C (n2+ |\Rg||é) . different adaptive finite element algorithms. Conjugate

a gradient algorithm is applied on every finite element mesh

We will conclude this section by describing how these .7, which we use in computations. We note that in our

theorems can be translated into  concreteadaptive algorithms the time mest is refined globally
recommendations for refining the computational mesh inaccordingly to the Courant-Friedrichs-Lewy condition of
the adaptive algorithm, outlined in Sectidn [27).

Applying Theorenl to estimatd|e — €, o, We arrive at
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Taking into account the remark of Sectighl we 4.2 Adaptive algorithms

denote by
In this section we present two different adaptive
T 9ED IAD algorithms for the solution of our coefficient inverse
R}(X) == a(en— &) — ath(X,t)-a—th(X,t)dt problem (more precisely, the Discrete Saddle Point
T 0 (25) Problem, approximating the solution to the Continuous
+s/ O-ER(x, )0-Af(x, t)dt, Saddle Point Problem), where in the first adaptive
0 algorithm we apply Mesh Refinement Recommendation

. N o _ of Section3.1, while in the second adaptive algorithm we
where functiond\,, andE]) are finite element solutions of use Mesh Refinement Recommendafiaf Section3.1

direct and adjoint problems computed with:= g, We define the minimizer of the Tikhonov functional
respectively, andn is the iteration number in the (4) and its approximated finite element solution &n
conjugate gradient algorithm. times adaptively refined mesi, by & and &,

correspondingly. The latter is obtained at the final step of
the conjugate gradient iteration of Sectidnl on the
mesh, .

Algorithm 2 (The First Adaptive Algorithm)
Step 0. Choose an initial space-time megfy x .7z,
in Q x [0, T]. Computezy, , k > 0, via following steps:

4.1 Conjugate Gradient Algorithm

Here we outline the conjgate gradient algorithm, which
will be used in the two adaptive algorithms presented

below. Step 1. Obtain numerical solutiog, on , using

the Conjugate Gradient Method of Sectidril Denote
Algorithm 1 (Conjugate Gradient Algorithm) the number of conjugate gradient steps by M
Step 0. Discretize the computational space-time domain
Q x [0,T] using partitions.7, and .7, respectively, see Step 2. In accordance with the first mesh refinement
Section3. Start with the initial approximations? = &  recommendation, refine such elements in the m&sh
and compute the sequencesffn=1,2, ..., as: where the expression
Step 1. Compute solutior]! and Ap of the Discrete v v
Direct and Adjoint Problems, respectively, using the |REK| 2B|<’T‘an‘Re,k|v (27)

coefficientg].
where Fg’fk is the gradient on the last iteration of the
Step 2. Update the coefficient off, and .#; via the  conjugate gradient method on the k times adaptively
conjugate gradient method refined meshis satisfied, and the tolerance numbers
Bk € (0, 1) are chosen by the user.

g (x) = g7(x) + yPdP (x),
n 00 = &0+ () Step 3. Define a new refined mesh &, and

where construct a new time partition#y,,, such that the
Courant-Friedrichs-Lewy condition of2[7] is satisfied.
n _ n nqn—1
de (x) = —Re(x) + Bede~(x), Interpolateg,, on the new mesi, ,,, perform Steps 1-3
with on the space-time mesb, ., x . ,, and end up with
GE e
n_
Pe = HRg—luz ’ Step 4. Stop mesh refinements when either
Q || &n — & 1|l o < 61, or for some n||RY(|, < 62, where
d2(x) = —R2(x), and y are step-sizes in the gradient 6, 1 =1,2 are tolerances chosen by the user, ari®
update which can be computed as 28] the gradient on the n:th iteration of the conjugate
gradient method on the new mesh. We then set the final
(RY, dD) number of refinementsek := k, and the reconstructed
AES —W. (26)  coefficientrec == n, .
elQ

Algorithm 3 (The Second Adaptive Algorithm)
] ) ) This algorithm follows the same procedure as the
Step 3. Stop computing update? at the iteration st Adaptive Algorithm, except that the refinement
M :=n and obtain the functions, := &' if either  criterion (27) is replaced, in accordance with the second
||R2||Q < 0, where®f is the tolerance in n updates of the mesh refinement recommendation, by
gradient method, or norms||g])||, are stabilized. _
Otherwise update n to+1 1 and return to Step 1. |&ne| > B mQaX\ehk\ (28)
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for some tolerance numbef € (0, 1) , possibly different  best reconstruction results are obtaineddot 40 in (29).
from B¢, chosen by the user. Thus, we perform our tests with = 40 in (29).

In our computations, we consider computational
domainsQ := (—0.8,0.8)%, and Qrgy = (—0.7,0.7)3,
where the length scales are in decimeters. We choose the
—Firstly, we comment on how to choose the tolerancemesh sizehy = 0.05 in the overlapping layers between

numbersBy, andf in (27), (28). Their values depend Qrem and Qrpm as well as in the coarse mesh. We note
M that we have generated our transmitted data using a four
on the concrete values of m+R£vk‘ and magg ‘Ehk" times locally rgefined initial mes2egy, and in a s%ch
correspondingly. If we take values 8 and 3x very  way we avoid variational crimes. To generate transmitted
close to 1 then we will refine the mesh in very a data we solve the model problem in tirfie= [0, 3.0] with
narrow region of the domaif?, and if we will choose the time step T = 0.006 which satisfies to the

By, and B ~ 0 then almost all elements in the finite Courant-Friedrichs-Lewy conditior2]]. We then pollute
element mesh will be refined. Thus, we will get global our data additive noise to levels = 3%, and 10%,
and not local mesh refinement. Our numerical tests offespectively. _ _
Section5 show that the choice ¢y, andB = 0.7 is a Similarly to [5,7,8,30,31] in all our computations we
quasi-optimal one, since with these values of thechoose a constant regularization parameter= 0.01

parameters,, and f the finite element mest#, is because it gives the smallest relative error in the

refined exactly at the places, where we have Computeaeconstruptlon of the functior. This parameter was
non-trivial parts of the function, chosen via trial and error because of our computational

. experience: such a choice of the regularization parameter
—Secondly, to compute normign, — &, _, ||, in Step 3 P g P

. : . . gave the smallest relative errey = || — &, ||, / ||&n ]| -
'c::tetrhecl)laetgggilc\)ﬁ tﬁ'{g%gg’;s’ :?)ethgzlwtglsoh%& IS An iteratively regularized adaptive finite element method
interp P-1 hic- when both dielectric permittivity and magnetic

permeability are reconstructed, has recently been
presented in 43]. Here, iterative regularization is
performed via the algorithms o2p]. We also refer to15,
16] for different techniques for the choice of
regularization parameters.

We perform four different tests:

Before continuing with the details of our numerical
examples, some remarks are in order:

5 Numerical examples

In this section we present numerical studies of the
solution of our inverse problem using the adaptive
algorithms of Sectio.2 The algorithms are efficiently

implemented in the software package WavEQY|, Test 1:The goal of this numerical test is to reconstruct a

using the domain decomposition technique3d]| smooth functions only inside Qrgy. We define this

To do that we here consider a rectangular~donfajn function forx € Qrem as
which we enlarge to another rectangular dom@irm Q. ) )
We then decompos€ into two subregion2rem and g(x) := 1.0+ 1.0e **1/02 1 1 ge—x2l*/02,
Qrpm such thatQrem = Q, and Qrem N Qrpm = 0. In x1:=(0.3,0.0,0.0) € Qrem,
Qrenm We will use the finite element method (FEM) and, Xo = (—04.0.2.0.0) € Q
in Qppw, the finite difference method (FDM). The 2:=(-04,02,00) FEM- (30)
boundary 0Q of the domain Q is such thatTest2:In this test we reconstruct three small inclusions of
0Q = d1Q U dQ U d3Q, where ,.Q and 6,Q are, diameterd = 2 mm with the centers of the inclusions
respectively, front and back sides &, andd;Q is the at (-0.3,0.0,-0.25, (0.3,0.2,-0.25 and

union of left, right, top and bottom sides of this domain. (0.3, -0.2, —0.25), respectively, and = 2.0 inside
We will collect time-dependent observations over  the inclusions.
Sri=01Q x (0, T) at the backscattering sidgQ of Q. Test3:n this test we reconstruct four small inclusions of

We also define S1 = a0 x (0], giameterd(: g gnrg a/vi(;hzt;;e centers(gfothoezinglgg;ons
Si2 = 01Q x (1, T), & = 6Q x (0,T) and (00,-0.2,-025, and (0.3, -0.2,-0.25),
$:=00x(0,T). respectively, and = 2.0 inside the inclusions.

As in [7,8] we initialize only the componert; of the Test 4:The inclusions of this test are the same as in Test 3,
electric fieldE = (Ey, E, E3) on St as a plane wavé(t) but here the data consists of measurements of two
such that backscattered wave fields: one backscattered field

initiated at the front boundarg; Q, and another one

(29) at the back boundargs Q.

We start to run the adaptive algorithm with a
We assume that the functien= 1 inside Qgpy. The homogeneous initial approximati@ = 1.0 in Qrgp. In
numerical tests of our previous studiéd] show that the  our recent work31], it was shown that such choice of the

F(t) = sin(wt) if0 <t < 2m/w,
~]o if t > 21/ w.
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a) Testl:Q = Qrem U QFpMm b) Test 1.Qrgm

Fig. 2: Domain decomposition in numerical tests of SecBoa) The decomposed domaih= Qrem U Qrpm. b) The finite element
domainQrgwm.

initial approximation gives a good reconstruction. Suchobserve significant improvement of the reconstruction of

homogeneous initial approximations were also used inthe functione obtained on the final adaptively refined

[32]. See also %,7,8,30] for a similar choice of initial mesh: the artifacts are removed and the reconstructed

approximations. We also assume the upper boundunction is moved more closer to the exact functionin

&max = 5 in (1). This is a reasonable value, given that our direction, compared with results of Figuse

target applications are in medical imaging, and typically

involves low contrasts.

To get final images of our reconstructed functigp 5.1.2 Test 2

we use a post-processing procedure which has been

described before in5[7,30,31. The post-processing In the test of this section we consider the problem arisen

allows us to identify distinct shapes from the continuousin microwave imaging: reconstruction of high contrast in

reconstructiorgec. malign tumors and detection of small tumor sizes (less
than 1 cm) in breast cancer screening. Most of existing
numerical methods for solution of these problems uses

5.1 Reconstructions minimization of conventional least-squares functionals
and Gauss-Newton methods. See, for examal&3 34,
5.1.1 Test1 35,36,37,38]. We propose to use an adaptive finite

element method which will allow achievement of high

In this section we present numerical results of thecontrast in the malign tumor and efficiently detect very
reconstruction of the functioa given by 30). Tables 1-2  small sizes of inclusions during adaptive mesh
present computed results of the reconstructions orrefinement. Although only reconstruction of a real
adaptively refined meshes after applying the Firstdielectric permittivity function is considered in our test
Adaptive Algorithm. Figures3—6 display results of the the obtained results can be extended for the
reconstruction of the function given b@@) with additive  reconstruction of the complex permittivity function which
noise of the levelo = 10%. Quite similar results are is one of the goals of our current research.
obtained foro = 3%, see Tables 1, and 2, and thus they = We tested the Second Adaptive Algorithm on the
are not presented here. In Figue$ we observe that the reconstruction of three small inclusions with centers at
location of the maximal value of the functior8Q) is (—0.3,0.0, —0.25), (0.3,0.2,-0.25), and
imaged correctly. It follows from Figur® and Table 1 (0.3, —0.2, —0.25) located inside spherical geometry of
that on the coarse mesh we obtain good contrast, withFigure 2, see also Figur® where they are visualized.
maxoe,, &n, = 1.94. However, Figuré reveals that it is  These inclusions model three small malign tumors of a
desirable to improve the location of the maxima of the size 2 mm. We performed simulations with two additive
reconstructed function imz direction as well as remove noise levels in the datac = 3% and o = 10%, see
some artifacts which appeared in the reconstruction orTables 1-2 for the results.
the coarse mesh. The reconstruction of the three inclusions on the

The reconstructiorge: of € on a final, five times initial coarse mesh witlo = 10% is presented on the left
adaptively refined mesh are presented in FigéréVe figures of Figure9. In this figure and Table 1 we observe
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X1 X2-View X1 X3-View XoX3-View

Fig. 3: Test 1. Five times adaptively refined mesh when the levekafdise in the data was = 10%
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35
%1071
30
15
25
o
o 20
+— 15
10
5
o n
0 5 10 15 20 25 30 35
35
30
25
~ TEEEE
- 20 :::::IIII[]I
— 15
10
5
o n
o 5 10 15 20 25 30 35
35
1 1 e
T 11T
30
>
/////"‘\ 25
N
[ee] 5
i 20
- 15 + FH H
1T
m T
=
10 I
5
o n
0 5 10 15 20 25 30 35

Fig. 4: Test 1. Transmitted data of componentdE different times. The noise in the datadis= 10%
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Table 1.Results obtained on the coarse mesh. We present recomstisicif the maximal contrast = maxg,,, st':"o together with
computational errors in percents. Hereghé the final number of iteration in the conjugate gradientinoet on the coarse mesh.

o=3% o=10%
£ error, % | Mg £ error, % | Mg
Testl| 1.93| 3.5 2 Testl| 1.94 | 3 2
Test2| 2.94 | 47 2 Test2| 2.81 | 40.5 2
Test3| 1.77 | 11.5 2 Test3| 2.04| 2 2
Test4 ] 1.9 5 2 Test4| 2.03| 1.5 2

Table 2.Results obtained ondg times adaptively refined mesh. We present reconstructibtieanaximal contrast = maxo,,, &rec
together with computational errors in percents.

og=3% o=10%
Case | € error, % | My | krec Case | € error, % | My | krec
Testl| 2.04| 2 5 4 Testl| 1.97| 1.5 1 5
Test2| 1.99| 0.5 1 5 Test2| 192 | 4 1 5
Test3| 1.55| 22.5 1 2 Test3| 1.88 | 6 1 2
Test4| 1.9 5 1 1 Test4| 2.15| 7.5 1 1

X € QFem &y (X) =1.2

X1Xo View

X1X3 View

XoX3 View

X € Qrgm - &, (X) =15

X € Qrgm - &p,(X) =1.8

Fig. 5: Test 1. In red: isosurfaces on a coarse mesh. Hetaxo.,, &, = 1.94, and the noise level in the data &= 10% For
comparison we also present as wireframes the corresporidogyrface of the functiof80) in every figure.
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X e QFEM . frec(x) = 12 X e QFEM . frec(x) - 15 Xe QFEM . grec(x) - 18

X1Xo View

X1X3 View

XoX3 View

Fig. 6: Test 1. In red: isosurfaces on the final mesh. Hexg,was obtained on a five times refined meshxo_,, &rec = 1.97, and the

noise level in the data ie = 10% For comparison we also present as wireframes the corredipgnisosurface of the functiqi30) in
every figure.

that, on the coarse mesh, we obtain quite correct location5.1.3 Test 3

of all inclusions and achieve maximal contrast of o

maxXo., &, = 2.8 in the inclusions. However, This testis similar to Test 2, only here the goal was to

Figures9-e), and g) show us that the locations of all reconstruct four small inclusions located at differentpar

inclusions in xs-direction can still be improved. The Of Qrem: two inclusions were located closer to the

figures on the right of Figur@ present the reconstruction backscattering boundary, and two other inclusions were

&rec Of £ on the five times locally adaptively refined mesh. placed closer to the transmission boundary2tw, see

In Figure9-f), and h) we observe an improvement of the Figure 10 where they are presented. These inclusions

reconstructions of the three inclusions in thedirection ~ model four small malign tumors of a size 2 mm. We

on the final adaptively refined mesh, compared withperformed simulations with two additive noise levels in

reconstructions obtained on the coarse mesh. Comparingpe data:c = 3% ando = 10%, see Tables 1-2 for the

Tables 1 and 2 we also can conclude that adaptive mesfgsults.

refinement allowed us to obtain more correct contrast for ~ The reconstruction on the initial coarse mesh with a

all three inclusions. noise levelo = 10% in the data is presented on the left
figures of FigurelO. From this figure and Table 1 we
observe that we get quite correct locations of all
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prospect view X1 X2 View

%1071
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t=0.6

35

35

35
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Fig. 7: Test 2. Transmitted data of the componep@Edifferent times. The noise level in the datais- 10%

X1Xo View X1X3 View XoX3 View

Fig. 8: Test 2. Five times adaptively refined mesh when the noiseethe data waso = 10%
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X1X3 View
W R R A L 5 e AT

X1X2 View XoX3 View
S e D s s

1

On coarse mesh,
X € QFeM : &ny(X)

19

On final mesh,
X € Qrem : Erec(X)

Fig. 9: Test 2. Reconstructions (in red colay), of € obtained on the coarse mesh (upper figures), &gglon the five times adaptively
refined mesh (lower figures). The noise level in the dat s 10% For comparison we also present exact isosurfaces of treethr
small inclusions to be reconstructed (in light blue color).

X1Xo View X1X3 View XoX3 View

2.04

On coarse mesh,
X € QFem : &ny(X)

1.88

On final mesh,
X € QreMm : &rec(X)

Fig. 10: Test 3. Reconstruction of four inclusions (in red color)abéd on the coarse mesh (upper figures) and on the two times
adaptively refined mesh (lower figures). The noise levelenddita isc = 10% For comparison we also present exact isosurfaces of
the four small inclusions to be reconstructed (in light budor).
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X1Xo View X1X3 View XoX3 View

2.03

On coarse mesh,
X € Qrem Ehy (X)

215

On final mesh,
X € QFeMm : Erec(X)

Fig. 11: Test 4. Reconstruction obtained with two plane waves. W& pteeconstruction of the four inclusions (in red colorjahed
on the coarse mesh (upper figures) and on the two times a@égptiefined mesh (lower figures). The level of noise in the tata
o = 10% For comparison we also present exact isosurfaces of thesimall inclusions to be reconstructed (in light blue color)

inclusions and achieve a maximal contrast of same size and they are reconstructed in correct positions
maxoe., &, = 2.04 on the coarse mesh. However, and with correct contrasts on the coarse mesh as well as
Figure 9-e), and g) show that the locations of all on the refined mesh. From Tables 1-2 we see that
inclusions in thes-direction can still be improved. These adaptive algorithm converged already after first mesh
figures also show that one of the four small inclusions isrefinement. The drawback of this test is that computations
almost not present in the initial reconstruction. of one optimization iteration took twice as much time as
The figures on the right of Figur&0 present the the corresponding iterations of the previous tests, be&caus
reconstructiongec on the two times locally adaptively of two measurements of the backscattered wave fields.
refined mesh. In Figur&0-f), and h) we observe that the
two lower inclusions are well reconstructed. However,
since in this quite challenging test we have used onlyg Conclusion
transmitted data resulted from a single measurement of a
plane wave, we do not observe significant improvementn this work we have derived two a posteriori error
of the reconstruction of the four inclusions in the estimates, for the direct error in the approximated
xz-direction. permittivity as well as in the Tikhonov functional, in the
finite element approximation of the Lagrangian approach
to our coefficient inverse problem. Both estimates consist
5.1.4 Test4 of two parts which can be interpreted as representing the
error incurred by the approximation of the solution to the
In this test we decided improve the results of Test 3 anddirect and adjoint problems, and the error incurred by the
we tried to reconstruct the four inclusions using approximation of the coefficient itself, respectively. $he
measurements of two backscattered wave fields. First, westimates are important in the adaptive algorithms we
initialized a plane wave at the front boundahy2 intime  have studied. Moreover, they further justify the use of
[0,T] and collected backscattered data here. Next, wesimilar error indicators in our previous worka g].
initialized a plane wave at the back boundas® in time Numerically we have tested the adaptive algorithms
[T, 2T] and collected backscattered data for this wavewith two different additive noise levelsy = 3%, and
field. We choosél = 3 andt = 0.006 as in all previous 10%, in the data. Our numerical tests show that with mesh
tests. Figurell and Tables 1-2 show the results of the refinements, as was expected, the quality of the
reconstruction. Now we see that all inclusions are of thereconstruction is improved a lot. Compare, for example,
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the results of Figur& with those of Figuré. Using these  [11] P. Monk, Finite Element Methods for Maxwell’s Equatson
figures and tables 1 and 2 we observe that, with mesh  Clarendon, Oxford, 2003.
refinements, the artifacts obtained on a coarse mesh af@2] K.D. Poulsen and D.R. Lynch, IEEE Trans. Microwave

removed and the reconstructed functiey has more Theory Technique89, 395-404 (1991).

correct location irxs direction. [13] O.A. Ladyzhenskaya, The boundary value problems of
We can conclude that we have supported the tests of ~mathematical physics, Applied Mathematical Sciences,

our previous works §,7,8,30,31,39,40,41], and have Volume 49, Springer-Verlag, New York, 1985.

[14] L.C. Evans, Partial differential equations, Gradu@tedies
in Mathematics, Volume 19, American Mathematical
Society, Providence, RI, 2010.

Our adaptive algorithms can also be applied for the[15] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of
Inverse Problems, Mathematics and its Applications,

case V\(hen edge eIeme'nts are used for the numgrical Volume 375, Kluwer Academic Publishers Group,
simulation of the solutions of forward and adjoint Dordrecht. 1996.
problems, see4,43] for finite element analysis in this 16] A N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, and A.G
case. This, as well as development of different techniques ~ vagola, Numerical Methods for the Solution of Ill-Posed
for iterative choice of regularization the parameter in the Problems, Kluwer Academic Publishers, Dordrecht, 1995.
Tikhonov functional, can be considered as a challenge fof17] A.L. Bukhgeim and M.V. Klibanov, Dokl. Akad. Nauk
future research. SSSR260, 269272 (1981).

For the applications to medical imaging, an additional [18] M.V. Klibanov, Zh. Vychisl. Mat. i Mat. Fiz26, 1063-1071
important challenge, both from a computational and (1986).
theoretical point of view, is the extension of the adaptive[19] M. Bellassoued, M. Cristofol, and E. Soccorsi, Inverse
Lagrangian methods to the case of a complex coefficient.  Problems28, 095009 (2012).
This corresponds to considering a conductive medium|20] S. Li, SIAM J. Math. Anal.37, 1027-1043 (2005).
which is more realistic for organic tissues, and is a topic[21] S. Liand M. Yamamoto, Chin. Ann. Math. Ser28, 35-54

of our current research. (2007). . . _
[22] A.B. Bakushinsky, M.Yu. Kokurin, and A. Smirnova,

Iterative Methods for Ill-Posed Problems: An Introduction
De Gruyter, Berlin, 2011.
[23] S. Hosseinzadegan, lteratively regularized adapfinite

. . . element method for reconstruction of coefficients in
This research is supported by the Swedish Research Maxwell's system, Master’s thesis in applied mathematics,

Council (VR). The computations were pe.rformed. on Department of Mathematical Sciences, Chalmers University
resources at Chalmers Centre for Computational Science ¢ Technology and Gothenburg University, 2015.
and_ Engineering (C3SE) prowded by the Swedish[24]R. Becker, H. Kapp, and R. Rannacher, SIAM J. Control
National Infrastructure for Computing (SNIC). Optim. 39, 113-132 (2000).

[25] K. Kraft and S. Larsson, BITB0, 587-607 2010.
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