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Abstract: Two atoms located in a one dimensional waveguide with initially one of them in the excited state interact by exchanging
photons. We analyze the exchange process distinguishing between real and virtual photons contributions, and comparing between the
Coulomb and Goeppert-Mayer gauges. We show that gauge-independent coupling terms can be interpreted in a simple way using the
time-energy incertitude relation
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1 Introduction

The light propagation between two atoms represents an
old issue that was concomitant with the development of
quantum electrodynamics. It has been addressed by Fermi
as earlier as 1932 [1] and represents the basic model for
understanding super-radiance phenomena [2–6].
Moreover, the photon exchange is known to lead to the
coupling between atoms inducing alternated transitions
and light-shifts (collective Lamb-shift). Although the
coupling term is finite and gauge independent, it involves
the superposition of many quantum paths whose
contributions are gauge-dependent and that may be
divergent. For this reason, these partial quantum paths are
generally considered as unphysical (unobservable)
although the photon exchange process is allowed. To the
best of our knowledge, no further investigation on the
exact behavior of these unphysical processes has been
performed. Here, we investigate the situation of
atom-atom coupling in a one dimensional (1D)
waveguide for both the Coulomb and Goopert-Mayer
gauges. We show that each partial quantum path exhibits
a finite gauge-independent part whose behavior can be
understood from the time-energy incertitude and a gauge
dependent contribution responsible for the unphysical

behavior of these partial parts. This study represents thus
an evidence for the close connection between
renormalization theory and gauge formulation of quantum
electrodynamics. The dynamics of atoms in 1D
waveguide is a promising configuration is the realization
of all-optical quantum devices [7–9] because it allows the
control of the transport of the flying qubits (photon) and
the realization of fundamental quantum information
operations [7–14]. Even if many studies have been
already achieved for the calculation of the transmission
and reflection of a photon through an array ofN atoms in
a 1D waveguide, neither the role of photons exchanged
between atoms has been realistically studied (because of
the neglect of non Rotating Wave Approximation –RWA–
contributions in these studies) nor the nature (real or
virtual) of the photons has been established. We have
addressed these considerations in a recent paper [15]
stressing on the spectral and temporal modification of a
photon wavepacket propagating in a 1D waveguide
containing two separated atoms. Here, in this paper we
focus on the physical interpretation of photons exchanged
by the two atoms considering two gauges (Coulomb and
Goeppert-Mayer) without performing the RWA

approximation.
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2 Theory. Coupling between atoms:

We consider two identical atoms labelledj = 1,2 each
modelized by a two-level system (ground states|a j > and
excited states|b j > with eigenfrequencies 0 andω0
respectively). The resonant frequency isω0 and the
interatomic distancel. We consider the case where the
two atoms are localized inside an infinite lossless
waveguide. The transverse dimension of the waveguided
is assumed to be much smaller thanλ0 (the resonant
wavelength) and the interatomic distancel (e.g.d ≪ λ0, l)
so that the electrostatic dipole-dipole interaction between
the atoms is strongly inhibited in the waveguide and can
be neglected [16, 17]. Moreover, the atoms no longer
radiate outside thez direction and the field remains
uniform in the longitudinal direction of
propagation [18,19]. We take into account here for virtual
photon effects that may induce significant changes in the
dynamics. Thus rotating wave approximation (rwa) is not
done and the Hamiltonian of the system̂H can be
separated into three termŝH = Ĥatomic + Ĥ f ield + Ĥinter.
In this notation,Ĥatomic = ∑2

j=1 h̄ω0|b j >< b j| is the
Hamiltonian of the free atoms.
Ĥ f ield =

∫ ∞
−∞(h̄ωk)â

†
kz

âkzdkz is the Hamiltonian of the free
field with ωk = c|kz| = ck andâkz the photon annihilation
operator that follows the usual bosonic commutation rules
[âkz , â

†
k′z
] = δ (kz − k′z). The interaction Hamiltonian

depends also on the electromagnetic gauge used and can
be written as Ĥinter =

∑2
j=1
∫ ∞
−∞ h̄gk

(

ĩâkz e
ikz.z j + ĩ∗â†

kz
e−ikz.z j

)

(σ̂ j + σ̂†
j )dkz with

z j the position of atom j (with z2 − z1 = l),
σ̂ j = |a j >< b j| the lowering operator, the couplinggk

and the parameter̃i depends on the gauge used. For

Coulomb gauge, we havẽi = 1 and gk = g0

√

ω0
ωk

with

g0 =
√

ω0
4π h̄ε0A dab the coupling at resonance,A the

effective transverse guide section anddab the dipole
moment. For Goeppert-Mayer gauge, we haveĩ = −i and

the coupling isgk = g0

√

ωk
ω0

. When initially (t → −∞)

only one atom is in the ground state, and for the second
order in the interaction Hamiltonian, the wavefunction
|ψ > (t) of the whole system (atoms+field) can be
formally expanded as:

|ψ > (t) =
∫ ∞

−∞
αkz

(t)e−iωkt |a1,a2,1kz
> dkz

+
2

∑
j=1

β j(t)e
−iω0t |a j′ 6= j,b j,0>

+
∫ ∞

−∞
γkz

(t)e−i(2ω0+ωk)t |b1,b2,1kz
>

+
2

∑
j=1

∫ ∞

−∞
dkz

∫ ∞

−∞
dk′zη j,kz ,k′z(t)e

−i(ωk+ωk′+ω0)t |a j′ 6= j,b j,1kz
,1k′z > .

(1)
The two first terms corresponds to states with an
excitation number equal to one. In the first term, we have
states with one photon in the field and both atoms in the

ground level whereas in the second term, we have states
with only one atom (j = 1,2) in the excited state and no
photon in the field. The last two terms correspond to an
excitation number of three. The third term describes the
situation where both atoms are excited and there is one
photon in the field, whereas the last term corresponds to
the situation with one excited atom (j) and two photons in
the field. These states are necessary for the correct
treatment of virtual photon and the collective Lamb-shift
effect.

The evolution of the system is determined by the
Schrödinger equationih̄ d|ψ>(t)

dt = Ĥ|ψ > (t). The
equations of evolution for the amplitudes obtained from
the Schrödinger equation can be solved using the standard
adiabatic elimination of the continuum technic [20], that
holds for ω0 ≫ Γ where Γ is the relaxation constant
given byΓ = 2π

c g2
0. Details of calculations can be found

in [15]. The amplitude β j(t) ( j = 1,2) follow the
fundamental integro-differential equation:

β̇ j(t) =−Γ β j −
∫ t

−∞
β j′ 6= jM̄(t − t ′)dt ′. (2)

The first term is a relaxation term whereas the second
term is a coupling between the two atoms. It depends on a
memory function M̄(t − t ′) that is the sum of four
contributionsM̄ = M̄1+ M̄2+ M̄3+ M̄4 with:

M̄1(t − t ′) =
∫ ∞

0
g2

ωei(ωl/c)ei(ω0−ωk)(t−t′)dω (3a)

M̄2(t − t ′) =
∫ ∞

0
g2

ωei(ωl/c)e−i(ω0+ωk)(t−t′)dω (3b)

M̄3(t − t ′) =
∫ ∞

0
g2

ωe−i(ωl/c)ei(ω0−ωk)(t−t′)dω (3c)

M̄4(t − t ′) =
∫ ∞

0
g2

ωe−i(ωl/c)e−i(ω0+ωk)(t−t′)dω . (3d)

In these expressions, we have,gω = gk√
c and the spatial

term accounts for the field propagation between the two
atoms. An important case is the situation where the atoms
are close enough so that the interaction (exchange of
photons) can be considered as instantaneous compared to
the atomic dynamics. This is the case when the photon
time of flight l

c and the resonant period (2π
ω0

) are smaller
than the time characteristic of population amplitudesβ j

that is Γ −1. This is obtained forl,λ0 ≪ cΓ −1. In this
case, we can setβ j(t ′) ≃ β j(t) in the integral appearing
in (2). Performing the integration over time first, we
obtain

∫ t
−∞ M̄(t ′− t) = Γ ei(ω0l/c). Note that –as expected–

the coupling term is independent of the gauge used. The
equations of evolution of theβ j turn into:

β̇ j(t) =−Γ β j(t)−Γ ei(ω0l/c)β j′ 6= j(t). (4)

The dependence of the coupling coefficient with the
interatomic distance appears through only a phase term
ei(ω0l/c). Thus, the coupling term doesn’t decrease with
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Fig. 1: Quantum paths leading to the modification ofβ1, the
excited state amplitude of atom1. Paths are associated with(a)
relaxation of atom 2 with emission of a photon in the backward
(M1 amplitude) or forward (M3 amplitude) directions and that
interacts further with atom 1 (RWA terms), (b) excitation of atom
1 with emission of photon in the backward (M2 amplitude) or
forward (M4 amplitude) directions and that interacts further with
atom 2 (non-RWA terms). Similar photon diagrams exist for the
modification ofβ2.

the atomic separation in contrast with the free space
situation. This is because in 1D waveguide withl ≫ d,
the propagating photons are confined along the inter
atomic axis making the energy flux unchanged between
atoms.

3 Photon exchange:

3.1 Quantum paths:

The photon exchange between the two atoms can be
understood from equations (2, 3) by exhibiting the
frequency dependence. Moreover, we proceed to
integration over time in these equations. We then obtain:
(with the notationMi =

∫ t
−∞ M̄i(t − t ′)dt ′, i = 1, · · · ,4)

M1 = πg2
ω(ω0)e

i(ω0l/c)

+ iP

(

∫ ∞

0
g2

ω(ω)
ei(ω0l/c)

ω0−ω
dω

)

(5a)

M2 =−i
∫ ∞

0
g2

ω(ω)
ei(ω0l/c)

ω0+ω
dω (5b)

M3 = πg2
ω(ω0)e

−i(ω0l/c)

+ iP

(

∫ ∞

0
g2

ω(ω)
e−i(ω0l/c)

ω0−ω
dω

)

(5c)

M4 =−i
∫ ∞

0
g2

ω(ω)
e−i(ω0l/c)

ω0+ω
dω . (5d)

The P designs the Cauchy principal part of the
corresponding integrals. According to these equations, the
atoms exchange photons with different frequencies and

the four parts correspond to distinct quantum paths.
Moreover, we represent in figure1, the quantum paths
corresponding to the photon exchange and explaining for
the behavior of the field and atomic dynamic. TheRWA

terms (associated withM1 and M3 ) correspond to the
case (a) where one -excited– atom relaxes and emits
photons leading to a further absorption by the other atom.
The non-RWA terms (associated withM2 and M4 )
correspond to the situation (b) where an atom in the
ground state emits a photon and transits to the excited
state. The emitted photon is then absorbed by the second
atom that relaxes to the ground state. It’s important to
notice thatM1 andM2 corresponds to an emission in the
forward direction (z > 0) whereasM3 andM4 correspond
to a backward emission (z < 0). That means that photons
emitted by one of the atom in opposite direction to the
other atom can also be absorbed by this latter. This is
because a photon spreads ”naturally” over a distanceλ
–although we cannot define a spatial wavefunction [21] –
and cannot be considered as a point-like classical particle.

3.2 Real and virtual photons:

We distinguish in the photon exchange process between
real and virtual photons. Real photons are those who
appear in process that conserve the bare energy in
contrast with virtual photons that doesn’t conserve bare
energy. Real photons contributions appear in the first
terms in (5a) and (5c) that correspond to the resonant
frequency in rwa terms whereas the contribution of virtual
photons appear in the principal part of these terms and the
whole non-rwa contributions (5b and5d). It’s worthy to
notice that the sum of real photons contribution gives
Γ cos(k0l) e.g. the real part of the coupling term
Γ ei(ω0l/c) in (4). Virtual photons that involve the
remaining terms and contribute to the imaginary part of
the couplingiΓ sin(k0l). The virtual photons contribute
thus to only a frequency shift of the atomic resonances
whereas the real photons induce atomic transitions.

We have also to distinguish between near resonance
and far resonance virtual photons that influence the
population behavior in different manner. Indeed, let’s
consider the situation wherel ≫ c

ω0
and the contribution

of M1 and M3 terms to the coupling between atoms. In
(5a-5d) we can separate the non-resonant contribution
(e.g. the integral) into two parts, one corresponding to
photons nearly resonant with frequenciesω located in a
domainδ ≥ c

l aroundω0 (with ω0 ≫ δ ) and another part
with the remaining photons. In this situation, using the

relationiP
∫ ω0+

δ
2

ω0− δ
2

g2
ω

e±i(ωl/c)

ω0−ω ≃ ±πg2
ω(ω0)e±ik0l , we find

that the sum ofM1 andM3 contributions gives rise to the
imaginary part of the couplingiΓ sin(k0l). In other words,
only nearly resonant photons contribute to the atomic
coupling. Thus, the role of the remaining part (highly non
resonant photons inM1 andM3) is to cancel the non-RWA

photons contributions (M2 andM4).
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3.3 Gauge-dependent and gauge-independent
contributions:

The coupling term between the two atoms in (4) is
independent from the gauge used and needs no
renormalization procedure. However, the partial
contribution termsMi (i = 1, · · · ,4) corresponding each to
a specific quantum path are gauge-dependent and even
diverges in the case of Coulomb gauge. Indeed, let’s
evaluate the integrals appearing in (5). We obtain the
following relations:

iP

(

∫ ∞

0
g2

ω(ω)
e±(ωl/c)

ω0−ω
dω

)

=

g2
ω(ω0)

[

±e±i(ωl/c)(Si(ω0l/c)+
π
2
± iCi(ω0l/c)

)

−G±
]

(6a)

− i
∫ ∞

0
g2

ω(ω)
e±(ωl/c)

ω0+ω
dω =

g2
ω(ω0)

[

±e∓i(ωl/c)(Si(ω0l/c)− π
2
∓ iCi(ω0l/c)

)

+G±
]

.

(6b)

With Ci and Si the cosine and sine integral functions
respectively [22]. For real arguments, these functions are
even and odd respectively. The asymptotic values are
Ci(|x| ≫ 1) = 0, Si(|x| ≫ 1) = π

2 and we have Ci(0) = ∞.
G± is a gauge dependent constant withG± = ∓ c

l
(Goeppert-Mayer gauge) andG± = ± π

2 + iCi(ε → 0)
(Coulomb gauge). In Coulomb gauge, these integrals
diverge because of infrared singular behaviorgk ∝ 1√

ω .
Using (6a,6b) and (5), we obtain the following relations
for the coupling elements:

M1 = πg2
ω (ω0)e

i(ω0l/c)

+g2
ω (ω0)

[

ei(ω l/c)(Si(ω0l/c)+
π
2
+ iCi(ω0l/c)

)

−G+

]

(7a)

M2 = g2
ω (ω0)

[

e−i(ω l/c)(Si(ω0l/c)− π
2
− iCi(ω0l/c)

)

+G+

]

(7b)

M3 = πg2
ω (ω0)e

−i(ω0l/c)

+g2
ω (ω0)

[

−e−i(ω l/c)(Si(ω0l/c)+
π
2
− iCi(ω0l/c)

)

−G−
]

(7c)

M4 = g2
ω (ω0)

[

−ei(ω l/c)(Si(ω0l/c)− π
2
+ iCi(ω0l/c)

)

+G−
]

.

(7d)

Each coupling termMi is the sum of a gauge-independent
term and a constant part that depends on the gauge used
making the interpretation of associated partial quantum
paths cumbersome. However, an interpretation of the
behavior of gauge-independent part is possible and is
based on the report that these gauge independent parts are
identical to the values of the coupling terms obtained if

the couplinggω(ω) was assumed constant e.g:

(Mi)G±=0 = (Mi)gω (ω)=gω (ω0); i = 1,3 (8a)

(Mi)G±=0 = (Mi)gω (ω)=gω (−ω0); i = 2,4. (8b)

For RWA terms (M1 andM3), the gauge independent terms
are obtained as if the coupling parameter is the same for
all the frequencies and equal to that of the central
frequency. For non-RWA terms, (M2 and M4), the same
equality exists except for the minus sign. Using these
properties, the physics of some concrete situations can be
highlighted. Whenω0l/c ≫ 1 (e.g.l ≫ λ0), the non-RWA

contributions vanish, e.g.
(Mi)G±=0 = (Mi)gω (ω)=gω(−ω0) = 0 (i = 2,4) whereas for
the RWA terms we have
(M3)G±=0 = (M3)gω (ω)=gω(ω0) = 0 and

(M1)G±=0 = (M1)gω (ω)=gω (ω0) = Γ ei(ω0l/c). Only the
photon exchange represented in figure1-a with a photon
emitted in the direction of the neighboring atom subsists.
This behavior can explained using the time-energy
incertitude relation. Indeed, a photon is present for only a
time given by|ω −ω0|−1 (RWA process associated with
M1 andM3) and|ω +ω0|−1 (non-RWA photons associated
with M2 and M4). Except for real photons that are
resonant (ω = ω0), this lifetime is limited. All virtual
photons (photons withω 6= ω0) travel over a finite
distance that cannot exceedc|ω + ω0|−1 for non-RWA

photons and c|ω − ω0|−1 for RWA photons as a
consequence. Because we have|ω +ω0|−1 ≤ ω−1

0 , it is
expected that non-RWA photon can be exchanged when
the interatomic distancel is larger than λ0 = c

ω0

((Mi)G±=0 = (Mi)gω (ω)=gω (−ω0), i = 2,4) and only nearly
resonantRWA photons such as|ω −ω0| < c

l are involved
in the interaction process. In the latter case, the
near-resonance frequencies give a contribution opposite
to the exact resonance one (e.g. in (7c) and disregarding
G−, the first term is canceled by the second one) leading
to (M3)G±=0 = (M3)gω (ω)=gω(ω0) = 0. This result is in
line with what can be deduced from figure1-a where we
see that the photon exchanged in the process involvingM3
moves away from the atoms. We then expect a vanishing
contribution once the interatomic distance is larger thanλ
–the extension of the field on the back–. Because for
significant contribution we havec|ω0 − ω |−1 > l, we
obtain |ω − ω0| ≪ ω0 when ω l

c ≫ 1. The contributing
frequencies are such asω ≃ ω0 and the spatial extension
of the field on the back is given byλ ≃ λ0 ≪ l. Thus, the
photon cannot ”reach” the neighboring atom making the
contribution ofM3 vanishing in this situation.

When the frequency dependence of the coupling is
taking into account, the interpretation in terms of
time-energy incertitude is no longer valid since the
photon lifetime represents first, only an average time and
secondly the rate of photon exchange doesn’t depend on
solely but also on the coupling parametergω . This latter
parameter can reach important values and even diverges.
For instance,gω → ∞ when eitherω → 0 (Coulomb
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gauge) andω → ∞ (Goeppert-Mayer gauge). The result is
the appearance of the gauge-dependent constantG± that
exhibits an infinite part in the case of Coulomb gauge.
However, because these additional terms rule out in the
final resulting couplingΓ ei(ω0l/c), the interpretation in
terms of time-energy incertitude relation can be
considered as ”effectively” valid.

Another interesting result can be obtained when
gathering differently the coupling termsMi. Indeed, for
i = 1,2 the gauge-dependent terms are opposite (and also
for i = 3,4). The quantity M1 + M2 is then
gauge-independent and corresponds to a realistic physical
situation. Indeed, if an optical-diode like device is
inserted into the waveguide allowing only backward
propagation of light (kz < 0), the coupling term reduces to
M1+M2 and is necessarily gauge independent. Moreover,
using (7a,7b), we obtain:

M1+M2 = g2
ω(ω0)

[

cos(ω0l/c)(2Si(ω0l/c)+π)
+ isin(ω0l/c)(2π + iCi(ω0l/c))

]

.
(9)

Forω0l/c≫ 1, we have Si(ω0l/c)≃ 1 and Ci(ω0l/c)≃ 0.
We then obtainM1+M2 =Γ ei(ω0l/c), the same value of the
coupling obtained in our situation where the two directions
are allowed.

4 Conclusion:

The interaction between two atoms exchanging photons
in a 1D waveguide has been studied in both Coulomb and
Goeppert-Mayer gauges. We have shown that the photon
exchange involves different quantum paths. Coupling
terms between excited-state amplitudes are associated to
each of these quantum paths and exhibit both
gauge-independent and gauge-dependent contributions.
We have clarified the physical meaning of the
gauge-independent parts using the time-energy incertitude
relation. The situation of two atoms interacting in a 1D
waveguide turns to be very instructive to understand the
interaction between atoms at the photon level. Moreover,
it paves the way to an extension of these studies to the
case of free space (3D) orN interacting atoms in 1D.
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